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2.72
Elements of
Mechanical Design

Lecture 12:
Belt, friction, gear drives



Schedule and reading assignment
Quiz

0 Bolted joint qualifying Thursday March 19t

Topics
0 Belts
0 Friction drives
0 Gear kinematics

Reading assignment

 Read:
14.1 -14.7

e Skim:
Rest of Ch. 14
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Topic 1:

Belt Drives



Belt Drives
Why Belts?

O Torque/speed conversion

a Cheap, easy to design

0 Easy maintenance

0 Elasticity can provide damping, shock absorption

Keep in mind
O Speeds generally 2500-6500 ft/min
0 Performance decreases with age

Images removed due to copyright restrictions.
Please see:

|http://www.tejasthumpcycles.com/ Parts/primaryclutch/3.35-inch-harley-Street-Belt-Drive.jpg
|http://www.a|-jazirah.com.sa/cars/topics/serpentine_belt.jpg
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Image by viéstang on Flickr.


http://www.flickr.com/photos/dtwright/3320385578/
http://www.flickr.com/photos/v6stang/2933779776/
http://www.tejasthumpcycles.com/Parts/primaryclutch/3.35-inch-harley-Street-Belt-Drive.jpg
http://www.al-jazirah.com.sa/cars/topics/serpentine_belt.jpg

Belt Construction and Profiles

Many flavors
0O Flat is cheapest, natural clutch
O Vee allows higher torques
Q Synchronous for timing

Usually composite structure

0 Rubber/synthetic surface for friction
0O Steel cords for tensile strength
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Belt Drive Geometry

Driven
Pulley

Slack Side

Driving ‘%

Pulley Tight Side
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Belt Drive Geometry
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Contact Angle Geometry
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Belt Geometry
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Drive Kinematics
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Elastomechanics

Elastomechanics — torque transmission
0 Kinematics — speed transmission

Link belt preload to torque transmission
0 Proceeding analysis is for flat/round belt

Driven
Pulley

Slack Side

Driving ‘%
Pulley Tight Side
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Free Body Diagram

y
dS ’
—
wdN
F+dF
dN d/2

*Tensile force (F)
*Normal force (N)
*Friction force (uN) N

«Centrifugal force (S)
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Force Balance
y
dS X

— F
udN Using small angle approx:
F+dF
2F, =0=—(F +dF)%— F99 N ds
dN d/2 2 2
Fd@=dN +dS
o >F =O:—rdN—F+(F+dF)

[N = dF
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Obtaining Differential Eg

dS X

Let m be belt mass/unit length

F+dF dY )
dS=m — | &°dd
aN | d2 2

Combining these red eqns:

2
dF = ,uFd@—,um(gj w’do

dF d)’
—— F =—um| — | ®°
do “ ”(2)”

do
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Belt Tension to Torque

Let the difference in tension between the loose side (F,) and the
tight side (F,) be related to torque (T)

F—F—— E
.

Solve the previous integral over contact angle and apply F, and
F, as b.c.’s and then do a page of algebra:

T e,u Bontact _I_l £
I: . =
tension d_eﬂééontact —1

2 Hontact
Flzm(%j o +F,

tension
S | Used to find stresses

2 in belt!!!
F, = m(%j o +F 2

tension eﬂ‘gcontact _|_1
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Practical Design Issues

Pulley/Sheave profile

A

a Which is right? s
Manufacturer — lifetime eqgs

O Belt Creep (loss of load capacity) < 7

Q Lifetime in cycles A B C

Idler Pulley Design

O Catenary egs — deflection to tension

Images by v6stang on Flickr.
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http://www.flickr.com/photos/v6stang/2933779776/

Practice problem

Delta 15-231 Drill Press
Q 1725 RPM Motor (3/4 hp)

i Images removed due to copyright restrictions. Please see
a 450 to 4700 RPM operation Inttp:/Awww.rockler.com/rso_images/Delta/15-231-01-500.jpg
0 Assume 0.3 m shaft separation
a What is max torque at drill bit?
0 What size belt?
Q

Roughly what tension?

..:“
%

¢
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Topic 2:

Friction Drives



Why Friction Drives?
0 Linear «> Rotary Motion Images removed due to copyright restrictions. Please see
|http://www.beachrobot.com/images/bata-football.jpg
- LOW baCklaSh/deadband |http:/imvww.borbollametrology.com/PRODUCTOS1/Wenzel/

Q Can be nm-resolution |WENZELHorizontal-ArmCMMRSPIus-RSDPlus_files/rsplus.jpg

Keep in mind
0 Preload — bearing selection
O Low stiffness and damping
0 Needs to be clean
0 Low drive force

© Martin Culpepper, All rights reserved 19


http://www.beachrobot.com/images/bata-football.jpg
http://www.borbollametrology.com/PRODUCTOS1/Wenzel/WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg
http://www.borbollametrology.com/PRODUCTOS1/Wenzel/WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg

