
Optimization

Lecturer: Stanley B. Gershwin

Purpose of

Optimization

Choosing the best of a set of alternatives.

Applications:

• investment, scheduling, system design, product
design, etc., etc.

Optimization is sometimes called mathematical
programming .

Modify design as a function of

past designs and performance.

Propose Design X0 n n+1

X = X(X , X , ..., X , J , J , ..., J)
n+1 0 1 n 0 1 n

n = 0

no
Evaluate Design Xn Is performance satisfactory?
Jn = J(Xn)

yes

Quit

Purpose of
Optimization

Typically, many designs are tested.

Purpose of Issues

Optimization

• For this to be practical, total computation time must be limited. Therefore,

we must control both computation time per iteration and the number of

iterations .

• Computation time per iteration includes evaluation time and the time to

determine the next design to be evaluated.

• The technical literature is generally focused on limiting the number of

iterations by proposing designs efficiently.

• Reducing computation time per iteration is accomplished by

⋆ using analytical models rather than simulations
⋆ using coarser approximations in early iterations and more accurate

evaluation later.

Problem

Statement

X is a set of possible choices. J is a scalar function defined on

X. h and g are vector functions defined on X.

Problem: Find x ∈ X that satisfies

J(x) is maximized (or minimized) — the objective

subject to

h(x) = 0 — equality constraints

g(x) ≤ 0 — inequality constraints

Taxonomy

• static/dynamic

• deterministic/stochastic

• X set: continuous/discrete/mixed

(Extensions: multi-objective (or multi-criterion) optimization, in

which there are multiple objectives that must somehow be

reconciled; games, in which there are multiple optimizers, each

choosing different xs.)

Continuous

Variables and

Objective

X = Rn . J is a scalar function defined on Rn . h(∈ Rm) and
g(∈ Rk) are vector functions defined on Rn .

Problem: Find x ∈ Rn that satisfies

J(x) is maximized (or minimized)

subject to

h(x) = 0

g(x) ≤ 0

Continuous Unconstrained
Variables and
Objective One-dimensional search

Find t such that f(t) = 0.

• This is equivalent to
Find t to maximize (or minimize) F (t)

when F (t) is differentiable, and f(t) = dF (t)/dt is
continuous.

• If f(t) is differentiable, maximization or minimization
depends on the sign of d2F (t)/dt2 .

Continuous Unconstrained
Variables and
Objective One-dimensional search

f(t)

Assume f(t) is decreasing.

• Binary search: Guess t0 and
t1 such that f(t0) > 0 and
f(t1) < 0. Let
t2 = (t0 + t1)/2.

t0

t2

f()

f()

⋆ If f(t2) < 0, then repeat
with t ′ 0 = t0 and t ′ 1 = t2.

t1f()

⋆ If f(t2) > 0, then repeat
with t ′ 0 = t2 and t ′ 1 = t1.

t0 t1t2

t’0 t’1

t

Continuous
Variables and
Objective

Unconstrained

One-dimensional search

t0 t2 t1

Example:

f(t) = 4− t2

0
1.5
1.5
1.875
1.875
1.96875
1.96875
1.9921875
1.9921875
1.998046875
1.998046875
1.99951171875
1.99951171875
1.9998779296875
1.9998779296875
1.99996948242188
1.99996948242188
1.99999237060547
1.99999237060547
1.99999809265137

1.5
2.25
1.875
2.0625
1.96875
2.015625
1.9921875
2.00390625
1.998046875
2.0009765625
1.99951171875
2.000244140625
1.9998779296875
2.00006103515625
1.99996948242188
2.00001525878906
1.99999237060547
2.00000381469727
1.99999809265137
2.00000095367432

3
3
2.25
2.25
2.0625
2.0625
2.015625
2.015625
2.00390625
2.00390625
2.0009765625
2.0009765625
2.000244140625
2.000244140625
2.00006103515625
2.00006103515625
2.00001525878906
2.00001525878906
2.00000381469727
2.00000381469727

Continuous Unconstrained
Variables and
Objective One-dimensional search

f(t)

• Newton search, exact tangent: f(t0)

⋆ Guess t0. Calculate
df(t0)/dt.

