2.717J/MAS.857J Optical Engineering

Spring '02

Problem Set #2

Posted Feb. 13, 2002 — Due Wednesday Feb. 20, 2002

- 1. How to emulate a perfect coin. Given a biased coin such that the probability of heads (H) is α , we emulate a perfect coin as follows: Throw the biased coin twice; interpret HT (T = tails) as success and TH as failure; if neither event occurs repeat the throws until a decision is reached.
 - **1.a)** Show that this model leads to Bernoulli trials with p = 1/2.
 - **1.b)** Find the distribution and the expectation value of the number of throws required to reach a decision.
- 2. Birthdays. For a group of n people find the expected number of days of the year which are birthdays of exactly k people. Assume the year is 365 days long and that all the arrangements are equally probable. What is the result for n=23 (the number of players in two opposing soccer teams plus the referee) and k=2? Do you find that surprising?
- 3. Misprints. A book of n pages contains on average λ misprints per page. Estimate the probability that at least one page will contain more than k misprints.
- 4. Detection threshold. We seek to determine if a tumor is present in tissue from the voltage U measured between two strategically placed electrodes. In the absence of tumor, U is Gaussian with mean V_1 and variance σ^2 ; *i.e.*, the "prior" distribution is

$$p_U(u \mid \text{no tumor}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(u-V_1)^2}{2\sigma^2}\right\}.$$

In the presence of a tumor, U is Gaussian with mean $V_2 > V_1$ and same variance σ^2 ; *i.e.*

$$p_U(u \mid \text{tumor}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(u - V_2)^2}{2\sigma^2}\right\}.$$

We seek a "detection threshold" V_0 such that if $U > V_0$ we conclude that a tumor is present; whereas if $U < V_0$ we conclude that there is no tumor. Clearly, our decision is in error if (i) we concluded that there is no tumor whereas in actuality a tumor is present, *i.e.* a "miss;" (ii) we concluded that there is a tumor whereas in actuality there is no tumor present, *i.e.* a "false alarm." We define the probability of error (PE) as the sum of the probability of a miss and the probability of a false alarm.

4.a) Show that the PE is minimized if we select

$$V_0 = \frac{V_1 + V_2}{2}.$$

4.b) Using the optimum threshold, calculate the PE in terms of the "error function"

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt.$$

Notes: (1) The above-described process of selecting a detection threshold is known as "Bayes decision." (2) The erf definition above is after Abramowitz & Stegun, Handbook of Mathematical Functions, Dover 1972 (p. 297). The constants and integral limits are sometimes defined differently in the literature.

5. Normalization. Let $\{X_k\}$ be a sequence of mutually independent random variables with a common distribution. Suppose that the X_k assume only positive values and that $\mathrm{EV}\{X_k\} = \overline{x}_k = a$ and $\mathrm{EV}\{X_k^{-1}\} = b$ exist. Let

$$S_n = X_1 + \ldots + X_n$$
.

Prove that EV $\{S_n^{-1}\}$ is finite and that

$$EV\left\{\frac{X_k}{S_n}\right\} = \frac{1}{n} \qquad \text{for } k = 1, \dots, n.$$

6. Unbiased estimator. Let X_1, \ldots, X_n be mutually independent random variables with a common distribution; let its mean be μ , its variance σ^2 . Let

$$\overline{X} = \frac{X_1 + \ldots + X_n}{n}.$$

Prove that

$$\sigma^{2} = \frac{1}{n-1} EV \left\{ \sum_{k=1}^{n} \left(X_{k} - \overline{X} \right)^{2} \right\}.$$

(<u>Note:</u> In statistics, \overline{X} is called an *unbiased estimator* of $\overline{x} = \text{EV}\{X\}$, and $\sum (X_k - \overline{X})^2 / (n-1)$ is an *unbiased estimator* of σ^2 .