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Reminder: Final Exam (May 20, 1:30-4:30 in 37-212, closed book, 1 page equation sheet 

allowed) 

 

Outline: 

 

Geometrical Optics 

o Reflection, Refraction, Fermat’s Principle,  

o Prisms, Lenses, Mirrors, Stops 

o Lens/Optical Systems 

o Analytical Ray Tracing, Matrix Methods 

Wave Optics 

o From wavefront and eikonal equations 

o Interference and Interferometry  

o Fraunhofer diffraction and diffraction gratings  

o Optical Imaging and Spatial Filtering 

A. Relationship between Geometrical and Wave Optics 
 

Based on the specific method of approximation, optics has been broadly divided into two 
categories, namely: 

 
I. Geometrical Optics (ray optics) treated in the first half of the class; 

- Emphasis on finding the light path; it is especially useful for: 
- Designing optical instruments; 
- or tracing the path of propagation in inhomogeneous media. 

 
II. Wave Optics (physical optics) treated in the second half of the class: 

 
- Emphasis on analyzing interference and diffraction  
- Gives more accurate determination of light distributions 
- Basic concept: propagation of wavefront and intensity 
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Relationship between wavefronts and rays: 
 

 
Wavefronts: 

 
1) A geometrical surface at which the wave phase is constant  

 
2) As time evolves, the wavefronts propagate at the speed of wave and 

expand outwards while preserving the wave’s energy.  
 
Properties of rays: 

 
1) Rays are normals to the wavefront surfaces 

2) trajectories of “particles of light” 

3) Normal to the wavefront surfaces 

4) Continuous and piece-wise differentiable 

5) Ray trajectories are such as to minimize the “optical path”  

 
How can we obtain Geometric optics picture such as ray tracing from wave equations?   
We can decompose the field E(r, ) into two forms: a fast oscillating component 
exp(ik0), k0 = 𝜔/𝑐0 and a slowly varying envelope E0(r). 
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Eikonal Equation describes the variation of wavefront : 

(
𝜕Φ

𝜕𝑥
)
2

+ (
𝜕Φ

𝜕𝑦
)
2

+ (
𝜕Φ

𝜕𝑧
)
2

= 𝜀(𝑥, 𝑦, 𝑧) = 𝑛2(𝑥, 𝑦, 𝑧) 

 

Associated with the transport of intensity 𝐸0 = √𝐼:  
 

 𝐸0 (
𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑦2
+
𝜕2Φ

𝜕𝑧2
) + 2 (

𝜕𝐸0
𝜕𝑥

𝜕Φ

𝜕𝑥
+
𝜕𝐸0
𝜕𝑦

𝜕Φ

𝜕𝑦
+
𝜕𝐸0
𝜕𝑧

𝜕Φ

𝜕𝑧
) = 0  

 
- *A precursor to Gaussian Optics (not for the finals): use a complex radius 

of curvature q to mix and match of rays and wavefronts! 
 

 
 

B. Origin of Interference (Coherence) 
 

- The (generalized) wavefront of a wave train varies with space and time: 

δ(𝑥, 𝑦, 𝑧, 𝑡) = k0Φ = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡 + 𝜑 

The fringes of intensity suggest the similarity of the measured field over a 
given time or spatial period: this property can be used to measure 
correlation or degree of coherence.  
 

Temporal coherence:  

Correlation in phase of the radiation field measured at different time intervals 

 

 

 

© Pearson Prentice Hall. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Spatial coherence:  

Correlation in phase of the radiation field measured at different spatially distinct 

points. In general, wave-fronts smooth out as they propagate away from the source. 

 

 

*The van Cittert-Zernike Theorem states that 

the spatial coherence area Ac is given by: 

 
where d is the diameter of the light source and D 

is the distance away, and  = d2/D2 is the solid 

angle extended by the source. 

 

 

 

 

- Two or more wavefronts of different sources (with same polarization) may cross 

each other: 

𝐸𝑥 = 𝐸1𝑥 + 𝐸2𝑥 =  𝐸1𝑥(0) exp[𝑖𝛿1] +  𝐸2𝑥(0) exp[𝑖𝛿2] 
 

𝐼 = 𝑐𝜀[𝐸1𝑥
2 (0) + 𝐸2𝑥

2 (0)] + 2𝑐𝜀𝐸1𝑥(0)𝐸2𝑥(0)〈cos (𝛿1 − 𝛿2)〉 
e.g.  
𝛿1 − 𝛿2 = (𝑘1𝑠𝑖𝑛𝜃1 − 𝑘2𝑠𝑖𝑛𝜃2)𝑥 + (𝑘1𝑐𝑜𝑠𝜃1 − 𝑘2𝑐𝑜𝑠𝜃2)𝑧 + (𝜑1 − 𝜑2) 

