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Storage


• Storage is fundamental in nature, management, and 
engineering. 
⋆ In nature, energy is stored. Life can only exist if the 

acquisition of energy can occur at a different time from the 
the expenditure of energy. 

⋆ In management, products are stored. 

⋆ In engineering, energy is stored (springs, batteries, 
capacitors, inductors, etc.); information is stored (RAM and 
hard disks); water is stored (dams and reservoirs); etc. 



Storage


• The purpose of storage is to allow systems to 
survive even when important events are 
unsynchronized. For example, 
⋆ the separation in time from the acquisition or production of 

something and its consumption; and 
⋆ the occurrence of an event at one location (such as a 

machine failure or a power surge) which can prevent desired 
performance or do damage at another. 

• Storage improves system performance by 
decoupling parts of the system from one another. 



Storage


• Storage decouples creation/acquisition and 
emission. 

• It allows production systems (of energy or goods) to

be built with capacity less than the peak demand.


• It reduces the propagation of disturbances, and thus 
reduces instability and the fragility of complex, 
expensive systems. 



Manufacturing Inventory 
Storage 

Motives/benefits 

• Reduces the propagation of disturbances (eg, 
machine failures). 

• Allows economies of scale: 

⋆ volume purchasing 
⋆ set-ups 

• Helps manage seasonality and limited capacity. 

• Helps manage uncertainty: 

⋆ Short term: random arrivals of customers or orders. 
⋆ Long term: Total demand for a product next year.




Manufacturing Inventory 
Storage 

Costs 

• Financial: raw materials paid for, but no revenue 
comes in until item is sold. 

• Demand risk: item may not be sold due to (for 
example) 
⋆ time value (newspaper)


⋆ obsolescence


⋆ fashion 

• Holding cost (warehouse space) 

• Damage/theft/spoilage/loss 



Newsvendor

Problem 

... formerly called the “Newsboy Problem”. 

Motive: demand risk. 

Newsguy buys x newspapers at c dollars per paper (cost ). 
Demand for newspapers, at price r > c is w. Unsold 
newspapers are redeemed at salvage price s < c. 

Demand W is a continuous random variable with distribution 
function F (w) = prob(W ≤ w); f(w) = dF (w)/dw exists for 
all w. 

Note that w ≥ 0 so F (w) = 0 and f(w) = 0 for w ≤ 0. 

Problem: Choose x to maximize expected profit. 
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Newsvendor

Problem 

rx if x ≤ w
Revenue = R = 

rw + s(x − w) if x > w 







 

(r − c)x if x ≤ w 

Profit = P = rw + s(x − w) − cx 
 

 = (r − s)w + (s − c)x if x > w 



Newsvendor

Problem 
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Newsvendor

Problem 

Revenue=rxRevenue=rw+s(x−w) 

x < wx > w 
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Newsvendor

Problem 

Expected Profit = EP (x) = 

[(r − s)w + (s − c)x]f(w)dw 
−∞

� ∞ 

+ (r − c)xf(w)dw 
x 
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Newsvendor

Problem 

or EP (x) 

x x 

= (r − s) wf(w)dw + (s − c)x f(w)dw

−∞ −∞ 

� ∞ 

+(r − c)x f(w)dw 
x 

x 

= (r − s) wf(w)dw 
−∞ 

+(s − c)xF (x) + (r − c)x(1 − F (x))




Newsvendor

Problem 

EP is 0 when x = 0.


When x → ∞, the first term goes to a finite constant,

(r − s)Ew. The last term goes to 0.


The remaining term,


x(s − c)F (x) → −∞.


Therefore when x → ∞, EP → −∞.




Newsvendor

Problem 

EP(x) 

x 

? 



Newsvendor

Problem 

EP(x) 

x 

? 



Newsvendor

Problem 

dEP 
= (r − s)xf(x)+ (s − c)F (x)+ (s − c)xf(x)

dx 
+(r − c)(1 − F (x)) − (r − c)xf(x) 

= xf(x)(r − s + s − c − r + c)


+r − c + (s − c − r + c)F (x)


= r − c + (s − r)F (x)




Newsvendor

Problem 

Note that 
• d2EP/dx2 = (s − r)f(x) ≤ 0. Therefore EP is 

concave and has a maximum. 

