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Lecturer: Stanley B. Gershwin 



Purpose of

Optimization


Choosing the best of a set of alternatives. 

Applications: 

• investment, scheduling, system design, product 
design, etc., etc. 

Optimization is sometimes called mathematical 
programming . 



   

    

Modify design as a function of

past designs and performance.


Propose Design X0 n n+1

X = X(X  , X , ..., X , J , J , ..., J )
n+1 0 1 n 0 1 n


n = 0


no
Evaluate Design Xn Is performance satisfactory? 
Jn = J( Xn ) 

yes 

Quit 

Purpose of 
Optimization 

Typically, many designs are tested. 



Purpose of Issues 

Optimization 

• For this to be practical, total computation time must be limited. Therefore,

we must control both computation time per iteration and the number of

iterations .


• Computation time per iteration includes evaluation time and the time to

determine the next design to be evaluated.


• The technical literature is generally focused on limiting the number of

iterations by proposing designs efficiently.


• Reducing computation time per iteration is accomplished by 

⋆ using analytical models rather than simulations 
⋆ using coarser approximations in early iterations and more accurate


evaluation later.




Problem

Statement 

X is a set of possible choices. J is a scalar function defined on

X. h and g are vector functions defined on X. 

Problem: Find x ∈ X that satisfies 

J(x) is maximized (or minimized) — the objective 

subject to 

h(x) = 0 — equality constraints 

g(x) ≤ 0 — inequality constraints 



Taxonomy


• static/dynamic 

• deterministic/stochastic 

• X set: continuous/discrete/mixed 

(Extensions: multi-objective (or multi-criterion) optimization, in


which there are multiple objectives that must somehow be 

reconciled; games, in which there are multiple optimizers, each 

choosing different xs.) 



Continuous

Variables and

Objective


X = Rn . J is a scalar function defined on Rn . h(∈ Rm) and 
g(∈ Rk) are vector functions defined on Rn . 

Problem: Find x ∈ Rn that satisfies 

J(x) is maximized (or minimized) 

subject to 

h(x) = 0


g(x) ≤ 0




Continuous Unconstrained 
Variables and 
Objective One-dimensional search


Find t such that f(t) = 0.


• This is equivalent to 
Find t to maximize (or minimize) F (t) 

when F (t) is differentiable, and f(t) = dF (t)/dt is 
continuous. 

• If f(t) is differentiable, maximization or minimization 
depends on the sign of d2F (t)/dt2 . 



 

 

 

Continuous Unconstrained 
Variables and 
Objective One-dimensional search 

f(t) 

Assume f(t) is decreasing. 

• Binary search: Guess t0 and 
t1 such that f(t0) > 0 and 
f(t1) < 0. Let 
t2 = (t0 + t1)/2. 

t0 

t2 

f( ) 

f( ) 

⋆ If f(t2) < 0, then repeat 
with t ′ 0 = t0 and t ′ 1 = t2. 

t1f( ) 

⋆ If f(t2) > 0, then repeat 
with t ′ 0 = t2 and t ′ 1 = t1. 

t0 t1t2 

t’0 t’1 

t 



Continuous 
Variables and 
Objective 

Unconstrained 

One-dimensional search 

t0 t2 t1 

Example: 

f(t) = 4− t2


0 
1.5 
1.5 
1.875 
1.875 
1.96875 
1.96875 
1.9921875 
1.9921875 
1.998046875 
1.998046875 
1.99951171875 
1.99951171875 
1.9998779296875 
1.9998779296875 
1.99996948242188 
1.99996948242188 
1.99999237060547 
1.99999237060547 
1.99999809265137 

1.5 
2.25 
1.875 
2.0625 
1.96875 
2.015625 
1.9921875 
2.00390625 
1.998046875 
2.0009765625 
1.99951171875 
2.000244140625 
1.9998779296875 
2.00006103515625 
1.99996948242188 
2.00001525878906 
1.99999237060547 
2.00000381469727 
1.99999809265137 
2.00000095367432 

3 
3 
2.25 
2.25 
2.0625 
2.0625 
2.015625 
2.015625 
2.00390625 
2.00390625 
2.0009765625 
2.0009765625 
2.000244140625 
2.000244140625 
2.00006103515625 
2.00006103515625 
2.00001525878906 
2.00001525878906 
2.00000381469727 
2.00000381469727 



 

 

Continuous Unconstrained 
Variables and 
Objective One-dimensional search 

f(t) 

• Newton search, exact tangent: f(t0 ) 

⋆ Guess t0. Calculate 
df(t0)/dt. 