 

 

 
 
 
 
 

d

D


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Image of wavefront splitting inferometry removed due to copyright restrictions.
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C. Fourier Transform and some famous functions: 

𝑓(𝑥, 𝑦) =
1

(2𝜋)2
∫ ∫ 𝐹(𝑘𝑥, 𝑘𝑦) exp(𝑖𝑘𝑥𝑥) exp(𝑖𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

 

 

𝐹(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝑓(𝑥, 𝑦) exp(−𝑖𝑘𝑥𝑥) exp(−𝑖𝑘𝑦𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 

 
Accordingly, the functions 𝑓(𝑥, 𝑦)and 𝐹(𝑘𝑥, 𝑘𝑦)are referred to as spatial-Fourier 

Transform pairs. 
 

Functions Fourier Transform Pairs 

𝑟𝑒𝑐𝑡 (
𝑥

𝑎
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𝑥
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𝑎
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) 
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𝑥

𝑎
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𝑎𝑘𝑥
2𝜋

) 

Gaussian 𝑒𝑥𝑝 (−
𝑥2

𝑎2
) 𝑒𝑥𝑝 (−

𝑎2

4𝜋
𝑘𝑥

2) 

Step function 𝐻(𝑥) 
1

𝑖𝑘𝑥
+
1

2
(𝛿(𝑘𝑥)) 

𝑐𝑖𝑟𝑐 (
√𝑥2 + 𝑦2

𝑎
) |𝑎|2

2𝜋𝐽1 (𝑎√𝑘𝑥
2 + 𝑘𝑦

2)

𝑎√𝑘𝑥
2 + 𝑘𝑦

2

 

 

D. General Diffraction Geometry: 

 

x

y

Incident 

wave-fronts

E(x,y)

x’

Aperture 

transmission 

t(x,y)

y’
Observation 

plane

E(x’,y’)

z

P’

P



Review for Optics (05/12/14) 

2.71/2.710 Introduction to Optics –Nick Fang 
 

 6 

𝐸(𝑥′, 𝑦′) = ∬ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑧)𝑡(𝑥, 𝑦)𝐸(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 
a. Fraunhofer Diffraction: 

𝑘(𝑥2+𝑦2)

2𝑧
≪ 1 (difficult to achieve!) 

 

𝐸(𝑥′, 𝑦′) ≈
1

𝑧
∬exp (−𝑖𝑘(𝜃𝑥′𝑥 + 𝜃𝑦′𝑦))𝑡(𝑥, 𝑦)𝐸(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 

 
b. Fresnel Diffraction 

When 
𝑘(𝑥′

2
+𝑦′

2
)

2𝑧
~1,   

𝑘(𝑥2+𝑦2)

2𝑧
~1, 

we are in the domain of Fresnel Diffraction. The quadratic phase terms cannot be 
neglected in the Fresnel propagator: 

 

h(x, y, x′, y′, z) =
exp (𝑖𝑘𝑧)

𝑧
𝑒𝑥𝑝(𝑖𝑘

(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2

2𝑧
) 

 
You may recognize it is a Gaussian function with respect to x and y, and the 
wavefront is diverging.  

Using 𝑥′ = 𝑘𝑥
𝑧

𝑘
, 𝑦′ = 𝑘𝑦

𝑧

𝑘
 

 
The corresponding transfer function is: 
 

𝐻(𝑘𝑥, 𝑘𝑦) =
exp (𝑖𝑘𝑧)

𝑧
∬𝑒𝑥𝑝(𝑖𝑘

𝑥2 + 𝑦2

2𝑧
) exp(−𝑖𝑘𝑥𝑥 − 𝑖𝑘𝑦𝑦) 𝑑𝑥𝑑𝑦 

 

𝐻(𝑘𝑥, 𝑘𝑦) =
exp (𝑖𝑘𝑧)

𝑘
𝑒𝑥𝑝 (−𝑖𝑧

𝑘𝑥
2 + 𝑘𝑦

2

2𝑘
) 

 
 
The Fourier transform of a Gaussian function is still a Gaussian function. The above 
property is often used in analyzing the depth of focus (DOF).  
 

c. Diffraction using a lens 

𝑡(𝑥, 𝑦) = 𝑒𝑥𝑝 [−
𝑖𝑘(𝑥2 + 𝑦2)

2𝑓
] 

cancels quadratic phase terms. 
 