⋆ Choose t1 so that
f(t0) + (t1 − t0)

df (t0)
dt = 0. t1f()

⋆ Repeat with t ′ 0 = t1 until
|f(t ′ 0)| is small enough.

t0 t1
t

Continuous Unconstrained
Variables and
Objective	 One-dimensional search

t0

3
Example:	 2.16666666666667

2.00641025641026
f(t) = 4− t2	 2.00001024002621

2.00000000002621
2

e
taluclaC. 1td na0 ts seuG⋆
e
polse tamixorppa

)
0t(f−)1t(. f= s
0 t−1t

t ahto s2 te soohC⋆
.
0=s)0t −2 t(+)0t(f

d
nat= ′
1 0t h tiwt aepeR⋆

llamss i |)′ t (f|l itnu2 t= ′
01t

. hguone

Continuous Unconstrained
Variables and
Objective One-dimensional search

f(t)

• Newton search, approximate
tangent:

f(t0)

f(t2)

f(t1)

t0 t1t2
t

Continuous
Variables and
Objective

Example:

f(t) = 4− t2

Unconstrained

One-dimensional search

t0

0
3
1.33333333333333
1.84615384615385
2.03225806451613
1.99872040946897
1.99998976002621
2.0000000032768
1.99999999999999
2

Continuous Unconstrained
Variables and
Objective Multi-dimensional search

Optimum often found

by steepest ascent or

hill-climbing methods.

(Steepest descent for
minimization.)

x1

x2

J
Optimum

Steepest
Ascent
Directions

� �

Continuous Unconstrained

Variables and

Objective Gradient search

To maximize J(x), where x is a vector (and J is a scalar function
that has nice properties):

0. Set n = 0. Guess x0.

1. Evaluate ∂J (xn).
∂x

2. Let t be a scalar. Define
∂J

Jn(t) = J xn + t (xn)
∂x

Find (by one-dimensional search) t ⋆ , the value of t that
n

maximizes Jn(t).

3. Set xn+1 = xn + t ⋆ ∂J (xn). n∂x

4. Set n ← n + 1. Go to Step 1.

Continuous Unconstrained
Variables and
Objective Gradient search

Initial Guess

Continuous Constrained
Variables and
Objective

Equality constrained: solution is
on the constraint surface.

Problems are much easier when
constraint is linear, ie, when the
surface is a plane.

• In that case, replace ∂J/∂x
by its projection onto the
constraint plane.

• But first: find an initial
feasible guess.

x1

x2

J

Constrained
Optimum

h(x , x) = 01 2

0000000000000000000000000000000011111111111111111111111111111111

Objective

x1

Constrained
Optimum

J

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111

1 2g(x , x) < 0

x2

0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000

1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111

Inequality constraints that are satisfied with equality are called effective
active constraints.

Continuous Constrained

Variables and

Inequality constrained:
solution is required to
be on one side of the
plane.

or

If we knew which constraints would be effective, the problem would reduce to
an equality-constrained optimization.

Continuous Nonlinear Programming

Variables and

Objective

Optimization problems with continuous variables,
objective, and constraints are called nonlinear
programming problems, especially when at least one
of J, h, g are not linear.

Continuous Multiple Optima
Variables and
Objective

x1

x2

J

Local (or Relative)
Maxima

Global Maximum

Danger: a search might find a local, rather than the
global, optimum.

Karush-Kuhn-Tucker Conditions Continuous

Variables and

Objective

J is a scalar function defined on Rn . h(∈ Rm) and g(∈ Rk) are
vector functions defined on Rn .

Problem: Find x ∈ Rn that satisfies

J(x) is minimized

subject to

h(x) = 0

g(x) ≤ 0

See the “KKT Examples” notes.

Continuous
Variables and
Objective

Karush-Kuhn-Tucker Conditions

Vector notation

• Let x ∗ be a local minimum.

• Assume all gradient vectors ∂hi/∂x, ∂gj/∂x, (where gj is
effective) are linearly independent (the constraint qualification).