Friction Drive Anatomy

Motor and
Transmission/Coupling

Drive Roller

eLinear Resolution
*Output Force

Max Roller Preload

Rollers

eAxial Stiffness
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Drive Kinematics/Force Output

Kinematics found from no slip cylinder on flat

d
A5bar — A@- wheel
d
_ wheel Ao
Vbar = el 9 “

Force output found from static analysis
Q Either motor or friction limited

2T,
_ eel
|:output o = Where |:output < /JFpreIoad
wheel
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Maximum Preload

~

E =

e

&

4 i Y
1—v? 1—v2 1 1
wheel n bar Re — 4

Ewheel Ebar \dwheel rcrown )
1
3

Variable Definitions 3 = (BFpreload Re]

contac
2E.

(" Shear Stress Equation N
A onacte [ 1+2V, 2
z-Wheel — c;r;t;; - ( 2 L +§ ' (1+ theel)' \/2(1+ theel )j
N € ’/
16%37,?@( Re2
|:preload, max 14 2 2 3
3Ee2( theel T 5 ) (1+ theel ) \/2(1+ theel ))
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Axilal Stiffness

/ \ 4a,E
d
k . = 1 + 1 + 1 4+ 1 I(tangential — (2_‘/3(1:_ V)
kshaft _torsion ktangential kbar
d2
\ wheel J

B 37Ed s4haft
shaft 4L3

7Gd

wheel

torsion 32 L

k

EA

k . c, bar

bar
L
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Proper Design leads to

Q Pure radial bearing loads
Q Axial drive bar motion only

Drive performance linked to motor/transmission
Q Torqgue ripple
a Angular resolution

Images removed due to copyright restrictions. Please see

|http://www.borbollametrology.com/PRODUCTOSl/WenzeIANENZELHorizontaI-ArmCMMRSPlus-RSDPIus_fiIes/rspIus.jpg
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Topic 3:

Gear Kinematics



Gear Drives
Why Gears? ' { b v

. - T .:.::.;15-1::-“_:-"'::#;‘“ C
O Torque/speed conversion e i

a Can transfer large torques
a0 Can run at low speeds

0O Large reductions in small package

Keep in mind
0 Requires careful design
0O Attention to tooth loads, profile

Image from |jbardinphoto on Flickr.

Images removed due to copyright restrictions. Please see
http://elecon.nIihost.com/img/gear-train-backlash-and-contact-pattern-checking.jpg

|http://www.cydgears.com.cn/products/ Planetarygeartrain/planetarygeartrain.jpg
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http://www.flickr.com/photos/robbie1/4644315
http://www.flickr.com/photos/jbardin/3237282835/
http://elecon.nlihost.com/img/gear-train-backlash-and-contact-pattern-checking.jpg
http://www.cydgears.com.cn/products/Planetarygeartrain/planetarygeartrain.jpg

Gear Types and Purposes

Spur Gears
Q Parallel shafts
0 Simple shape — easy design, low $$$
Q Tooth shape errors — noise
0 No thrust loads from tooth engagement

Helical Gears
0 Gradual tooth engagement — low noise
O Shafts may or may not be parallel
O Thrust loads from teeth reaction forces
0 Tooth-tooth contact pushes gears apart

Images from Wikimedia Commons, http://commons.wikimedia.org
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Gear Types and Purposes

Bevel Gears
0 Connect two intersecting shafts
Q Straight or helical teeth

Worm Gears
O Low transmission ratios
a Pinion is typically input (\Why?)
QO Teeth sliding — high friction losses

Rack and Pinion
d ROtal’y > I—inear mOtion Images from Wikimedia Commons, |http://commons.wikimedia.org
0O Helical or straight rack teeth

F > Pinion, m,
3 )3
K K
Figure by MIT OpenCourseWare. ' ' ' ' ' . Rack, m; ' ' ' ' '

*

© Martin Culpepper, All rights reserved Viscous damping, ¢ Rack & Pinion 28


http://commons.wikimedia.org

Tooth Profile Impacts Kinematics

Want constant speed output
O Conjugate action = constant angular velocity ratio
O Key to conjugate action is to use an involute tooth profile

Output speed of gear train

A “Real” involute/gear

“Ildeal” involute/gear

- S\pJVL’ZA o uf‘mv)

‘AAAA oéo

_ IR
Ooyp, [FPM] 7

Non or poor involute

WA,

AN

time [sec]

© Martin Culpepper, All rights reserved 29



Instantaneous Velocity and Pitch

Model as rolling cylinders (no slip condition):

Model gears as two pitch circles
0 Contact at pitch point

© Martin Culpepper, All rights reserved 30



Instantaneous Velocity and Pitch

Meshing gears must have same pitch

-Ng = # of teeth, Dp = Pitch circle diameter

N
. . __9
Diametral pitch, Pp; Pp = D,
. . ] nD T
Circular pitch, P¢: Po=—F =
/) J\l-!ql_/‘)

