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This class is about

 Statistical Optics

— models of random optical fields, their propagation and statistical
properties (i.e. coherence)

— 1maging methods based on statistical properties of light: coherence
imaging, coherence tomography
* Inverse Problems

— to what degree can a light source be determined by measurements
of the light fields that the source generates?

— how much information 1s “transmitted” through an imaging
system? (related issues: what does resolution really mean? what
is the space-bandwidth product?)
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The van Cittert-Zernike theorem
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Optical coherence tomography
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Inverse Radon transform
(aka Filtered Backprojection)
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Magnetic Resonance Imaging (MRI)
Image credits:
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You can take this class if

* You took one of the following classes at MIT
— 2.996/2.997 during the academic years 97-98 and 99-00
— 2.717 during fall *00
— 2.710 during fall ’01
OR

* You have taken a class elsewhere that covered Geometrical Optics,
Diffraction, and Fourier Optics

« Some background in probability & statistics is helpful but not
necessary
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Syllabus (summary)

« Review of Fourier Optics, probability & statistics 4 weeks
« Light statistics and theory of coherence 2 weeks

« The van Cittert-Zernicke theorem and applications of statistical optics
to imaging 3 weeks

« Basic concepts of inverse problems (ill-posedness, regularization) and
examples (Radon transform and its inversion) 2 weeks

« Information-theoretic characterization of imaging channels 2 weeks

Textbooks:
« J. W. Goodman, Statistical Optics, Wiley.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in
Imaging, IoP publishing.
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What you have to do

* 4 homeworks (1/week for the first 4 weeks)
* 3 Projects:

— Project 1: a simple calculation of intensity statistics from a model
in Goodman (~2 weeks, 1-page report)

— Project 2: study one out of several topics in the application of
coherence theory and the van Cittert-Zernicke theorem from
Goodman (~4 weeks, lecture-style presentation)

— Project 3: a more elaborate calculation of information capacity of
imaging channels based on prior work by Barbastathis & Neifeld
(~4 weeks, conference-style presentation)

« Alternative projects ok

e No quizzes or final exam
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Administrative

* Broadcast list will be setup soon
 Instructor’s coordinates
George Barbastathis
e Please do not phone-call
« Office hours TBA
* C(Class meets
— Mondays 1-3pm (main coverage of the material)
— Wednesdays 2-3pm (examples and discussion)
— presentations only: Wednesdays 7pm-??, pizza served
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The 4F system
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The 4F system with FP aperture
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The 4F system with FP aperture

Transfer function: Impulse response:
circular aperture Airy function
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Coherent vs incoherent imaging
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Coherent vs incoherent imaging

Coherent impulse response h(x, )
(field in = field out)
Coherent transfer function H (U, V) = FT{h (x >V )}

(FT of field in = FT of field out)

: ~ 2
Incoherent impulse response h (x, y) = ‘ h(x, y)‘
(intensity in = intensity out)

Incoherent transfer function H (u, v) = FT{% (X : y)}
(FT of intensity in = FT of intensity out) —H (u, V) R H (u, V)

‘ﬁ (1, v)‘ : Modulation Transfer Function (MTF)

H (#,v): Optical Transfer Function (OTF)
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Coherent vs incoherent imaging

Coherent 1llumination Incoherent illumination
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Aberrations: geometrical

Paraxial
(Gaussian)
image point
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Spherical aberration

* Origin of aberrations: nonlinearity of Snell’s law (n sinf=const., whereas linear
relationship would have been nB=const.)

 Aberrations cause practical systems to perform worse than diffraction-limited
 Aberrations are best dealt with using optical design software (Code V, Oslo,
Zemax); optimized systems usually resolve ~3-5A (~1.5-2.5um in the visible)
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Aberrations: wave

Aberration-free impulse response Ay . (x, y)
limited
Aberrations introduce additional phase delay to the impulse response
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