• Then there exist vectors λ and µ of appropriate dimension
(µ ≥ 0 component-wise) such that at x = x ∗ ,

∂J ∂h ∂g

+ λT + µ T = 0

∂x ∂x ∂x

µT g = 0

Continuous
Variables and
Objective

Karush-Kuhn-Tucker Conditions

Vector notation

This transforms the optimization problem into a problem of simultaneously
satisfying a set of equations and inequalities with additional variables (λ and
µ):

h(x) = 0

g(x) ≤ 0

µ ≥ 0

∂J
+ λT ∂h

T ∂g
+ µ = 0

∂x ∂x ∂x

µT g = 0

�

Karush-Kuhn-Tucker Conditions

Subscript notation

∗ ,

Continuous

Variables and

Objective

There exist vectors λ ∈ Rm and µ ∈ Rk (µj ≥ 0) such that at x = x

m k∂J � ∂hq � ∂gj
+ λq + µj = 0, for all i = 1, ..., n,

∂xi q=1
∂xi j=1

∂xi

k

µjgj = 0
j=1

Note: The last constraint implies that

gj(x ∗) < 0 → µj = 0

µj > 0 → gj(x ∗) = 0.

Continuous Numerical methods

Variables and

Objective

Problem: In most cases, the KKT conditions are impossible to solve
analytically. Therefore numerical methods are needed.

No general method is guaranteed to always work because “nonlinear” is too

broad a category.

• Specialized methods: it is sometime possible to develop a solution

technique that works very well for specific problems (eg, J quadratic, h, g

linear).

• Feasible directions: Take steps in a feasible direction that will reduce the

cost.

⋆ Issue: hard to get the feasible direction when constraints are not linear.

• Gradient Projection: project gradient onto the plane tangent to the
constraint set. Move in that direction a short distance and then move back to
the constraint surface.

⋆ Issue: how short a distance? And how do you get back to the constraint
surface.

Continuous Numerical methods

Variables and

Objective

• Penalty Methods:

1. Transform problem into an unconstrained problem such as

min J̄(x) = J(x) + KF (h(x), g(x))

where F (h(x), g(x)) is positive if h(x) 6 0 or any component of g(x) is
=
positive.

2. Solve the problem with small positive K and then increase K. The
solution for each K is a starting guess for the problem with the next K.

⋆ Issues: Intermediate solutions are usually not feasible; and problem gets
hard to solve as K increases.

Continuous Numerical methods
Variables and
Objective Software: Caveat Emptor!!

• There is much software available for optimization. However,
use it with care!! There are always problems that can defeat
any given method. If you use such software, don’t assume that
the answer is correct.

⋆ Look at it carefully. Make sure it is intuitively reasonable.

⋆ Do a sensitivity analysis. Vary parameters by a little bit and
make sure the solution changes by a little bit. If not, find out
why!

Linear

Programming

• Definition: A special case of nonlinear programming
in which the objective and the constraints are all
linear.

• Many practical applications.

• Efficient solution techniques are available that exploit
the linearity.

• Software exists for very large problems.

Linear Example

Programming

Two machines are available 24 hours per day. They are both
required to make each of two part types. No time is lost for
changeover. The times (in hours) required are:

Machine
Part 1 2

1 1 2

2 3 4

What is the maximum number of Type 1’s we can make in 1000

hours given that the parts are produced in a ratio of 2:1?

Linear Example

Formulation Programming

Let U1 be the number of Type 1’s produced and let U2 be the
number of Type 2’s. Then the number of hours required of
Machine 1 is

U1 + 3U2

and the number of hours required of Machine 2 is

2U1 + 4U2

and both of these quantities must be less than 1000.
Also,

U1 = 2U2.

