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2.72

Elements of 


Mechanical Design


Lecture 03: Shafts




Schedule and reading assignment 
Reading quiz 

Hand forward lathe exercise quiz 

Topics 
� Finish matrices, errors 
� Shaft displacements 
� Stiffness exercise 

Reading assignment 
� Shigley/Mischke 

• Sections 6.1–6.4: 10ish pages & Sections 6.7–6.12: 21ish pages 
• Pay special attention to example 6.12 (modified Goodman portion) 
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Deflection within 

springs and shafts




Shafts, axles and rails 
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Shafts 
� Rotating, supported by bearings/bushings 
� Dynamic/fluctuating analysis 

Axles 
� Non-rotating, supported by bearings/bushings 
� Static analysis 

Rails 
� Non-rotating, supports bearings/bushings 
� Static analysis 
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Examples drawn from your lathe 
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Examples drawn from your lathe 
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In practice, we are concerned with 
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Deflection 
� Stiffness 
� Bearings and stiffness of connectivity points 
� Function of global shaft geometry, sometimes adjacent components 

Stress 
� Catastrophic failure: Ductile Brittle Fatigue 
� Function of local shaft geometry 
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What is of concern? 
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Deflection and stiffness 
� Beam bending models 
� Superposition 

Load and stress analysis 
� Bending, shear & principle stresses 
� Endurance limit 
� Fatigue strength 
� Endurance modifiers 
� Stress concentration 
� Fluctuating stresses 

Failure theories 
� Von Mises stress 
� Maximum shear stress 
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Materials 
Steel vs. other materials 

� Aluminum 
� Brass 
� Cast iron 

Important properties 
� Modulus Yield stress 
� Is density important? 

Fatigue life CTE 

Material treatment – Hardening 
� What does hardening do the material properties 
� It is expensive 
� Affects final dimensions 
� You can usually design without this 
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Principles of stiffness: Relationships 
q


q d 4 y
= q

EI dx4 

V 
= 

d 3 y V 

EI dx3 

M 
= 

d 2 y M 

EI dx2 

θ = 
dy θ 

dx 
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Modeling: General forms of equations 
Lateral bending deflection (middle) F 

F L3 F L3 

δ = Const
48E I E I 

RL RRAxial deflection 
F Lδ = 
A E 

Lateral bending angles (at ends) 

F L2 F L2 M Lδ = = or
6 E I Const E I Const E I 
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Modeling: Stiffness 
Lateral bending stiffness at middle F 

nkb = 48 
(E 

3 

I )
= Const (E I ) L

L 

RL RRAxial stiffness 
A EkA = 
L 

Torsional stiffness Stepped shafts? 

J Gkθ = 
L 
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Modeling: Stiffness 
These pop up in many places, memorize them


� Square cross section 

1 3I = bh
12 

� Circular cross sections 

I = 
π [(d )4 − (d )4 ]
64 outer inner 

J = 
π [(d )4 − (d )4 ]
32 outer inner 
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Principles of stiffness: Ratios 
Everything deforms


� Impractical to model the stiffness of everything 
� Mechanical devices modeled as high, medium & low stiffness elements 
� Stiffness ratios show what to model as high-, medium, or low stiffness 

Rk = 
k1st 

Stiffness ratio k2nd 
AE 

3EIAE
½ l = Rk = l = 4 
l2 

= klateral l3kaxial l 3	EI h2 

l3 

F F 

Building intuition for stiffness

� You can’t memorize/calculate everything 
� Engineers must be reasonable “instruments” 
� Car suspension is easy, but flexed muscle vs. bone? 
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Principles of stiffness: Sensitivity 
Cantilever L 

F 
F ⋅ L3 

δ = 
3 ⋅ E ⋅ I 

h 

δ 
mL
1 nh1 3 bI = ⋅b ⋅ h 

12 

F = ⎜
⎛
⎜

E ⋅b 
⋅ ⎡⎢⎣ 

h ⎤
⎥⎦ 

3 

⎟
⎞
⎟ ⋅δ dF d ⎧⎪E ⋅b ⎡ h ⎤

3 ⎫⎪ E ⋅b ⎡ h ⎤
3 

⎝ 4 L ⎠ k = 
dδ

= 
dδ ⎨

⎪⎩ 4 
⋅ ⎢⎣ L ⎥⎦ 

⋅δ ⎬
⎪⎭ 
→ 

4 
⋅ ⎢⎣ L ⎥⎦ 
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Superposition 
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You must be careful, following assumptions are needed 
� Cause and effect are linearly related 
� No coupling between loads, they are independent 
� Geometry of beam does not change too much during loading 
� Orientation of loads does not change too much during loading 

Use your head, when M = 0, what is going on 

Superposition is not plug and chug 
� You must visualize 
� You must think 



Types of springs and behaviors

Springs and stiffness 

� kF = dF(x)/dx 

Constant force spring 
� kF = dF(x)/dx = 0 
� ΔEb-a = F • (xb - xa ) 

Constant stiffness spring

� kF = Constant 
� ΔEb-a = 0.5 • kF • (xb

2 - xa
2 ) 

Non-linear force spring 
� kF = function of x


� ΔEb-a = ∫ F(x) • dx


Force-Displacement Curve 
F(x)=F 

F 
F 

a b  x 

Force-Displacement Curve F(x)=kF•x 

F F F 1
kF 

xa b  

Force-Displacement Curve 
F 

x 
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Non-conformal contact – ball on flat 
Non-conformal contacts often non-linear 

� Example: bearings, belleville washers, structural connections 

� Is anything ever perfectly conformal? 

� Specific case: Hertzian contact 

F 

kn ( ) = Constant ⋅ ⎜⎛ 
1 2 ⎞ 1 

F R 3 ⋅E 3 ⎟ ⋅F 3 

⎝ ⎠ 

In-plane stiffness 
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Linearization of non-linear springs 
If you can linearize over the appropriate range… then 

you can use superposition 

So how would, and when could, you do this? 
� R = ball radius


� E = modulus of both materials (both steel)

� F = contact load


dF ⎛ 1 2 ⎞ 1 
kn ( ) = Constant ⋅= F ⎜R 3 ⋅E 3 ⎟ ⋅F 3 

dδ ⎝ ⎠ 
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Practical application to the lathe problem 

y 
x F 

Case 11 in Appendix A-9
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Practical application to the lathe problem 
y Fx 

( )  = 
1 

⋅F ⋅ x2 (11x − 9l )
y x A→B 96EI 

y(l 2)= 
96

1 

EI 
⋅F ⋅ 7

8 
l3


768 E Ik = ⋅ Beam 7 l3


But, is this really what is going on?
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Practical application to the lathe problem 
y Fx 

768 E Ik = ⋅ Beam 7 l3 

Vs. ? 
F 

½ k  ½ k  

x
y 
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Practical application to the lathe problem 
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F 

½ k  ½ k  

x
y 



Practical application to the lathe problem 

F 
x 

Or is it this? 

If so, does it matter? 

y

kbearing


½ k  ½ k  
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Practical application to the lathe problem 

x F 

δ1 δ1½ F  ½ F  

δ2 
½ F  ½ F  

δ2 δ2 
½ k  ½ k  
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Group work 
Obtain an equation for δtotal in terms of F, k and l 

Estimate when k is important / should be considered?


What issue/scenario would cause k not to be infinite?


Look at these causes, if a stiffness is involved, would 
linearity, and therefore superposition apply? 
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