• dEP/dx > 0 when x = 0. Therefore EP has a 
maximum which is greater than 0 for some 

∗ x = x > 0.

dEP


• x ∗ satisfies (x ∗ ) = 0. 
dx 

r − c 
Therefore F (x ∗) = . 

r − s 



Newsvendor

Problem 

EP(x) 

x 

x* 



Newsvendor

Problem 

x* 

w 

f(w) 

r−c 
r−s
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Newsvendor

Problem 

This can also be written 
r − c 

F (x ∗) = 
(r − c) + (c − s) 

r − c > 0 is the marginal profit when x < w. 

c − s > 0 is the marginal loss when x > w. 

Choose x ∗ so that the fraction of time you do not buy 
too much is 

marginal profit 

marginal profit + marginal loss




Newsvendor Example 1 

r = 1, c Problem = .25, s = 0, µw = 100, σw = 10 

x* x* vs. r
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Newsvendor Example 2


r =Problem 1, c = .75, s = 0, µw = 100, σw = 10


x* x* vs. r
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Newsvendor Example 1


r = 1, c Problem = .25, s = 0, µw = 100, σw = 10


x* x* vs. c


130 

80 

90 

100 

110 

120 

c70 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 



Newsvendor Example 1


r = 1, c Problem = .25, s = 0, µw = 100, σw = 10


x* x* vs. s
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Newsvendor Example 2


r =Problem 1, c = .75, s = 0, µw = 100, σw = 10


x* x* vs. s
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Newsvendor Example 1


r = 1, c Problem = .25, s = 0, µw = 100, σw = 10


x* x* vs. Mean 
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Newsvendor Example 2


r = 1, c Problem = .75, s = 0, µw = 100, σw = 10


x* x* vs. Mean
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Newsvendor Example 1


r = 1, c Problem = .25, s = 0, µw = 100, σw = 10


x* x* vs. Std 
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Newsvendor Example 2


r = 1, c Problem = .75, s = 0, µw = 100, σw = 10


x* x* vs. Std
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Newsvendor Why is x ∗ linear in µw and σw?


Problem 

r − c 
F (x ∗ ) = 

r − s 

Assume demand w is N(µw, σw). Then 

w − µw 
F (w) = Φ 

σw 

where Φ is the standard normal cumulative distribution 
function. 
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Newsvendor Why is x ∗ linear in µw and σw?


Problem 

Therefore 
� � 

x ∗ − µw r − c 
Φ = 

σw r − s 

or 
� � 

x ∗ − µw r − c 
= Φ−1 

σw r − s 

or 
r − c 

x ∗ = µw + σwΦ−1 

r − s 



Newsvendor Why is x ∗ linear in µw and σw?


Problem 

Note that 
Φ−1(k) > 0 if k > .5


and 
Φ−1(k) < 0 if k < .5


Therefore 
r − c 

• x ∗ increases with σw if > .5, and 
r − s 
r − c 

• x ∗ decreases with σw if < .5. 
r − s 

Greater potential gain promotes riskier behavior! 



EOQ


• Economic Order Quantity 

• Motivation: economy of scale in ordering. 

• Tradeoff: 

⋆ Each time an order is placed, the company incurs a 
fixed cost in addition to the cost of the goods. 

⋆ It costs money to store inventory. 



Assumptions 
EOQ 

• No randomness. 

• No delay between ordering and arrival of goods. 

• No backlogs. 

• Goods are required at an annual rate of λ units per 
year. Inventory is therefore depleted at the rate of λ 

units per year. 

• If the company orders Q units, it must pay s + cQ for

the order. s is the ordering cost , c is the unit cost.


• It costs h to store one unit for one year. h is the 
holding cost. 



Problem

EOQ


• Find a strategy for ordering materials that will 
minimize the total cost. 

• There are two costs to consider: the ordering cost 
and the holding cost. 



Scenario 
EOQ 

• At time 0, inventory level is 0. 

• Q units are ordered and the inventory level jumps 
instantaneously to Q. 

• Material is depleted at rate λ. 

