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2.72 
Elements of 

Mechanical Design 

Lecture 08: Flexures 



Schedule and reading assignment 
Quiz 

� Today: Bearing layouts (mid-class)

� Thursday: Hale 6.1


� Soon: Bolted joint qualifying quiz


Topics 
� Flexure constraints and bearings… Degrees of Freedom 

Reading assignment 
� Thursday: 

• Layton Hale’s thesis – Read 2.6, 2.7, 6.1, skim rest of Chapter 6 
• Chapter 7 is cool to look at 

� Tuesday: 
• Read: 8.1, 8.3 – 8.5, 8.7, 8.9 – 8.11 
• Skim: 8.6, 8.8, 8.12 
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Examples drawn from your lathe 
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Mechanisms: Compliant vs. rigid 
Rigid mechanisms 

Images removed due to copyright restrictions. Please see
� Sliding joints http://www.physikinstrumente.com/en/primages/pi_m850_tip_i4c_o_eps.jpg 

http://www.hexapods.net/images/M850Ani160-1-slow.gif 

� 100s of nm resolution


� Large range


� kg load capacity


Compliant mechanisms 
� Motion from member compliance 

� Angstrom resolution θy


� Limited range


� Limited load capacity


z 
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Micro-scale precision machines 
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Static SEM: Drs. Andras Vladar & Jason Gorman (NIST) 
FIB: Dr. Konrad Jarush (Hitachi) 

© Martin Culpepper, All rights reserved 
Courtesy of Andras Vladar, Jason Gorman, and Konrad Jarausch. Used with permission. 
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system

Lighting

Forceps

Lens

Meso-scale devices: Biomedical 

Two -photon endomicroscope Scanning
Two -photon endomicroscope

Lighting 

Forceps 

Lens 

Scanning system 
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Nano-scale devices 

Stator CNT 
“Rigid” link 

“Compliant” 
joint

Rotor xx 
yy

F 
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Meso-scale precision machines 
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TMA ystem

Lighting

Forceps

Lens

Nano-scale devices 
TMA 

Two -photon endomicroscope Scanning s
Two -photon endomicroscope Scanning system 

Lighting 

Forceps 

Lens 

Stator CNT 
“Rigid” link 

“Compliant” 
joint

Rotor xx 
yy

F 

© Martin Culpepper, All rights reserved 10 



Dip pen nanolithography on DNA arrays 
What is fundamentally different? 

� Size → Physics → Fabrication 
� Raw materials 

Images removed due to copyright restrictions. Please see � Surfaces vs. points or lines 

http://mcf.tamu.edu/images/DPN_process.png 

http://www.nanoink.net/d/Nano%20-%20Part%201_Sm_Lo-Res_240x180.wmv 

http://images.iop.org/objects/nano/news/4/12/10/diagnal.jpg 

~20 mm ~1 mm 

Courtesy 
PI 

250 mm 
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Nanomanufacturing 
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Advantages of flexures 
y 

x 
y 

θz 

x 
y 

Z 

y 
x 

z 

θy 

y 
x 

z 

Advantages 
� Smooth, fine motion


� Linear/elastic operation in absence


� Failure modes are well understood


� Monolithic or assembled


� 2D nature lends to 2½D mfg.

� Miniaturization


Disadvantages 
� Accuracy and repeatability sensitive to several variables 
� Limited motion/stroke (usually a few to 10s % of device size) 
� Instabilities such as axial or transverse buckling 
� Dynamics 
� Sensitivity to tolerance 
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Elastomechanics (σ & ε) relationship

Elastic

σ = ε ⋅ E


Plastic


Material

Titanium V

Aluminum 7075

Stainless 316

Invar - Annealed
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Important material properties 
Nominal values 

� Modulus 
� Yield stress 
� Coefficient of thermal expansion 
� Thermal diffusivity 
� Density 

Material property ratios 
Normalized Values 

Material σy/E αdiff/αCTE E/ρ Cost 
Titanium V 1.00 0.14 0.92 3.77 
Aluminum 7075 0.70 1.00 1.00 1.00 
Stainless 316 
Invar - Annealed 