⋆ Choose t1 so that 
f(t0) + (t1 − t0)

df (t0) 
dt = 0. t1f( ) 

⋆ Repeat with t ′ 0 = t1 until 
|f(t ′ 0)| is small enough. 

t0 t1 
t 



Continuous Unconstrained 
Variables and 
Objective	 One-dimensional search


t0 

3 
Example:	 2.16666666666667 

2.00641025641026 
f(t) = 4− t2	 2.00001024002621 

2.00000000002621 
2 
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Continuous Unconstrained 
Variables and 
Objective One-dimensional search 

f(t) 

• Newton search, approximate 
tangent: 

f(t0 ) 

f(t2 )


f(t1 )





t0 t1t2 
t 



Continuous 
Variables and 
Objective 

Example: 

f(t) = 4− t2


Unconstrained 

One-dimensional search 

t0 

0 
3 
1.33333333333333 
1.84615384615385 
2.03225806451613 
1.99872040946897 
1.99998976002621 
2.0000000032768 
1.99999999999999 
2 



Continuous Unconstrained 
Variables and 
Objective Multi-dimensional search 

Optimum often found

by steepest ascent or

hill-climbing methods.


(Steepest descent for 
minimization.) 

x1 

x2 

J 
Optimum 

Steepest 
Ascent 
Directions 



� � 

Continuous Unconstrained

Variables and

Objective Gradient search 

To maximize J(x), where x is a vector (and J is a scalar function 
that has nice properties): 

0. Set n = 0. Guess x0. 

1. Evaluate ∂J (xn).
∂x

2. Let t be a scalar. Define 
∂J 

Jn(t) = J xn + t (xn)
∂x


Find (by one-dimensional search ) t ⋆ , the value of t that
n

maximizes Jn(t). 

3. Set xn+1 = xn + t ⋆ ∂J (xn). n∂x

4. Set n ← n + 1. Go to Step 1. 



Continuous Unconstrained 
Variables and 
Objective Gradient search 

Initial Guess 



Continuous Constrained 
Variables and 
Objective 

Equality constrained: solution is 
on the constraint surface. 

Problems are much easier when 
constraint is linear, ie, when the 
surface is a plane. 

• In that case, replace ∂J/∂x 
by its projection onto the 
constraint plane. 

• But first: find an initial 
feasible guess. 

x1 

x2 

J 

Constrained 
Optimum 

h(x , x ) = 01 2 
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Objective 

x1 

Constrained 
Optimum 

J 
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00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 

11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
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11111111111111111111111111111111 
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11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 

1 2g(x , x ) < 0 

x2 

0000000000000 
0000000000000 
0000000000000 
0000000000000 
0000000000000 
0000000000000 
0000000000000 
0000000000000 

1111111111111 
1111111111111 
1111111111111 
1111111111111 
1111111111111 
1111111111111 
1111111111111 
1111111111111 

Inequality constraints that are satisfied with equality are called effective 
active constraints. 

Continuous Constrained

Variables and


Inequality constrained: 
solution is required to 
be on one side of the 
plane. 

or 

If we knew which constraints would be effective, the problem would reduce to 
an equality-constrained optimization. 



Continuous Nonlinear Programming

Variables and

Objective


Optimization problems with continuous variables, 
objective, and constraints are called nonlinear 
programming problems, especially when at least one 
of J, h, g are not linear. 



Continuous Multiple Optima 
Variables and 
Objective 

x1 

x2 

J 

Local (or Relative) 
Maxima 

Global Maximum 

Danger: a search might find a local, rather than the 
global, optimum. 



Karush-Kuhn-Tucker Conditions Continuous

Variables and

Objective 

J is a scalar function defined on Rn . h(∈ Rm) and g(∈ Rk) are 
vector functions defined on Rn . 

Problem: Find x ∈ Rn that satisfies 

J(x) is minimized 

subject to 

h(x) = 0


g(x) ≤ 0


See the “KKT Examples” notes. 



Continuous 
Variables and 
Objective 

Karush-Kuhn-Tucker Conditions 

Vector notation 

• Let x ∗ be a local minimum. 

• Assume all gradient vectors ∂hi/∂x, ∂gj/∂x, (where gj is 
effective) are linearly independent (the constraint qualification ). 

• Then there exist vectors λ and µ of appropriate dimension 
(µ ≥ 0 component-wise) such that at x = x ∗ ,


∂J ∂h ∂g

+ λT + µ T = 0 

∂x ∂x ∂x 

µT g = 0 



Continuous 
Variables and 
Objective 

Karush-Kuhn-Tucker Conditions 

Vector notation 

This transforms the optimization problem into a problem of simultaneously 
satisfying a set of equations and inequalities with additional variables (λ and 
µ): 

h(x) = 0 

g(x) ≤ 0 

µ ≥ 0 

∂J 
+ λT ∂h 

T ∂g 
+ µ = 0 

∂x ∂x ∂x 

µT g = 0 



�


Karush-Kuhn-Tucker Conditions 

Subscript notation 

∗ , 

Continuous

Variables and

Objective


There exist vectors λ ∈ Rm and µ ∈ Rk (µj ≥ 0) such that at x = x 

m k∂J � ∂hq � ∂gj
+ λq + µj = 0, for all i = 1, ..., n, 

∂xi q=1 
∂xi j=1 

∂xi 

k 

µjgj = 0 
j=1 

Note: The last constraint implies that 

gj(x ∗) < 0 → µj = 0 

µj > 0 → gj(x ∗) = 0. 



