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Outline: 

A. Optical Invariant 

B. Composite Lenses 

C. Ray Vector and Ray Matrix  

D. Location of Principal Planes for an Optical System 

E. Aperture Stops, Pupils and Windows 

 

 

 

A. Optical Invariant 

-What happens to an arbitrary “axial” ray that originates from the axial intercept of 

the object, after passing through a series of lenses?  

If we make use of the relationship between launching angle and the imaging 

conditions, we have: 

𝜃𝑖𝑛 =
𝑥𝑖𝑛

𝑠𝑜
  and  𝜃𝑜𝑢𝑡 = −

𝑥𝑖𝑛

𝑠𝑖
 

𝜃𝑖𝑛

𝜃𝑜𝑢𝑡
= −

𝑠𝑖

𝑠𝑜
=

ℎ𝑖

ℎ𝑜
   

Rearranging, we obtain: 

𝜃𝑖𝑛ℎ𝑜 = 𝜃𝑜𝑢𝑡ℎ𝑖 

 
We see that the product of the image height and the angle with respect to the axis 

(the components of the ray vector!) remains a constant. Indeed a more general 

result,  𝑛ℎ𝑜𝑠𝑖𝑛𝜃𝑖𝑛 = 𝑛′ℎ𝑖𝑠𝑖𝑛𝜃𝑜𝑢𝑡  is a constant (often referred as a Lagrange 

invariant in different textbooks) across any surface of the imaging system.  

- The invariant may be used to deduce other quantities of the optical system, without 

the necessity of certain intermediate ray-tracing calculations. 

- You may regard it as a precursor to wave optics: the angles are approximately 

proportional to lateral momentum of light, and the image height is equivalent to 

separation of two geometric points. For two points that are separated far apart, 

there is a limiting angle to transmit their information across the imaging system.    

 

B. Composite Lenses 

To elaborate the effect of lens in combinations, let’s consider first two lenses 

separated by a distance d.  We may apply the thin lens equation and cascade the 

imaging process by taking the image formed by lens 1 as the object for lens 2. 
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1

𝑠𝑜1
+

1

𝑠𝑖2
= (

1

𝑓1
+
1

𝑓2
) −

𝑑

(𝑑 − 𝑠𝑖1)𝑠𝑖1
 

 

A few limiting cases: 

a) Parallel beams from the left: 𝑠𝑖2 is the back-focal length (BFL)  

1

BFL
= (

1

𝑓1
+
1

𝑓2
) −

𝑑

(𝑑 − 𝑓1)𝑓1
 

b) collimated beams to the right: 𝑠𝑜1 is the front-focal length (FFL)  

1

FFL
= (

1

𝑓1
+
1

𝑓2
) −

𝑑

(𝑑 − 𝑓2)𝑓2
 

The composite lens does not have the same apparent focusing length in front and 

back end! 

 

c) d=f1+f2: parallel beams illuminating the composite lens will remain parallel at 

the exit; the system is often called afocal. This is in fact the principle used in 

most telescopes, as the object is located at infinity and the function of the 

instrument is to send the image to the eye with a large angle of view. On the 

other hand, a point source located at the left focus of the first lens is imaged at 

the right focus of the second lens (the two are called conjugate points). This is 

often used as a condenser for illumination. 
 

 

 

f1
f2

f1 f2

d
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C. Ray Vector and Ray Matrix 

In principle, ray tracing can help us to analyze image formation in any given optical 

system as the rays refract or reflect at all interfaces in the optical train. If we restrict 

the analysis to paraxial rays only, then 

such process can be described in a 

matrix approach.  

 

In the Feb 10 lecture, we defined a 

light ray by two co-ordinates: 

a. its position, x 

A B

C D

 
 
 

Optical system ↔ Ray matrix

 𝑖𝑛
𝜃𝑖𝑛

 𝑜𝑢𝑡
𝜃𝑜𝑢𝑡

Practice Example: Huygens eyepiece 

 

A Huygens eyepiece is designed with two plano-convex lenses separated by the 

average of the two focal length. Ideally, such eyepiece should produce a virtual image at 

infinity distance. Let f1=30cm and f2=10cm, so the spacing d=20cm, let’s find these 

parameters:  

 

a) BFL and FFL,  

 

 

b) the location of PPs, 

 

c) the EFL.  

 

d=20cm
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b. its slope,  

These parameters define a ray vector,     which will change with distance and as the 

ray propagates through optics. 

Associated with the input ray vector (
 𝑖𝑛
𝜃𝑖𝑛

)  and output ray vector(
 𝑜𝑢𝑡
𝜃𝑜𝑢𝑡

), we can 

express the effect of the optical elements in the general form of a 2x2 ray matrix: 

 

(
 𝑜𝑢𝑡
𝜃𝑜𝑢𝑡

) = [
𝐴 𝐵
𝐶 𝐷

] (
 𝑖𝑛
𝜃𝑖𝑛

) 

These matrices are often (uncreatively) called ABCD Matrices.  