• Since the problem is totally deterministic, we can 
wait until the inventory goes to zero before we order 
next. There is no danger that the inventory will go to 
zero earlier than we expect it to. 



Scenario

EOQ


• Because of the very simple assumptions, we can 
assume that the optimal strategy does not change 
over time. 

• Therefore the policy is to order Q each time the 
inventory goes to zero. We must determine the 
optimal Q. 



Scenario 
EOQ


In
ve

n
to
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jump 
decrease at rate λ 
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T = Q/λ (years)




Formulation 
EOQ 

• The number of orders in a year is 1/T = λ/Q.

Therefore, the ordering cost in a year is sλ/Q.


• The average inventory is Q/2. Therefore the 
average inventory holding cost is hQ/2. 

• Therefore, we must minimize 
hQ sλ 

C = + 
2 Q


over Q.




Formulation 
EOQ 

Then 
dC h sλ 

= − = 0 
dQ 2 Q2 

or 
� 

2sλ 
Q ∗ = 

h 



Examples

EOQ


In the following graphs, the base case is


• λ = 3000 

• s = .001 

• h = 6 

Note that 
Q ∗ = 1 



Examples
EOQ 
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Examples
EOQ 
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Examples
EOQ 
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More Issues


• Random delivery times and amounts. 

• Order lead time. 

• Vanishing inventory. 

• Combinations of these issues and random demand, 
ordering/setup costs. 



Base Stock Make-to-Stock Queue


Policy 

Usual assumptions: 

• Demand is random. 

• Inventory is held (unlike newsvendor problem).


• No ordering cost, batching, etc. 

Policy 

• Try to keep inventory at a fixed level S. 

Issue 

• Stockout: a demand occurs when there is no stock with which

to satisfy it.




Base Stock Make-to-Stock Queue


Policy 

Issues 

• What fraction of the time will there be stockout, and 
how much demand occurs during stockout periods? 

• How much inventory will there be, on the average? 

• How much backlog will there be, on the average? 



Base Stock Make-to-Stock Queue


Policy 

Production DemandDispatchMaterial 
RawSupplier 

From 
Factory 

Floor 
FG/ 

Backlog 

Material Flow Information Flow 

• When an order arrives (generated by “Demand”), 

⋆ an item is requested from finished goods inventory (stock),

⋆ an item is delivered to the customer from the finished goods 

inventory (FG) or, if FG is empty, backlog is increased by 1, 
and 

⋆ a signal is sent to “Dispatch” to move one item from raw

material inventory to factory floor inventory.




Base Stock Make-to-Stock Queue


Policy 

Production DemandDispatchMaterial 
RawSupplier 

From 
Factory 

Floor 
FG/ 

Backlog 

Material Flow Information Flow 

• There is some mechanism for ordering raw material from 
suppliers. 

• We do not consider it here. 

• We assume that the raw material buffer is never empty. 



Base Stock Make-to-Stock Queue


Policy 

Production DemandDispatchMaterial 
RawSupplier 

From 
Factory 

Floor 
FG/ 

Backlog 

Material Flow Information Flow 

• Whenever the factory floor buffer is not empty and the 
production line is available, the production line takes a raw part 
from the factory floor buffer and starts to work on it. 

• When the production line completes work on a part, it puts the 
finished part in the finished goods buffer or, if there is backlog, 
it sends the part to the customer and backlog is reduced by 1. 



Base Stock Make-to-Stock Queue


Policy 
Q I


Production DemandDispatchMaterial 
RawSupplier 

From 
Factory 

Floor 
FG/ 

Backlog 

Material Flow Information Flow 

• Q(t) = factory floor inventory at time t. 

• I(t) = 

⋆ the number of items in FG, if this is nonnegative and there is no backlog; 
or 

⋆ –(the amount of backlog), if backlog is non-negative and FG is empty. 

• There are no lost sales. I(t) is not bounded from below. It can take on any 
negative value. 



Base Stock Make-to-Stock Queue


Policy 
Q I


Production DemandDispatchMaterial 
RawSupplier 

From 
Factory 

Floor 
FG/ 

Backlog 

Material Flow Information Flow 

• Assume Q(0) = 0 and I(0) = S. Then Q(0) + I(0) = S. 