Continuous Numerical methods

Variables and

Objective


Problem: In most cases, the KKT conditions are impossible to solve 
analytically. Therefore numerical methods are needed.

No general method is guaranteed to always work because “nonlinear” is too

broad a category.

• Specialized methods: it is sometime possible to develop a solution


technique that works very well for specific problems (eg, J quadratic, h, g

linear).


• Feasible directions: Take steps in a feasible direction that will reduce the

cost.


⋆ Issue: hard to get the feasible direction when constraints are not linear. 

• Gradient Projection: project gradient onto the plane tangent to the 
constraint set. Move in that direction a short distance and then move back to 
the constraint surface. 

⋆ Issue: how short a distance? And how do you get back to the constraint 
surface. 



Continuous Numerical methods

Variables and

Objective

• Penalty Methods: 

1. Transform problem into an unconstrained problem such as 

min J̄(x) = J(x) + KF (h(x), g(x))


where F (h(x), g(x)) is positive if h(x) 6 0 or any component of g(x) is
= 
positive. 

2. Solve the problem with small positive K and then increase K. The 
solution for each K is a starting guess for the problem with the next K. 

⋆ Issues: Intermediate solutions are usually not feasible; and problem gets 
hard to solve as K increases. 



Continuous Numerical methods 
Variables and 
Objective Software: Caveat Emptor!! 

• There is much software available for optimization. However, 
use it with care!! There are always problems that can defeat 
any given method. If you use such software, don’t assume that 
the answer is correct. 

⋆ Look at it carefully. Make sure it is intuitively reasonable.


⋆ Do a sensitivity analysis. Vary parameters by a little bit and 
make sure the solution changes by a little bit. If not, find out 
why! 



Linear

Programming 

• Definition: A special case of nonlinear programming 
in which the objective and the constraints are all 
linear. 

• Many practical applications. 

• Efficient solution techniques are available that exploit 
the linearity. 

• Software exists for very large problems. 



Linear Example


Programming 

Two machines are available 24 hours per day. They are both 
required to make each of two part types. No time is lost for 
changeover. The times (in hours) required are: 

Machine 
Part 1 2


1 1 2

2 3 4


What is the maximum number of Type 1’s we can make in 1000


hours given that the parts are produced in a ratio of 2:1?




Linear Example 

Formulation Programming 

Let U1 be the number of Type 1’s produced and let U2 be the 
number of Type 2’s. Then the number of hours required of 
Machine 1 is 

U1 + 3U2 

and the number of hours required of Machine 2 is 

2U1 + 4U2 

and both of these quantities must be less than 1000. 
Also, 

U1 = 2U2. 



Programming 
Linear Example 

Formulation 

Or, 

max U1 

subject to 

U1 + 3U2 ≤ 1000 

2U1 + 4U2 ≤ 1000 

U1 = 2U2 

U1 ≥ 0; U2 ≥ 0 



U

Linear Example 

Formulation Programming 
U2 

U10 

250 

500 

750 

2U1+4U2=1000 

1+3U2=1000 

U1=2U2 

A 

B 

0 250 500 750 1000




� 
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Linear General formulation


Programming 

Let x ∈ Rn, A ∈ Rm×n, b ∈ Rm, c ∈ Rn . 

n 

min cjxj 
x 

j=1 

subject to 
n 

aijxj = bi, i = 1, . . . , m 
j=1 

xj ≥ 0, j = 1, . . . , n 



Linear General formulation


Programming 

Or, 

min c T x 
x 

subject to 

Ax = b 

x ≥ 0 

Here, ≥ is interpreted component-wise. 

This is the standard or canonical form of the LP. 



Linear General formulation


Programming 

All LPs can be expressed in this form. The example can be written


min(−1)U1 

subject to 

U1 + 3U2 + U3 = 1000 

2U1 + 4U2 + U4 = 1000 

U1 − 2U2 = 0 

U1 ≥ 0, U2 ≥ 0, U3 ≥ 0, U4 ≥ 0 

in which U3 and U4 are slack variables . Here, they represent the 

idle times of Machine 1 and Machine 2. 



