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Regression – Review & Extensions

• Single Model Coefficient: Linear Dependence

• Slope and Intercept (or Offset):

• Polynomial and Higher Order Models:

• Multiple Parameters

• Key point: “linear” regression can be used as long as the model is 
linear in the coefficients (doesn’t matter the dependence in the 
independent variable)

• Time dependencies

– Explicit

– Implicit
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Agenda

1. Regression

• Polynomial regression

• Example (using Excel)

2. Time Series Data & Time Series Regression

• Autocorrelation – ACF

• Example: white noise sequences

• Example: autoregressive sequences

• Example: moving average

• ARIMA modeling and regression

3. Forecasting Examples
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Time Series – Time as an Implicit Parameter

• Data is often 

collected with a 

time-order

• An underlying 

dynamic process 

(e.g. due to physics 

of a manufacturing 

process) may create 
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Intuition: Where Does Autocorrelation Come From?

• Consider a chamber with volume V, and with gas flow in and 
gas flow out at rate f. We are interested in the concentration x at 
the output, in relation to a known input concentration w.
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Key Tool: Autocorrelation Function (ACF)

• Time series data: time index i

• CCF: cross-correlation function

• ACF: auto-correlation function

) ACF shows the “similarity” of a signal

to a lagged version of same signal
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Stationary vs. Non-Stationary

Stationary series:

Process has a fixed mean
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• Data drawn from IID gaussian

• ACF: We also plot the 3 limits –

values within these not significant

• Note that r(0) = 1 always (a 

signal is always equal to itself 

with zero lag – perfectly 

autocorrelated at k = 0)

• Sample mean

• Sample variance
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White Noise – An Uncorrelated Series
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Autoregressive Disturbances
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• Generated by:

• Mean

• Variance

So AR (autoregressive) behavior 

increases variance of signal.

Slow drop in ACF with large 
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Another Autoregressive Series

• Generated by:

Slow drop in ACF with large 
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Slow drop in ACF with large 

But now ACF alternates in sign

• High negative autocorrelation:
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Random Walk Disturbances
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Very slow drop in ACF for = 1

• Generated by:

• Mean

• Variance
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Moving Average Sequence
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• Generated by:

• Mean

• Variance

So MA (moving average) behavior 

also increases variance of signal.

r(1)

Jump in ACF at specific lag
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ARMA Sequence

0 100 200 300 400 500
-10

-5

0

5

10

time

x

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

lags

r(
k
)

• Generated by:

• Both AR & MA behavior

Slow drop in ACF with large 
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ARIMA Sequence

• Start with ARMA sequence:

• Add Integrated (I) behavior

Slow drop in ACF with large 

random walk (integrative) action
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Periodic Signal with Autoregressive Noise
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After Differencing

See underlying signal with period = 5
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Cross-Correlation: A Leading Indicator

• Now we have two series:

– An “input” or explanatory   

variable x

– An “output” variable y

• CCF indicates both AR and lag:
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Regression & Time Series Modeling

• The ACF or CCF are helpful tools in selecting an 

appropriate model structure

– Autoregressive terms?

• xi = xi-1

– Lag terms?

• yi = xi-k

• One can structure data and perform regressions

– Estimate model coefficient values, significance, and 

confidence intervals

– Determine confidence intervals on output

– Check residuals
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Statistical Modeling Summary

1. Statistical Fundamentals

• Sampling distributions

• Point and interval estimation

• Hypothesis testing

2. Regression

• ANOVA

• Nominal data: modeling of treatment effects (mean differences)

• Continuous data: least square regression

3. Time Series Data & Forecasting

• Autoregressive, moving average, and integrative behavior

• Auto- and Cross-correlation functions

• Regression and time-series modeling
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