© Martin Culpepper, All rights reserved 31



Drawing the Involute Profile

*Gear Is specified by
diametral pitch and
pressure angle, @

Pitch Point

Image removed due to copyright restrictions. Please see
|http://upload.Wikimedia.org/Wikipedia/commons/c/cZ/Involute_wheel.gif

D, =D,cos®| =~
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Drawing the Involute Profile

Pitch Point D
B

Pitjh Circ\l\e\‘\\ / L, Ln =1 7 A 6

-
f——
-

Base Circle

- -
N e —-—

~
-
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Transmission Ratio for Serial Gears

! s \
o . |
Power in: T, « ;, m=pp 8 I G ear traln i

— e o o - e - . .-

: 4
Transmission ratio for elements in series: TR = (proper S|gn)- .
Wiy
\ A%
From pitch equation: Plzﬁzﬁsz > b, _N, o, S‘S\I\]'Z{L‘ e, & 2
D Dy Dz Nz @ é O g O
- )
[

For Large Serial Drive Trains:

Productof drivingeeth
Productof driven tedgh

TR =(proper sign)-

© Martin Culpepper, All rights reserved 34



Transmission Ratio for Serial Gears

: : : Product of driving teeth
: TR =(proper sign)-
Serial trains: (p Per SI9 ) Product of driven teeth

'Example 1:

TR =7

in out

dnven

TR=7

© Martin Culpepper, All rights reserved
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Transmission Ratio for Serial Gears

Example 3. Integral gears in serial gear trains
O Whatis TR? Gear 1 = input and 5 = output

TR = (proper sign)-

© Martin Culpepper, All rights reserved

ae

Product of driving teeth

Product of driven teeth

36



Planetary Gear Trains

Planetary gear trains are very common
O Very small/large TRs in a compact mechanism

Terminology:

_ Planet Planet
Ring gear gear

gear

Planet
Arm

(—

gear

© Martin Culpepper, All rights reserved 37



Planetary Gear Train Animation

How do we find the transmission
ratio?

—
-
Image removed due to copyright restrictions. Please see CG
http:/iwww.cydgears.com.cn/products/Planetarygeartrain/ S

|p|anetarygeartrain.jpg I
-
 _—
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Planetary Gear Train TR

Sun Gear

/ Planet Gear

B |

Ar

© Martin Culpepper, All rights reserved

Ring Gear

If we make the arm
stationary, than this Is
a serial gear train:

., B a)ring — Wy - TR

g, Wgn — Wy

TR =— NSUH . Nplanet — Nsun
N N N

planet ring ring

@ @ planet — @
pa _ “plane arm _ o

Wsa @Osun — Parm
N
TR = — sSun
N planet

39



Planetary Gear Train Example

Sun Gear

/ Planet Gear

B |

Ar

© Martin Culpepper, All rights reserved

Ring Gear

If the sun gear Is the
iInput, and the ring
gear Is held fixed:

Wra _ O_a)arm ~TR
Bgy Dyyn — Wy
TR = — I\Isun . Nplanet __ |\Isun
N planet |\Iring I\Iring
TR
a)output = Wy = m WDy

40



Case Study: Cordless Screwdriver

Given: Shaft T, (ogy) find motor T,, (o)
0 Geometry dominates relative speed (Relationship due to TR)

2 Unknowns: T,, and o, with 2 Equations:
0 Transmission ratio links input and output speeds
O Energy balance links speeds and torques

SCREW DRIVER SHAFT

Tora tgrg
MOTOR SHAFT Tiairae Mgy
LT u\‘

\--f .
... T 5 :

H

= | S
H

Banery Pack == Switch

GEAR TRAIN &1 —

—GEAR TRAIN # 2
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Example: DC Motor shaft

T(w): T(w)=Tq .(1_wj

WONL
P(w) obtained from P(w) = T(w) ®* ®

Speed at maximum power output:

© Martin Culpepper, All rights reserved

Motor torque-speed curve

T
(0,Ts)
(0y . 0)
)
P((D)A Motor power curve
PMAX..

Mppax ®
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Example: Screw driver shaft

T() t A = Motor shaft torque-speed curve

What is the torque-speed curve for the screw driver?

B

. .
Train ratio = /g,

SCREW DRIVER SHAFT

MOTOR SHAFT Ty, Ogy
Tw, O

[ Y

GEAR train # 1 GEAR train # 2

© Martin Culpepper, All rights reserved 43



Example: Screw driver shaft

AP(0) C = Motor shaft power curve
""""""""" What is the power-speed curve for the screw driver?

* Train ratio = /g,

SCREW DRIVER SHAFT

MOTOR SHAFT Ty, Ogy
Tw, O

[ Y

GEAR train # 1 GEAR train # 2
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