• At every time t when a demand arrives, 

⋆ I(t) decreases by 1 and Q(t) increases by 1 so Q(t) + I(t) does not 
change. 

• At every time t when a part is produced, 

⋆ I(t) increases by 1 and Q(t) decreases by 1 so Q(t) + I(t) does not 
change. 

• Therefore Q(t) + I(t) = S for all t. 



Base Stock Make-to-Stock Queue


Policy 
Q I 

Production DemandDispatchMaterial 
RawSupplier 

From 
Factory 

Floor 
FG/ 

Backlog 

Material Flow Information Flow 

• Also, Q(t) ≥ 0 and I(t) ≤ S. 

• Assume the factory floor buffer is infinite. 

• Assume demands arrive according to a Poisson process with 
rate parameter λ. 

• Assume the production process time is exponentially 
distributed with rate parameter µ. 

• Then Q(t) behaves like the state of an M/M/1 queue. 



Base Stock Make-to-Stock Queue


Policy 

• Assume λ < µ. 

Therefore, in steady state, 

prob(Q = q) = (1 − ρ)ρq, q ≥ 0 

where ρ = λ/µ < 1. 

• What fraction of the time will there be stockout? 
That is, what is prob(I ≤ 0)? 
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Base Stock Make-to-Stock Queue


Policy 

∞ 

prob(I ≤ 0) = prob(Q ≥ S) = (1 − ρ)ρq 

q=S 

∞ ∞ 
� � 1 

= (1 − ρ) ρq = (1 − ρ)ρS ρq = (1 − ρ)ρS 

1 − ρ 
q=S q=0 

so 
prob(I ≤ 0) = ρS 

• How much demand occurs during stockout periods? 

ρSλ 



Base Stock Make-to-Stock Queue


Policy 

• How much inventory will there be, on the average? (It depends 
on what you mean by “inventory”.) 

ρ 
• EQ = 

1 − ρ 

• EI = S − EQ is not the expected finished goods inventory. It 
is the expected inventory/backlog. 

• We want to know 






 

I if I > 0 

E(I+) = E = E(I|I > 0)prob(I > 0) 
 

 0 otherwise 



� 

� 

� 
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Base Stock Make-to-Stock Queue 

Policy 
S 

E(I|I > 0) = i prob(I = i|I > 0) 
i=1 

S 

i prob(I = i)
S 

� i prob(I = i ∩ I > 0) i=1 = = 
Sprob(I > 0) � 

i=1 prob(I = j) 
j=1 

S−1 

(S − q) prob(Q = q) 
q=0 

= 
S−1 

prob(Q = s) 
s=0 

where, because Q = S − I, we substitute q = S − i and s = S − j. 
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Base Stock Make-to-Stock Queue


Policy 
S−1 S−1 

S prob(Q = q) − q prob(Q = q) 
q=0 q=0 

= 
S−1 

prob(Q = q ′ ) 
q ′=0 

S−1 S−1 S−1 

q prob(Q = q) (1 − ρ) qρq qρq 

q=0 q=0 q=0 
= S− = S− = S− 

S−1 S−1 S−1 

prob(Q = q ′ ) (1 − ρ) ρq ρq 

q ′=0 q=0 q=0 
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Base Stock Make-to-Stock Queue


Policy 
Therefore 

S−1 

qρq 

q=0 
E(I|I > 0) = S −


S−1 

ρq 

q=0 

and 
S−1 S−1 

E(I+) = S(1 − ρ) ρq − (1 − ρ) qρq 

q=0 q=0 

S−1 

= S prob(Q < S) − (1 − ρ) qρq 

q=0 
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Base Stock Make-to-Stock Queue


Policy 

• How much backlog will there be, on the average? 