0.09 
0.19 

0.13 
0.87 

0.94 
0.70 

3.50 
5.21 
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Modules 
Lever Chevron 
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Modules cont. 
Ellipse Cantilever/flexure blade 
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Modules cont. 
Flexure hinge Torsion 

Parallel four bar Double parallel four bar 
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Module cont.: Cross flexure pivot 
Deformation scale 1 : 1 

75 mm 

25 N 25 N 25 N 

|| ┴ ┴op
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Review of constraint fundamentals 
Rigid bodies have 6 DOF 

� Constraints have lines of action 
� C = # of linearly independent constraints 
� DOF = 6 – C → F = 6 – C z 

y 

x 

Stage 

Ground 
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DOF in constraint-based design 
A linear displacement may be visualized as a rotation 

about a point which is “far” away 

R 

to infinityR 

© Martin Culpepper, All rights reserved 21 



Two principles of projective geometry 
Projective geometry comes in useful here 

� Parallel lines intersect at infinity 

� Translation represented by a rotation line at a hope of “infinite radius” 

Image courtesy of John Hopkins 
MIT MS Thesis 

R 
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Constraint fundamentals

Blanding’s RULE OF COMPLIMENTARY PATTERNS 

�	 Each permissible Freedom (F) is a rotation about a line and each 
permissible freedom rotation line must intersect each Constraint (C) 

Remember these principles of projective geometry 
� Parallel lines intersect at infinity 
� Translation represented by a rotation line at a hope of “infinite radius 

R	= 6 – C = 6 – 5 = 1... so where is it? 

C5 

C4 

C5 

C4


C1
C1 

R1C2C2 C3 C3 
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Examples 
There will be a quiz on this NC 

2 

y 

z 
x 

R2 

R1 

1 

R1 



Flexure bearing systems 
y


Spherical ball joint 
z 

x 

R1 

R2
6 – C = F 

R3 
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Flexure bearing systems 
y

Blade flexure 
x 

6 – C = F z 
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Flexure bearing systems 
Parallel guiding mechanism 

y 

x 
z6 – C = F 

© Martin Culpepper, All rights reserved 27 



Flexure bearing systems 
y

Doodle hopper… 
z 

R1 

R2 x 
6 – C = F 
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Parallel addition rules 
z	 What is parallel ? Elements are not in the 

same load path. Loads are split between 
the elements 

Add constraints so where there is a 
common DOF, then have mechanism DOF 

Example: For instance, there are no 
conflicts in displacement to θz 

Adapted from Layton Hale’s Ph.D. Thesis (MIT) 
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Series addition rules 
What is series? 
-Differentiate series by load path 
-Shared load path = series 

Series: Add DOF 

Find common constraints 

Follow the serial chain 

Adapted from: Layton Hale’s Ph.D. Thesis (MIT) 
© Martin Culpepper, All rights reserved 30 



Parallel and series systems 

Take care of series first, define 
them as single element then go 
through parallel 

Series 

Parallel 

Redundancy does not add 
Degrees of freedom 

Adapted from Layton Hale’s Ph.D. Thesis (MIT) 
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Accuracy 
The accuracy of most flexures is sensitive to:


� 1. Small variations in dimensions, e.g. δthickness 

� 2. Young’s Modulus (E) 

� 3. Time variable errors 
• Creep 
• Stress relaxation 
• Thermal 
• Dynamic/vibration 
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Repeatability 
Flexures can exhibit Angstrom-level repeatability if:


� Low material hysteresis 
• Single crystal materials useful 

� No dislocation motion 
• σ << σyield 

� Load is repeatable 
• Magnitude 
• Direction 

� Assembly is correct 
• No micro-slip 
• No friction in assembly 
• No yield during assembly 
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Accuracy and repeatability 
Difficult to obtain without calibration or adjustment


� Geometry


� Materials


� Loading


� Assembly/integration


� Environmental
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Links between kinematics and elasticity 
Cantilever L 