𝐸𝑜𝑢𝑡(𝑥′, 𝑦′) ≈ ∬ 𝐸𝑖𝑛(𝑥, 𝑦)exp {
−𝑖𝑘[𝑥′𝑥 + 𝑦′𝑦]

𝑓
} 𝑑𝑥𝑑𝑦   
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𝑥′ = 𝑘𝑥
𝑓

𝑘
, 𝑦′ = 𝑘𝑦

𝑓

𝑘
 matches the Fourier transform. 

 
 

d. Diffraction using a grating 

𝑡(𝑥) = ∑ 𝑡𝑚𝑐𝑜𝑠 (
2𝜋𝑚𝑥

Λ
)

∞

𝑚=0

 

 
Maximum of diffraction order occur if Λsin(𝜃𝑚) = 𝑚𝜆 (at normal incidence) 
 

E. Abbe’s theory of Imaging 

 
The transmission 𝐴𝑆(𝑥′, 𝑦′) of the aperture stop, will contribute to the image 
formation through spatial filtering at Fourier planes: 
 

𝐴𝑆(𝑥′, 𝑦′) = 𝐴𝑆(𝑘𝑥
𝑓1

𝑘
,  𝑘𝑦

𝑓1

𝑘
)  (Amplitude Transfer Function(ATF)) 

 
a. Coherent imaging (superposition of E-field) 

ℱ [𝐴𝑆(𝑘𝑥
𝑓1

𝑘
,  𝑘𝑦

𝑓1

𝑘
)] is called Point Spread Function(PSF) (since it is the 

spread of an ideal point source 𝛿(𝑥, 𝑦) at the image). 
- The following diagram elaborate the procedure of coherent imaging as a 

linear, shift invariant system. 

plane

wave

illumination

object:

decomposed into

Huygens wavelets

image

plane
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Transfer function H(fx) (=AS(x’)) is also called the pupil function. 
 

b. Incoherent imaging 
Under (spatially) incoherent illumination, the image intensity is a 
convolution of object intensity with intensity of point spread function 
(iPSF=|PSF|2). Correspondingly, the (complex) Optical Transfer Function 
(OTF) is the Fourier transform of iPSF. 

- The following diagram elaborate the procedure of incoherent imaging as a 
linear, shift invariant system. 
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F. Aberration (not included in final exam, supplement Pedrotti Chapter 20, and for 

your study only) 

Very few optical systems give images that are free from all defects. Fortunately, 
certain defects can be tolerated in a particular application, if the produced images 
have the specified quality. Thus, experimentalists can solve optical problems in the 
real world, bearing the imperfections in mind.  Optical designers control the 
important aberration effects by the position of stops (to minimize field curvature), 
by the "bending" of components (to minimize aperture defect), or by the choice of 
glasses, thicknesses, and spacing for components (to manage achromatism, etc.). 
Recently, designers have been beginning to use aspheric surfaces more 
extensively. 

Most aberrations cannot be modeled with ray matrices. Designers beat them 
with lenses of multiple elements, that is, several lenses in a row. Some zoom lenses 
can have as many as a dozen or more elements. 

 

 

 Image Testing: 

Ray tracing, to guide optical design, has been practiced since it was 

introduced in the time of Newton. An optical lens system may be evaluated 

before fabrication and assembly by computational ray tracing. When the lens 

is constructed, it may be further evaluated by experimental testing.  

 

Modern  ray  tracing  is done with  high-speed  computing  softwares so that, 

for each point  in the object plane, several hundred  rays may be calculated,  

and  the  points where  they  penetrate the image  plane may  be plotted  to 

predict  the  imaging characteristics.  The surface density of these points in 

the image plane are used to predict the performance of the optical system 

with respect to the illumination condition.  Often the experimental test shows 

that  the dot diagram predictions are pointing to  the worst case scenario- 

that is,  they predict  a poorer  quality  of  the  image  of  a point source than 

experiment limit. But despite of this lack of full agreement for ray tracing, 

these computational evaluations are widely used in practice.   
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© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

The above schematic illustrates the Hartmann test. This experimental 

method for testing an optical system has much in common with theoretical 

ray tracing. In the Hartmann test a screen obscures all the rays collected by 

the lens, except a set of narrowly defined beams. These sampling beams are 

uniformly distributed over the aperture, as illustrated. The trajectory of each 

of these beams may be traced by means of a series of (digital) photographs 

made at regular intervals along the optical axis in front of, and behind, their 

best union, as shown. 