• This time, we are looking for −E(I−), where 







 

I if I ≤ 0 

E(I−) = E = E(I|I ≤ 0)prob(I ≤ 0) 
 

 0 otherwise 
−∞ 

E(I|I ≤ 0) = i prob(I = i|I ≤ 0)

i=0 
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Base Stock Make-to-Stock Queue


Policy 
−∞ 

i prob(I = i)
−∞ 
� prob(I = i ∩ I < 0) i=0 = i = 

−∞ prob(I < 0) �


i=0 prob(I = j) 
j=0 

∞ 

(S − q) prob(Q = q) 
q=S 

= 
∞ 

prob(Q = s) 
s=S 

where, because Q = S − I, we substitute q = S − i and 

s = S − j. 
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Base Stock Make-to-Stock Queue


Policy 
∞ ∞ 

S prob(Q = q) − q prob(Q = q) 
q=S q=S 

= 
∞ 

prob(Q = q ′ ) 
′ q =S 

∞ S−1 

q prob(Q = q) EQ − q prob(Q = q) 
q=S q=0 

= S − = S −
∞ S−1 

prob(Q = q ′ ) 1 − 
� 

prob(Q = q ′ ) 
q ′ =S q ′=0 



� 

� 

Base Stock Make-to-Stock Queue


Policy 

S−1 

EQ − (1 − ρ) qρq 

q=0 
= S − 

S−1 

1 − (1 − ρ) ρq 

q=0 

so 
E(I−) = E(I|I ≤ 0)prob(I ≤ 0)


Note: E(I+) + E(I−) + EQ = S. 



Base Stock Make-to-Stock Queue

Policy 
prob I pos 
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Base Stock Make-to-Stock Queue 

Policy 
EIpos 
EIneg 
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Base Stock Make-to-Stock Queue

Policy 
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Base Stock Make-to-Stock Queue


Policy 
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Base Stock Make-to-Stock Queue


Policy Optimization of Stock


We have analyzed a policy but we haven’t completely specified it.

How do we select S? 

One possible way: choose S to minimize a function that penalizes 
expected costs due to finished goods inventory (E(I+)) and 
backlog (E(I−)). That is, minimize 

EC(I) = E(hI+ − bI−) = hE(I+) − bE(I−), 

where h is the cost of holding one unit of inventory for one time 

unit and b is the cost of having one unit of backlog for one time 

unit. 



Base Stock Make-to-Stock Queue


Policy Optimization of Stock


I 

cost 

−b 

h 



Base Stock Make-to-Stock Queue


Policy Optimization of Stock
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Base Stock Make-to-Stock Queue


Policy Optimization of Stock


Problem: Find S∗ to minimize hE(I+) − bE(I−). 

Solution1: S∗ = ⌊S̃⌋ or ⌊S̃⌋ + 1, where 

S̃+1 h

ρ = 

h + b 

Note: ρS̃+1 = prob(Q ≥ S̃ + 1) = prob(I < 0) 

1Worked out by Fernando Tubilla. 



Base Stock Make-to-Stock Queue


Policy Optimization of Stock


That is, we choose S so that 
h 

prob(I < 0) = 
h + b 

Look familiar? This is the solution to the newsvendor problem if 
I = x − w, h = c − s, and b = r − c because 

r − c 
F (x ∗) = prob(w ≤ x ∗) = prob(I ≥ 0) = 

(r − c) + (c − s) 
so 

r − c c − s 
prob(I < 0) = 1 − = 

(r − c) + (c − s) (r − c) + (c − s) 

c − s is the cost of one more unit of inventory when x > w, ie I > 0. 

r − c is the cost of one more unit of inventory when x < w, ie I < 0. 



Base Stock Make-to-Stock Queue


Policy Optimization of Stock


profit 

r−c 

s−c 

x 

w 

Newsvendor profit function 



Base Stock Make-to-Stock Queue


Policy Optimization of Stock


Questions: 

• How does the problem change if we consider factory 
floor inventory? How does the solution change? 

• How does the problem change if we consider 
finished goods inventory space ? How does the 
solution change? 

• How else could we have selected S? 



Q, R Policy


• Fixed ordering cost, like in EOQ problem 

• Random demand, like in newsvendor or base stock 
problems. 

• Policy: when the inventory level goes down to R, buy 
a quantity Q. 

• Hard to get optimal R and Q; use EOQ and base 
stock ideas. 



Inventory

Position


Inventory position 

Q 

Lead time 

Inventory 

Q/ λ


Material ordered Material arrives


t 

The current order must satisfy demand until the next order 

arrives. 
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