Programming
Linear Example

Formulation

Or,

max U1

subject to

U1 + 3U2 ≤ 1000

2U1 + 4U2 ≤ 1000

U1 = 2U2

U1 ≥ 0; U2 ≥ 0

U

Linear Example

Formulation Programming
U2

U10

250

500

750

2U1+4U2=1000

1+3U2=1000

U1=2U2

A

B

0 250 500 750 1000

�

�

Linear General formulation

Programming

Let x ∈ Rn, A ∈ Rm×n, b ∈ Rm, c ∈ Rn .

n

min cjxj
x

j=1

subject to
n

aijxj = bi, i = 1, . . . , m
j=1

xj ≥ 0, j = 1, . . . , n

Linear General formulation

Programming

Or,

min c T x
x

subject to

Ax = b

x ≥ 0

Here, ≥ is interpreted component-wise.

This is the standard or canonical form of the LP.

Linear General formulation

Programming

All LPs can be expressed in this form. The example can be written

min(−1)U1

subject to

U1 + 3U2 + U3 = 1000

2U1 + 4U2 + U4 = 1000

U1 − 2U2 = 0

U1 ≥ 0, U2 ≥ 0, U3 ≥ 0, U4 ≥ 0

in which U3 and U4 are slack variables . Here, they represent the

idle times of Machine 1 and Machine 2.

�

�

Linear General formulation

Slack variables Programming

In general, for every constraint of the form
n

aijxj ≤ bi

j=1

define a new variable xk and replace this constraint
with

n

aijxj + xk = bi

j=1

xk ≥ 0

Programming
Linear General formulation

Slack variables

For this constraint set,
x3

x

there are 3 variables, no equality
constraints, and (at least) 7 inequality
constraints (not counting xi ≥ 0).

x1

2

The LP can be transformed into one with 10 variables, (at least) 7 equality

constraints, and no inequalities (except for xi ≥ 0).

Linear General formulation

Programming Simplex

x3

x2

x1

This set is called a polyhedron or a simplex .

Linear General formulation

Definitions Programming

If x satisfies the constraints, it is a feasible solution .

If x is feasible and it minimizes cTx, it is an optimal
feasible solution .

Linear Geometry

Programming

X1

Objective −− direction of decrease

Lines of
constant objective

Optimum

Ineffective constraints

X2

Feasible Region

Linear Special Cases

Programming

• Problem could be infeasible — no feasible set — no
solution.

• Feasible set could be unbounded.

⋆ Minimum of objective could be unbounded (−∞)

— infinite solution.

• Effective constraints could be non-independent —
adds complexity to the solution technique.

• c vector could be orthogonal to the boundary of the
feasible region — infinite number of solutions.

Linear Non-unique solution

Programming

x3 x3

x
 x
1
 1

x2 Optimal Edge x2
Optimal Face

� �

Linear Basic Solutions

Programming

Assume that there are more variables than equality constraints
(that n > m) and that matrix A has rank m.

Let AB be a matrix which consists of m columns of A. It is
square (m × m). Choose columns such that AB is invertible.

Then A can be written
A = (AB, AN)

in which AB is the basic part of A. The non-basic part, AN , is
the rest of A.

Correspondingly, x =
xB .
xN

� �

Linear Basic Solutions

Programming

Then Ax = ABxB + ANxN = b,

or xB = A−1(b− ANxN).B

A−1b
A−1 BIf xB = B b ≥ 0 then x = is feasible and

0
x is a basic feasible solution .

• Geometrically: basic feasible solutions are corners
of the constraint set. Each corner corresponds to a
different AB.

The Fundamental Theorem Linear
Programming

• If there is a feasible solution, there is a basic feasible
solution.

• If there is an optimal feasible solution, there is an
optimal basic feasible solution.

Linear The Simplex Method

Programming

• Since there is always a solution at a corner (when the problem
is feasible and there is a bounded solution), search for
solutions only on corners.

• At each corner, determine which adjacent corner improves the
objective function the most. Move there. Repeat until no further
improvement is possible.

• Moving to an adjacent corner is equivalent to interchanging one
of the columns of AB with one of the columns of AN .