Since the displacements and angles are assumed to be small, we can think in terms 

of partial derivatives. 

in

in

out
in

in

out
out

x
x

x

x
x 

 
























  

in

in

out
in

in

out
out x

x





 

























  

Therefore, we can connect the Matrix components with the functions of the imaging 

elements: 

𝐴 = (
𝜕𝑥𝑜𝑢𝑡

𝜕𝑥𝑖𝑛
) :  spatial magnification; 

𝐷 = (
𝜕𝜃𝑜𝑢𝑡

𝜕𝜃𝑖𝑛
) :  angular magnification; 

𝐵 = (
𝜕𝑥𝑜𝑢𝑡

𝜕𝜃𝑖𝑛
) :  mapping angles(momentum) to position (function of a prism); 

𝐶 = (
𝜕𝜃𝑜𝑢𝑡

𝜕𝑥𝑖𝑛
) :  mapping position to angles(momentum) (also function of a prism). 

 

 

For cascaded elements, we simply multiply ray matrices. (please notice the order of 

matrices starts from left to right on optical axis!!) 

 

Significance of the matrix elements: (Pedrotti Figure 18.9)  

O1 O3O2

 𝑜𝑢𝑡
𝜃𝑜𝑢𝑡

 𝑖𝑛
𝜃𝑖𝑛

 𝑜𝑢𝑡
𝜃𝑜𝑢𝑡

=    2  1
 𝑖𝑛
𝜃𝑖𝑛
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(a) If the input surface is at the front focal plane, the outgoing ray angles depend 

only on the incident height. 

(b) Similarly, if the output surface is at the back focal plane, the outgoing ray heights 

depend only on the incoming angles. 

(c) If the input and output plane are conjugate, then all incoming rays from constant 

height y0 will converge at a constant height regardless of their angle. 

(d) When the system is “afocal”, the refracting angles of the outgoing beams are 

independent of the input positions. 

 

Example 1: refraction matrix from a spherical interface (only changes  but not x) 

 

Right at the interface,  

 𝑖𝑛 =  𝑜𝑢𝑡  

 

𝑛1(𝜃𝑖𝑛 +  𝑖𝑛 𝑅⁄ ) ≈ 𝑛2(𝜃𝑜𝑢𝑡 +  𝑖𝑛 𝑅⁄ ) 

𝜃𝑜𝑢𝑡 ≈ (
𝑛1
𝑛2
) 𝜃𝑖𝑛 +

[(
𝑛1
𝑛2
) − 1]

𝑅
 𝑖𝑛 

So we can write the matrix: 

 

 

 

 

n1 n2

xin

1
2

in

s

R

z

out

s

© Pearson Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

 

http://ocw.mit.edu/fairuse


Lecture Notes on Geometrical Optics (02/18/14) 

2.71/2.710 Introduction to Optics –Nick Fang 
 

 6 

Example 2: matrix of a ray propagating in a medium (changes x but not ) 

 
Example 3: refraction matrix through a thin lens (combined refraction) 

 

 

 

 

 

Example 4: Imaging matrix through a thick lens (combined refraction and 

translation) 

 

 

From left to right:  

- Translation O1: 

[
1 𝑠𝑜1
0 1

] 

- Refraction O2: 

[

1 0

[(
𝑛
𝑛′
) − 1]

𝑅1
(
𝑛

𝑛′
)
] 

 

- Translation O3: 

[
1 𝑑
0 1

] 

 

- Refraction O4: 

[

1 0

[(
𝑛′
𝑛
) − 1]

−𝑅2
(
𝑛′

𝑛
)
] 

 

 

 

xin , in

z = 0

xout , out

z

R1
R2

d

so1

-|si1| si2

n'n n

out in in

out in

x x z 

 

 



2 1 2 1

1 0 1 0
( 1) / (1/ 1) / 1/thin lens curved curved

interface interface

O O O
n R n n R n

   
     

    
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- Translation O5: 

[
1 𝑠𝑖2
0 1

] 

 

D. Location of Principal Planes for an Optical System 

A ray matrix of the optical system (composite lenses and other elements) can give 

us a complete description of the rays passing through the overall optical train. In 

this session, we show that the focusing properties of the composite lens, such as 

the principal planes. 

In order to facilitate our analysis, we choose the input plane to be the front surface 

of the lens arrays, and the output plane to be the back surface of the lenses. 

 

 (Adapted from Pedrotti Figure 18‐12) 

Let’s start with the process of focusing at back focus first. In this case, an incoming 

parallel ray(
 0
0
)  is refracted from the 2nd principal plane (PP) so it passes through 

the back focal point (BF). At the output plane, the ray vector of the refracted ray 

reads(
 𝑓
−𝜃𝑓

). 

(
 𝑓
−𝜃𝑓

) = [
𝐴 𝐵
𝐶 𝐷

] (
 0
0
) 

This gives   𝑓 = 𝐴 0   and   −𝜃𝑓 = 𝐶 0 . 

 

 

d

BFL

x0

Input 
Plane 

Output 
Plane 

2nd PP

xf

EFL

-f

-f
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Using the small angle approximation, we can connect the ratio of beam height  0 and 

the effective focal length (EFL) by the steering angle 𝜃𝑓: 

𝜃𝑓 =  0/𝐸𝐹𝐿 

Thus  

EFL =    - 1/C. 