F 
F ⋅ L3 

δ = 
3 ⋅ E ⋅ I 

h 

b 
δ 

L 
1 nh1 3I = ⋅b ⋅ h


12 

⎛ E ⋅b ⎡ h ⎤
3 ⎞ dF d ⎧⎪E ⋅b ⎡ h ⎤

3 ⎫⎪ E ⋅b ⎡ h ⎤
3 

F = ⎜
⎜ 

4 
⋅ ⎢⎣ L ⎥⎦ ⎟

⎟ ⋅δ k = 
dδ

= 
dδ ⎨ 4 

⋅ ⎢⎣ L ⎥⎦ 
⋅δ ⎬→ 

4 
⋅ ⎢⎣ L ⎥⎦⎝ ⎠ ⎩⎪ ⎭⎪
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Links between kinematics and elasticity 
Cantilever L 

F
ΔL = 0.05 ⋅ L 

b 
δ 

h 

Δh = 0.05 ⋅ h


Δb = 0.05 ⋅b


k + Δk = 
E ⋅ (b + Δb)

⋅ ⎡⎢⎣ 

h + Δh ⎤
⎥⎦ 

3 

→ 
E ⋅b 

⋅ ⎡⎢⎣ 

h ⎤
⎥⎦ 

3 

⋅
⎛
⎜
⎜1.05 ⋅ ⎡⎢⎣ 

1.05 ⎤
⎥⎦ 

3 

−1 
⎞
⎟
⎟ = k ⋅ (1+ 0.42)

4 L − ΔL 4 L ⎝ 0.95 ⎠


Δk = 0.42 ⋅ k 
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Fabrication processes: EDM 
EDM positives 

� Accuracy (micrometers) 
� 3D 
� Surface finish (sub-micrometers) Image removed due to copyright restrictions. Please see 

http://www.physikinstrumente.com/en/about/images/pi_WIREEDMC_i4c_K50_eps.jpg 

EDM drawbacks 
� Time (mm/minute) 
� Cost 
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Fabrication processes: Waterjet 
Waterjet positives 

�	 Low force 
�	 Many materials including


brittle materials and heat

sensitive materials


�	 Rapid (inches/min) 

Images courtesy of xiaming on Flickr. 

Waterjet drawbacks 
� Thickness limitations


� Kerf limitations


� Draft limitations


� Accuracy ~ 125 micrometers


© Martin Culpepper, All rights reserved	 Images courtesy of Iansoper on Flickr. 38 

http://www.flickr.com/photos/xiaming/2561796750/
http://www.flickr.com/photos/iansoper/383728722/


Fabrication processes: Milling/cutting 
Milling/cutting positives 

� Flexibility


� Any material

� Nearly any shape


Milling/cutting drawbacks

� Fixturing


� Compliance of parts


� Work hardening


� Surface damage


Image courtesy of jiskar on Flickr. 
Please see any other image of milling, such as 

http://students.washington.edu/dennyt/fsae/cnc/wc_fixtplate.jpg 
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Fabrication processes: Etching 
Etching positives 

� 2½ D topologies/shapes 
� Monolithic 
� Micron-level features 

Etching drawbacks 
� Dimensional control 
� Scallops 

Images removed due to copyright restrictions. Please see: 

http://www.ee.ucla.edu/~dejan/ee115c/ucla-graphics/IBM_metal_stack.jpg 

http://www.stsystems.com/uploaded_files/1101/images/scallops.jpg 

Milanovic, Veljko, et al. "Deep Reactive Ion Etching for Lateral Field Emission 
Devices." IEEE Electronic Device Letters 21 (June 2000): 271-273. 

Milanovic, Veljko, et al. "Micromachining Technology for Lateral Field 
Emission Devices." IEEE Transactions on Electron Devices 48 
(January 2001): 166-173. 

Please see 371762. "How Microprocessor Work." February 14, 2009. 

YouTube. Accessed October 28, 2009. 
http://www.youtube.com/watch?v=loMz_l_Fpx4 
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Assembly 
Stress and energy 

� Proper thickness of clamps and clamping load distribution 
� Spring washer provide force source 

Fusing 
� Clamps members should “yield” before flexure 
� Spring washer provide force source 

Surface conformity 
� Micro-slip is a major cause of hysteresis 
� Deburring and potting/bonding 

Misalignment = systematic errors 
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Images removed due to copyright restrictions.
Please see Fig. 8.5 and 8.6 in Smith, Stuart.
Flexures: Elements of Elastic Mechanisms.
Amsterdam, Holland: Gordon & Breach, 2000.




