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Outline: 

 Fresnel Diffraction 

 The Depth of Focus and Depth of Field(DOF) 

 Fresnel Zones and Zone Plates 

 Holography 

 

A. Fresnel Diffraction 
For the general diffraction problem, the electric field E(x’,y’) measured at a distance 
z from the plane of the aperture is a convolution of three factors: 

𝐸(𝑥′, 𝑦′) = ∬ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧)𝑡(𝑥, 𝑦)𝐸(𝑥, 𝑦)𝑑𝑥𝑑𝑦   (1) 

ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧) =
exp⁡(𝑖𝑘𝑟)

𝑟
    (2) 

 

where                              𝑟 = √(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2   (3) 
 

When the distance z is sufficiently far (z>>x’,y’, x, y) we take the paraxial 
approximation: 
 

𝑟 ≈ 𝑧(1 +
(𝑥′−𝑥)

2
+(𝑦′−𝑦)

2

2𝑧2
)    (4) 

exp⁡(𝑖𝑘𝑟) ≈ exp⁡(𝑖𝑘𝑧)𝑒𝑥𝑝(−𝑖𝑘
𝑥𝑥′+𝑦𝑦′

𝑧
)exp⁡(⁡𝑖𝑘

𝑥′
2
+𝑦′

2
+𝑥2+𝑦2

2𝑧
) (5) 

It is the value of the quadratic term 𝑘
𝑥′

2
+𝑦′

2
+𝑥2+𝑦2

2𝑧
⁡that determines whether the Fresnel or 

Fraunhofer approximation should be used. Generally speaking, it is determined according 

to whether the value of 𝑘
𝑥′

2
+𝑦′

2
+𝑥2+𝑦2

2𝑧
is larger than π/2 (Fresnel) or smaller than π/2 

(Fraunhofer). For example, taking D=1mm, =500nm, then z(Fraunhoffer)=1m! Therefore 
between z=10mm to 1 m is all Fresnel diffraction region. 

 
 Fresnel propagator or Fresnel kernel: 

 
Two types of expressions for the Fresnel approximation can be obtained; one is in the form 
of a convolution and the other is in the form of a Fourier transform. If we expand exp(ikr) 
into quadratic terms: 
 

𝐸(𝑥′, 𝑦′) = ∬ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧)𝑡(𝑥, 𝑦)𝐸(𝑥, 𝑦)𝑑𝑥𝑑𝑦   (6) 
𝐸(𝑥′, 𝑦′)

=
exp⁡(𝑖𝑘𝑧)

𝑧
exp⁡(⁡𝑖𝑘

𝑥′2+𝑦′2

2𝑧
)∬𝑒𝑥𝑝(−𝑖𝑘

𝑥𝑥′ + 𝑦𝑦′

𝑧
)exp⁡(⁡𝑖𝑘

𝑥2+𝑦2

2𝑧
)𝑡(𝑥, 𝑦)𝐸(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 

𝐸(𝑥′, 𝑦′) =
exp⁡(𝑖𝑘𝑧)

𝑧
exp⁡(⁡𝑖𝑘

𝑥′2+𝑦′2

2𝑧
)ℱ [exp⁡(⁡𝑖𝑘

𝑥2+𝑦2

2𝑧
)𝑡(𝑥, 𝑦)𝐸(𝑥, 𝑦)]    (7) 
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You may recognize exp⁡(⁡𝑖𝑘
𝑥2+𝑦2

2𝑧
) is a Gaussian function with respect to x and y, and 

the wavefront is diverging.  

Using 𝑥′ = 𝑘𝑥
𝑧

𝑘
, 𝑦′ = 𝑘𝑦

𝑧

𝑘
     (8) 

 
The corresponding transfer function is: 
 

𝐻(𝑘𝑥, 𝑘𝑦) =
exp⁡(𝑖𝑘𝑧)

𝑧
∬𝑒𝑥𝑝(𝑖𝑘

𝑥2 + 𝑦2

2𝑧
) exp(−𝑖𝑘𝑥𝑥 − 𝑖𝑘𝑦𝑦) 𝑑𝑥𝑑𝑦 

 

𝐻(𝑘𝑥, 𝑘𝑦) =
exp⁡(𝑖𝑘𝑧)

𝑘
𝑒𝑥𝑝 (−𝑖𝑧

𝑘𝑥
2+𝑘𝑦

2

2𝜋𝑘
)    (9) 

The Fourier transform of a Gaussian function is still a Gaussian function. The above 
property is often used in analyzing the depth of focus (DOF).  
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B. The Depth of Focus (DOF) 

 
When a focusing error z= is present in the imaging system, there is a difference of 

path length from the “ideal” object plane. This means the field at the object plane is 

of the form:   

 

𝐸(𝑥, 𝑦) ⊗ exp⁡(⁡𝑖𝑘
𝑥2+𝑦2

2𝛿
)     (10) 

Correspondingly, the Fourier spectrum of the object is modified by 𝐻(𝑘𝑥, 𝑘𝑦): 

𝐸(𝑘𝑥 , 𝑘𝑦) × exp⁡(⁡−𝑖𝛿
𝑘𝑥

2+𝑘𝑦
2

2𝑘
)      (11) 

Keep in mind, 𝑘𝑥 = 𝑘
𝑥′

𝑓1
, 𝑘𝑦 = 𝑘

𝑦′

𝑓1
. Therefore, the effect of defocus is like a phase mask, 

where the offset from the object plane create a quadratic phase shift for every k 
component on the aperture plane. Correspondingly, the out-of-focus point spread 
function is modified: 
 