Also from the similar triangles, 

 𝑓/ 0 = 𝐵𝐹𝐿/𝐸𝐹𝐿. 

We can find BFL: 

𝐵𝐹𝐿 = −𝐴/𝐶. 

Thus the 2nd PP is located at a distance from the output plane given by: 

𝐵𝐹𝐿 − 𝐸𝐹𝐿 = −(𝐴 − 1)/𝐶. 

Likewise, we can find FFL and the first principal plane by the matrix components. 

 

(
 ′0
0
) = [

𝐴 𝐵
𝐶 𝐷

] (
− ′𝑓
−𝜃′𝑓

) 

 

 

 

d

FFL

x0

Input 
Plane 

Output 
Plane 

1st PP

x’f

EFL

-’f

-’f
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You could consider this as an inverse problem of the previous example, or solve the 
relationship: 

 ′0 = −𝐴 ′𝑓 − 𝐵𝜃′𝑓 

 

0 = −𝐶 ′𝑓 − 𝐷𝜃′𝑓 
 

𝜃′𝑓 =  ′0/𝐸𝐹𝐿 and 𝜃′𝑓 =  ′𝑓/𝐹𝐹𝐿 

 

So how is the ray matrix experimentally determined by ray tracing? 

Generally, for a given (2D) optical system with unknown details, one way to 

determine the transfer matrix is to take measurement of two arbitrary input and 

output rays.  To elaborate that idea, we can treat a pair of the input ray vectors as a 

2x2 matrix: 

(
 𝑜𝑢𝑡
1  𝑜𝑢𝑡

2

𝜃𝑜𝑢𝑡
1 𝜃𝑜𝑢𝑡

2 ) = [
𝐴 𝐵
𝐶 𝐷

] (
 𝑖𝑛
1  𝑖𝑛

2

𝜃𝑖𝑛
1 𝜃𝑖𝑛

2 ) 

 

Therefore 

[
𝐴 𝐵
𝐶 𝐷

] = (
 𝑜𝑢𝑡
1  𝑜𝑢𝑡

2

𝜃𝑜𝑢𝑡
1 𝜃𝑜𝑢𝑡

2 )(
 𝑖𝑛
1  𝑖𝑛

2

𝜃𝑖𝑛
1 𝜃𝑖𝑛

2 )

−1

 

[
𝐴 𝐵
𝐶 𝐷

] =
1

( 𝑖𝑛
1 𝜃𝑖𝑛

2 −  𝑖𝑛
2 𝜃𝑖𝑛

1 )
(
 𝑜𝑢𝑡
1 𝜃𝑖𝑛

2 −  𝑜𝑢𝑡
2 𝜃𝑖𝑛

1  𝑜𝑢𝑡
2  𝑖𝑛

1 −  𝑜𝑢𝑡
1  𝑖𝑛

2

𝜃𝑜𝑢𝑡
1 𝜃𝑖𝑛

2 − 𝜃𝑜𝑢𝑡
2 𝜃𝑖𝑛

1 𝜃𝑜𝑢𝑡
2  𝑖𝑛

1 − 𝜃𝑜𝑢𝑡
1  𝑖𝑛

2 ) 

As a special case you may select the two rays to be marginal and chief rays as 

defined in the following section. 
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Practice Example: Rays Going Through 2F/4F Lens system  

Please determine the ray transfer matrix of the following lens elements, with 

their input and output planes located at the front and back focal point of the 

corresponding lens.  

 

 
 

 

 

f f
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E. Aperture Stops, Pupils and Windows 

o The Aperture Stops and Numerical Aperture  

 

 
 

o Numerical Aperture(NA):  

- limits the optical flux that is admitted through the system;  

- also defines the resolution (or resolving power) of the optical system 

 

o The concept of marginal rays and chief rays  

- Marginal ray: the ray that passes through the edge of the aperture. 

- Chief ray (also called principal rays): the ray from an object point that 

passes through the axial point of the aperture stop (also appears as 

emitting from the axis of exit pupil).  

Together, the C.R. and M.R. define the angular acceptance of spherical ray 

bundles originating from an off-axis object. 

 

o The entrance and exit pupils 

 

 

  

multi-element

optical system

aperture

stop

image through

preceding elements

image through

succeeding elements
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o The field stop and corresponding windows 

 

o Field stop:  

- Limits the angular acceptance of Chief Rays 

- Defines the Field of View 

- Proper FS should be at intermediate image plane  

o Entrance & Exit Windows 

 

  

image through

preceding elements

image through

succeeding elements

field

stop
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o Effect of Aperture and field stops 

 

 

 

 

NA

entrance

pupil

aperture

stop
exit

pupil

FoV

entrance

window

exit

window

field

stop

 (momentum)

x
(location)

Effect of Apertures and stops

 ‘(momentum)

X’
(location)

1 2 3

1 2 3

apertures

Field stops
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- Please determine the position and size of the image. 

- Please determine the entrance and exit pupils. 

- Please sketch the chief ray and marginal rays from the top of the object to 

the image. 
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