The knife-edge test is also a kind of a ray tracing in reverse. It is evident that 

by such test we may determine where rays from each part of the aperture 

penetrate the focal plane. This determination follows from the position of the 

knife edge and the observed location of its shadow. 

 

 

http://ocw.mit.edu/fairuse
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Pedrotti Figure 20-1. Illustration of ray and wave aberrations.  

 
© Pearson Prentice Hall. All rights reserved. This content is excluded from our Creative

 
Commons license. For more information, see http://ocw.mit.edu/fairuse.

 

 Seidel’s Third Order Theory: 

The ray optics theory for longitudinal and lateral image positions 

was based on the approximate polynomial series representation of 

the sinusoidal functions : 

sin(𝜃) = 𝜃 −
𝜃3

3!
+ 𝑂(𝜃5) 

cos(𝜃) = 1 −
𝜃2

2!
+
𝜃4

4!
− 𝑂(𝜃6) 

The paraxial ray theory using sin =  and cos() = 1is first-order 

approximation. The values of , representing angles of incidence or 

refraction, etc, are constrained by the paraxial approximation to have such 

modest magnitudes that all higher order terms of  in the expansions are 

negligible.  In contrast, a third-order optical theory for longitudinal and 

lateral image positions which retains the third order terms in sin  is first 

developed around 1857 by Philip Ludwig von Seidel. 

- Spherical aberration (∝ 𝐫𝟒) 

The difference in optical path length between paraxial rays and marginal 

rays, proportional to the square of the lens diameter. 

 

 

 

 

http://ocw.mit.edu/fairuse
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Example:  

 
Pedrotti Figure 20-3: Refraction of ray at a spherical surface. 

 

 

𝑎(𝑄) = (𝑛1𝑙 + 𝑛2𝑙
′) − (𝑛1𝑠 + 𝑛2𝑠

′) 

𝑙2 = R2 + (s + R)2 − 2𝑅(s + R)cos𝜙 

𝑙′2 = R2 + (s′ − R)2 + 2𝑅(s′ − R)cos𝜙 

 

 

 

 

 

 

 

Out of focus

  𝑎(𝑄) = −
ℎ4

8
[
𝑛1
𝑠
(
1

𝑠
+
1

𝑅
)
2

+
𝑛2
𝑠′
(
1

𝑠′
−
1

𝑅
)
2

]   

© Pearson Prentice Hall. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
http://ocw.mit.edu/fairuse
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- Coma (∝ 𝐡′𝐫𝟑𝒄𝒐𝒔𝜽) 

A trailing "comet-like" blur directed away from the optic axis.  

- image becomes increasingly blurred toward the edges;  

- can be partially corrected by tilting the lens. 

  

 
Figure: Coma predicted by ray tracing and as photographed (b) (redrawn from 

Martin, Technical Optics) and (c) coma manifesting diffraction details (redrawn 

from Kingslake, Photographic Lenses) 

 

 

 

 

 

 

 

 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Astigmatism: (∝ 𝐡′𝟐𝐫𝟐𝒄𝒐𝒔𝟐𝜽) 

The image of an off-axis point forms focal lines at the sagittal and tangential foci and 

in between an elliptical shape. 

 
Figure: Astigmatism due to a point source Q located off the optical axis.  

 

Curvature of Field: (∝ 𝐡′𝟐𝐫𝟐) 

Curvature of field causes a planar object to project a curved (non-planar) image. 

Rays at a large angle see the lens as having an effectively smaller diameter and an 

effectively smaller focal length, forming the image of the off axis points closer to the 

lens.  This causes problems when a flat imaging device is used e.g., a photographic 

plate or CCD image sensor. For more details please visit Nikon Microscopy 

University: 

http://www.microscopyu.com/tutorials/java/aberrations/curvatureoffield/index.h

tml 

 

 

 

 

 

 

 

 

 

 

 

 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
http://www.microscopyu.com/tutorials/java/aberrations/curvatureoffield/index.html
http://www.microscopyu.com/tutorials/java/aberrations/curvatureoffield/index.html
http://www.microscopyu.com/tutorials/java/aberrations/curvatureoffield/index.html
http://www.microscopyu.com/tutorials/java/aberrations/curvatureoffield/index.html
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Distortion: (∝ 𝐡′𝟑𝐫𝐜𝐨𝐬𝛉) 

A radial distortion that occur from the geometry of the lens (such as thick double 

convex lens).  

 

Figure: The effect of aperture stop to control the distortion of an image.  

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.
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