
Image Quality Metrics


• Image quality metrics 
• Mutual information (cross-entropy) metric 

• Intuitive definition 
• Rigorous definition using entropy

• Example: two-point resolution problem 
• Example: confocal microscopy


• Square error metric 
• Receiver Operator Characteristic (ROC)


• Heterodyne detection 
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Linear inversion model
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Mutual information (cross-entropy)
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The significance of eigenvalues
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Precision of measurement
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Formal definition of cross-entropy (1)


EntropyEntropy in thermodynamics (discrete systems): 
• log2[how many are the possible states of the system?] 

E.g. two-state system: fair coin, outcome=heads (H) or tails (T) 
Entropy=log22=1 

Unfair coin: seems more reasonable to “weigh” the two states

according to their frequencies of occurence (i.e., probabilities)


)Entropy −= ∑ p( logstate p( state)
2 
states 
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Formal definition of cross-entropy (2)


• Fair coin: p(H)=1/2; p(T)=1/2
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Formal definition of cross-entropy (3)

Joint Entropy
Joint Entropy
log2[how many are the possible states of a combined variable 

obtained from the Cartesian product of two variables?] 
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Formal definition of cross-entropy (4)

Conditional Entropy
Conditional Entropy
log2[how many are the possible states of a combined variable 

given the actual state of one of the two variables?] 
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Formal definition of cross-entropy (5)
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Formal definition of cross-entropy (6)

uncertainty added due to noise 

representation by 
Seth Lloyd, 2.100 Entropy Cond. ( G F )| 
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Formal definition of cross-entropy (7)
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Formal definition of cross-entropy (8)


FF GG
informationinformation

sourcesource
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informationinformation
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(measurement)(measurement)
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Physical ChannelPhysical Channel
(transform)(transform)

, |
C( GF ) = Entropy(F ) − EntropyCond. ( GF ) 
|= Entropy(G ) − EntropyCond. ( FG ) 

,= Entropy(F ) + Entropy(G ) − EntropyJoint ( GF ) 
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Entropy & Differential Entropy


•	 Discrete objects (can take values among a discrete set of states) 
–	 definition of entropy


( )log2 x p
Entropy = −∑ x p	 ( )k k 
k 

–	 unit: 1 bit (=entropy value of a YES/NO question with 50% 
uncertainty) 

•	 Continuous objects (can take values from among a continuum) 
–	 definition of differential entropy


( )ln x p
Entropy Diff. = − x p ( )dx∫ 
Ω( )X 

–	 unit: 1 nat (=diff. entropy value of a significant digit in the 
representation of a random number, divided by ln10) 
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Image Mutual Information (IMI)
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Mutual information & 

degrees of freedom 
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• one rank of is lost whenever 
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Example: two-point resolution

Finite-NA imaging system, unit magnification
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Cross-leaking power 
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IMI for two-point resolution problem
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IMI vs source separation 
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IMI for rectangular matrices (1)


H
 = = 

H 

underdeterminedunderdetermined overdeterminedoverdetermined
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eigenvalues cannot be computed, but instead 
we compute the singular valuessingular values of the 

rectangular matrix 
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IMI for rectangular matrices (2)


HT 

H 

= square matrix 

ˆ T 1 Trecall pseudo-inverse f = ( H H )− H g 

inversion operation associated with rank of 
Tseigenvalue ( H H )≡ aluessingular v ( ) 
H
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IMI for rectangular matrices (3)
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Confocal microscope
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Depth “resolution” vs. noise


point sources, 
Object structure: mutually
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direction 
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Depth “resolution”

vs. noise & pinhole size


units: Rayleigh distance 
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IMI summary


•	 It quantifies the number of possible states of the object that the 
imaging system can successfully discern; this includes 
–	 the rank of the system, i.e. the number of object dimensions that 

the system can map 
–	 the precision available at each rank, i.e. how many significant 

digits can be reliably measured at each available dimension 
•	 An alternative interpretation of IMI is the game of “20 questions:” how 

many questions about the object can be answered reliably based on the 
image information? 

•	 IMI is intricately linked to image exploitation for applications, e.g. 
medical diagnosis, target detection & identification, etc. 

•	 Unfortunately, it can be computed in closed form only for additive 
Gaussian statistics of both object and image; other more realistic 
models are usually intractable 
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Other image quality metrics


Mean Square Error (MSQ) between object and image•	• Mean Square Error (MSQ) 
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inversionobject
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– e.g. pseudoinverse minimizes MSQ in an overdetermined problem 
– obvious problem: most of the time, we don’t know what f is! 
–	 more when we deal with Wiener filters and regularization 

•	• Receiver Operator ChaReceiver Operator Charracteacterriisstictic
–	 measures the performance of a cognitive system (human or 

computer program) in a detection or estimation task based on the 
image data 
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Receiver Operator Characteristic


Target detection task 

Example: medical diagnosis, 
• H0 (null hypothesis) = 
no tumor 
• H1 = tumor  

TP = true positive (i.e. correct 
identification of tumor) 
FP = false positive (aka false 
alarm) 
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