Programming
Linear The Simplex Method

Reduced Cost

Choose a feasible basis. The LP problem can be written

min cB
T xB + cN

T xN

subject to
ABxB + AN xN = b

xB ≥ 0, xN ≥ 0

We can solve the equation for xB and get

−1 xB = AB (b− AN xN)

� �

Programming
Linear The Simplex Method

Reduced Cost

If we eliminate xB, the problem is

min c T − c T A−1AN xNN B B

subject to
−1 −1AB AN xN ≤ AB b

xN ≥ 0

This is an LP (although not in standard form). For xN = 0 to be a
feasible solution, we must have

−1AB b ≥ 0

Linear The Simplex Method

Reduced Cost Programming

Define the reduced cost cT = cT − cT A−1AN . If all R N B B

components of cR are non-negative, xN = 0 is optimal.

Very simplified explanation of the simplex method:

• Move to an adjacent corner by taking one variable out of the

basis and replacing it by one not currently in the basis.

• Add to the basis the column corresponding to the most

negative element of cR.

• Determine which element of the basis would decrease the cost
most if it replaced by the new column.

• Stop when no elements of cR are negative.

Linear The Simplex Method

Reduced Cost Programming

Note: if some elements of cR are 0 and the rest are
positive, there are many solutions.

Linear Sensitivity Analysis

Programming

Suppose A, b, or c change by a little bit to A ′ , b ′, and
c ′. Then the optimal solution may change. Cases:

• The basic/non-basic partition remains optimal. That
is, the reduced cost vector based on the old partition
remains all non-negative. The solution changes by a
little bit.

• Some elements of the reduced cost go to 0. In that
case, there are many solutions.

Linear Sensitivity Analysis

Programming

• Some elements of the reduced cost vector (according to the
current partition) become negative. In that case, the basis must
change and the solution moves to a new corner. This could
mean there is a large change in the solution.

x

x3

2

x1

Old Optimum

New Optimum

Linear Shadow price

Programming

If the optimal value of the LP is J = cTx ∗, the shadow
price of constraint j is

∂J

∂bj

∂J
You should be willing to pay δbj to increase the

∂bj

right hand side bj of constraint j by δbj.

Linear Network Problems

Programming

• Let bk be the flow introduced at node i destined for i

node j.

• Let xij
k be the flow on link (i, j) destined for node k.

xij
k = 0 if there is no direct link from i to j.

• Let cij
k be the cost per unit of flow on link (i, j) for

flow destined for node k. ck = ∞ if there is no
ij

direct link from i to j.

� �

Linear Network Problems

Conservation of flow Programming

Flow into a node = flow out of the node.

xk + bk = xk for i 6= kji i ij

j 6 j=i=i 6

�

� �

Linear Network Problems

Network LP Programming

min ck xk

ij ij

i,j,k

xk
ji + bi

k = xk
ij for all j, k; for all i 6= k

j 6 j=i=i 6

xij
k ≥ 0 for all i, j, k

Dynamic

Programming

• Optimization over time.

⋆ Decisions made now can have costs or benefits
that appear only later, or might restrict later options.

• Deterministic or stochastic.

• Examples: investment, scheduling, aerospace
vehicle trajectories.

• Elements: state, control, objective, dynamics,
constraints.

�

Discrete time, Deterministic

Special Class of NLPs

Dynamic

Programming

Objective: J(x(0)) =
T −1

min L(x(i), u(i)) + F (x(T))
u(i), i=0

0≤i≤T −1

such that

Dynamics: x(i + 1) = f(x(i), u(i), i); x(0) specified

Constraints: h(x(i), u(i)) = 0; g(x(i), u(i)) ≤ 0.

Dynamic
Programming

Continuous time, Deterministic

Objective: J(x(0)) =
� T

min g(x(t), u(t))dt + F (x(T))
u(t), 0

0≤t≤T

such that

dx(t)
Dynamics: = f(x(t), u(t), t); x(0) specified

dt

Constraints: h(x(t), u(t)) = 0; g(x(t), u(t)) ≤ 0.

MORE

OPTIMIZATION

• integer programming/combinatorial optimization

• stochastic dynamic programming

MIT OpenCourseWare
http://ocw.mit.edu

2.854 / 2.853 Introduction to Manufacturing Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