PSF(defocus)=ℱ [𝐴𝑆(𝑘𝑥
𝑓1

𝑘
, ⁡𝑘𝑦

𝑓1

𝑘
) × exp⁡(⁡−𝑖𝛿

𝑘𝑥
2+𝑘𝑦

2

2𝑘
)]    (12) 

 
 The significance of the defocus: (Goodman 6.4.4) 

 

Mild defocus: exp⁡(⁡−𝑖𝛿
𝑘𝑥

2+𝑘𝑦
2

2𝑘
) ≈ 1 (13) 

 
This requirement is met when 

𝛿
𝑘𝑥

2

2𝑘
=

𝛿

2𝑘
(𝑘

𝑥′

𝑓1
)2 ≪

𝜋

2
   (14) 

Or 
𝛿𝑘

𝜋
(𝑁𝐴)2 ≪ 1    (15) 

𝛿 ≪
𝜆

2(𝑁𝐴)2
≡ 𝐷𝑂𝐹(Depth⁡of⁡Focus)    (16) 
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a.  Severe defocus: 𝛿 ≥
𝜆

2(𝑁𝐴)2
  

 
In this case, the oscillatory nature of 
the defocus kernel results in strong 
blur on the image because of the 
suppression of spatial frequencies 
near the nulls and sign changes at 
the negative portions.  

 
 

     
 
 
 

Figure: Computed imaging of letter “M” convolved with diffraction-limited 
PSF at different degrees of defocus.  
 

 Can the blur be undone computationally? (Goodman 8.8) 
o Inverse of Fresnel propagator 𝐻(𝑘𝑥, 𝑘𝑦) over distance z:  

The problem of division is typically reduced to obtaining the 
transmittance of the inverse, namely: 

1

𝐻(𝑘𝑥,𝑘𝑦)
=

𝐻∗(𝑘𝑥,𝑘𝑦)

|𝐻(𝑘𝑥,𝑘𝑦)|
2    (17) 

Note: this inverted filter is also limited by the numerical aperture; it 
may also include the effect of defocus and higher-order aberrations.  
 
In order to retrieve the proper information with noise, different 
statistical tools such as Tikhonov regularization are used.  

 
o Practical limitations: the inversion is sensitive to both noise in the 

measured data, and the accuracy of the assumed knowledge.  
 

In focus = 2DOF = 4DOF

0

1

Re(ATF)

object 
spectrum

   
𝛿𝑘𝑥

2

2𝑘

𝑘𝑥 =
2 

2 𝛿
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Figure: Deconvolution using Tikhonov regularized inverse filter, utilized a 
priori knowledge of depth of each digit. Note the artifacts primarily due to 
numerical errors getting amplified by the inverse filter (despite 
regularization) 
 
 

C. Fresnel Zones and Zone Plates 
 

In the above analysis, we find that the shift of an object along the z axis is equivalent 
to a phase mask of varying phase delay in the aperture plane:  

𝐻(𝑘𝑥, 𝑘𝑦) = exp⁡(⁡−𝑖𝑧
𝑘𝑥

2+𝑘𝑦
2

2𝑘
)   (18) 

What happens if we placed an amplitude mask with the transmittance in the 
following form? 
 

𝑡(𝑥, 𝑦) = [1 + cos (⁡
𝑥2+𝑦2

2𝐿
)]   (19) 

 
To answer this question we can calculate the Fresnel diffraction pattern of this 

system using 𝑘𝑥 = 𝑘
𝑥′

𝑧
, 𝑘𝑦 = 𝑘

𝑦′

𝑧
. 

⁡𝐸(𝑥′, 𝑦′) ≈∬ exp⁡(⁡𝑖𝑘
𝑥2+𝑦2

2𝑧
) {1 + cos⁡[⁡

𝑥2+𝑦2

2𝐿
]} exp{−𝑖[𝑘𝑥𝑥 + 𝑘𝑦𝑦]}𝑑𝑥𝑑𝑦 

 
 

𝐸(𝑥′, 𝑦′) ≈ ℱ {exp⁡(⁡𝑖𝑘
𝑥2+𝑦2

2𝑧
) +

1

2
exp [𝑖𝑘(𝑥2+𝑦2) (

1

2𝐿
+

1

2𝑧
)] +

1

2
exp [−𝑖𝑘(𝑥2+𝑦2) (

1

2𝐿
−

1

2𝑧
)]}    (20) 

 
The Fourier transform of the first term is straight forward:  

exp (⁡−𝑖𝑘
𝑥′2+𝑦′2

2𝑧
).    (21) 

 
Likewise, we can express the second and the third term: 

In focus = 2DOF = 4DOF
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1

2
exp (⁡−𝑖𝑘

𝐿

2𝑧

𝑥′2+𝑦′2

𝐿+𝑧
) +

1

2
exp (⁡𝑖𝑘

𝐿

2𝑧

𝑥′2+𝑦′2

𝑧−𝐿
).  (22) 

the 3rd term indicates a converging wave front towards z=L (a real image) on the 
optical axis, while as the 2nd term indicates a diverging wave front from a source 
located at z=-L (a virtual image) behind the aperture.  
 
This is known as a Gabor 
zone plate (the building block 
of a hologram). Such plates 
can be produced optically by 
photographing the 
interference pattern formed 
by two coherent spherical 
wavefront of different radii of 
curvature.  
 
 
 

More general idea of such 
plates in amplitude or phase can be constructed such that the phase differs by    
from one boundary to the next. The mth boundary has radius determined by  
 

𝑘

2
(𝑥2+𝑦2) (

1

𝑧′
+

1

𝑧
) = 𝑚      (23) 

 

 
Figure 16.01 From Pedrotti: Recording and 
Reconstruction of Hologram on Gabor Zone 
plates. 
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