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2.72 
Elements of 

Mechanical Design 

Lecture 09: Alignment 



Schedule and reading assignment 
Quiz 

� Thursday: Hale 6.1


� Soon: Bolted joint qualifying quiz


Topics 
� Lab notebooks 
� Alignment methods 
� Kinematic coupling grade bump = ½ grade for use/design 

Reading assignment 
• Read: 8.2 
• Examples: All in 8.2 
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Lab notebooks 
Technical quality/quantity 

� Appropriate equations, codes 
� Units 
� Important results highlighted/boxed/noted/explained 

Graphical quality/quantity 
� Appropriate sketches/pictures


� Pasted CAD/etc…


Archival quality 
� Can this be copied?


� Understood by others?


Best practices 
� Dating and number of pages


� Permanent pen


� No blank spaces (X out)
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Ideal alignment interface 
Repeatable 

Accuracy 

Stiffness (sensitive?) 

Load capacity 

“Perfect” constraint 

Lowest energy state 

6 DOF 

Metal molds 

High natural frequency
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Common alignment methods 

Elastic averagElastic averagiingng Compliant kinCompliant kineematicmatic QuasiQuasi--kinematickinematic Active kinematicActive kinematic Passive kinematicPassive kinematic

AccuracyAccuracy RepeatabilityRepeatability Accuracy & repeatability
Accuracy & repeatability

Desired Position 

Elastic BElastic B

Passive KCPassive KC Active KCActive KC

Elastic CElastic C
Elastic AElastic A

QuasiQuasi--KCKC

ErrorErrorErrorError
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Pin-hole 

6 DOF 

Metal molds 
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3 – 2 – 1 Alignment schemes 

© Martin Culpepper, All rights reserved 7 



Exact constraint couplings 
Exact constraint (EC):


� Constraints = DOF to be constrained 
� Deterministic saves $ 
� Balls (inexpensive) & grooves (more difficult to make) 

In KC design the issues are:

� KNOW what is happening in the system (coupling) 
� MANAGE forces, deflections, stresses and friction 

There are many 
types of EC couplings, 
our time limits us to a 
semi-focused study on 
kinematic couplings 

Balls 

Tetrahedral 
groove 

Maxwell V groove Kelvin 

© Martin Culpepper, All rights reserved 8 



Passive kinematic couplings 
Fabricate and forget 

¼ micrometer with best practices, 10s of nm recently 

What is important?

� Contact forces 
� Contact stress 
� Stiffness vs. geometry 
� Stiffness vs. preload 
� Friction & settling 
� Thermal loading 
� Preload repeatability 

Preload (nesting load) is the force 
applied to keep the coupling 
components engaged and prevent 
tipping 

Preload 
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Ball motions: Displacements 
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ΣδBall _ i = δBall _ iA +δBall _ iB


This assumes 
that the ball-ball 
stiffness is > ~10x 
ball-groove stiffness 

Ball far-field point


B1 

B3 

B2 

A B 

iABall _ δ 
v 

iBBall _ δ 
v 

iBall _ δ 
v 

Groove far-field points
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Load balance: Force and moment 
Preload 

Force balance (3 equations)

Error 

Contact 

ΣF 
v 

relative = 0 = ( preloadF
v 

+ ErrorF
v )+ ( 

Moment balance (3 equations) 
M 
r 

relative = ( iBalli M _ 1 
6 

r 
= )Σ + ( preloadM 

r )+ ( errorM 
r )= ( preloadpreload Fr

vv × + Errorerror Fr 
vv × )+ Σ iBalliBall Fr __ 

vv × 

Goal: 
1. Solve 6 equations for contact forces 
2. Solve normal displacements 
3. Solve relative displacements/rotations 

Ball far-field point 

Given geometry, materials,

preload force, error force,

solve for local distance of approach 

A B 

Groove far-field points


)6_5_4_3_2_1_ BallBallBallBallBallBall FFFFFF 
vvvvvv 

+++++ 

© Martin Culpepper, All rights reserved 11 



Modeling round interfaces 
Equivalent radius 1R = e 1 1 1 1

+ + +
R1major R1min or R2major R2min or 

Equivalent modulus 
1Ee = 2 2 Poisson’s ratio1−η1 1−η2+

E1 E2 

Young’s modulus 

1


⎛ 9 F 2 ⎞ 3

nδ = ⎜ ⋅ ⎟ n ⎜

⎝16 Re ⋅Ee 
2 ⎟
⎠ 

Important scaling law 

Scaling with 
Mat’l properties 
and geometry 

Contact stiffness 
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Preload should be 
repeatable in magnitude 
& direction 

Degree of nonlinearity 
is reduced as preload 
is increased 
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Friction and lubrication 
The trend of 

the data is 
important 

Wear in vs. 
“snow balling” 

Magnitude 
depends on 
coupling 
design and 
test 
conditions 

Slocum, A. H., Precision Engineering, 1988:    Kinematic couplings for precision fixturing– 
Experimental determination of repeatability and stiffness 
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