� 

� 

Linear General formulation 

Slack variables Programming 

In general, for every constraint of the form 
n 

aijxj ≤ bi 

j=1 

define a new variable xk and replace this constraint 
with 

n 

aijxj + xk = bi 

j=1 

xk ≥ 0 



Programming 
Linear General formulation 

Slack variables 

For this constraint set, 
x3 

x 

there are 3 variables, no equality 
constraints, and (at least) 7 inequality 
constraints (not counting xi ≥ 0). 

x1 

2 

The LP can be transformed into one with 10 variables, (at least) 7 equality 

constraints, and no inequalities (except for xi ≥ 0). 



Linear General formulation 

Programming Simplex 

x3


x2 

x1 

This set is called a polyhedron or a simplex . 



Linear General formulation 

Definitions Programming 

If x satisfies the constraints, it is a feasible solution .


If x is feasible and it minimizes cTx, it is an optimal 
feasible solution . 



Linear Geometry 

Programming 

X1 

Objective −− direction of decrease 

Lines of 
constant objective 

Optimum 

Ineffective constraints 

X2 

Feasible Region 



Linear Special Cases


Programming 

• Problem could be infeasible — no feasible set — no 
solution. 

• Feasible set could be unbounded. 

⋆ Minimum of objective could be unbounded (−∞)

— infinite solution. 

• Effective constraints could be non-independent — 
adds complexity to the solution technique. 

• c vector could be orthogonal to the boundary of the 
feasible region — infinite number of solutions. 



Linear Non-unique solution


Programming 

x3 x3 

x
 x
1
 1


x2 Optimal Edge x2 
Optimal Face 
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Linear Basic Solutions


Programming 

Assume that there are more variables than equality constraints 
(that n > m) and that matrix A has rank m. 

Let AB be a matrix which consists of m columns of A. It is 
square (m × m). Choose columns such that AB is invertible. 

Then A can be written 
A = (AB, AN ) 

in which AB is the basic part of A. The non-basic part, AN , is 
the rest of A. 

Correspondingly, x = 
xB . 
xN 



� � 

Linear Basic Solutions


Programming 

Then Ax = ABxB + ANxN = b, 

or xB = A−1(b− ANxN).B 

A−1b 
A−1 BIf xB = B b ≥ 0 then x = is feasible and


0 
x is a basic feasible solution . 

• Geometrically: basic feasible solutions are corners 
of the constraint set. Each corner corresponds to a 
different AB. 



The Fundamental Theorem Linear 
Programming 

• If there is a feasible solution, there is a basic feasible 
solution. 

• If there is an optimal feasible solution, there is an 
optimal basic feasible solution. 



Linear The Simplex Method


Programming 

• Since there is always a solution at a corner (when the problem 
is feasible and there is a bounded solution), search for 
solutions only on corners. 

• At each corner, determine which adjacent corner improves the 
objective function the most. Move there. Repeat until no further 
improvement is possible. 

• Moving to an adjacent corner is equivalent to interchanging one 
of the columns of AB with one of the columns of AN . 



Programming 
Linear The Simplex Method 

Reduced Cost 

Choose a feasible basis. The LP problem can be written


min cB
T xB + cN

T xN 

subject to 
ABxB + AN xN = b 

xB ≥ 0, xN ≥ 0 

We can solve the equation for xB and get 

−1 xB = AB (b− AN xN ) 



� �


Programming 
Linear The Simplex Method 

Reduced Cost 

If we eliminate xB, the problem is 

min c T − c T A−1AN xNN B B 

subject to 
−1 −1AB AN xN ≤ AB b 

xN ≥ 0 

This is an LP (although not in standard form). For xN = 0 to be a 
feasible solution, we must have 

−1AB b ≥ 0 



Linear The Simplex Method 

Reduced Cost Programming 

Define the reduced cost cT = cT − cT A−1AN . If all R N B B 

components of cR are non-negative, xN = 0 is optimal. 

Very simplified explanation of the simplex method: 

• Move to an adjacent corner by taking one variable out of the

basis and replacing it by one not currently in the basis.


• Add to the basis the column corresponding to the most

negative element of cR.


• Determine which element of the basis would decrease the cost 
most if it replaced by the new column. 

• Stop when no elements of cR are negative. 



Linear The Simplex Method 

Reduced Cost Programming 

Note: if some elements of cR are 0 and the rest are 
positive, there are many solutions. 



Linear Sensitivity Analysis


Programming 

Suppose A, b, or c change by a little bit to A ′ , b ′, and 
c ′. Then the optimal solution may change. Cases: 

• The basic/non-basic partition remains optimal. That 
is, the reduced cost vector based on the old partition 
remains all non-negative. The solution changes by a 
little bit. 

• Some elements of the reduced cost go to 0. In that 
case, there are many solutions. 



Linear Sensitivity Analysis


Programming 

• Some elements of the reduced cost vector (according to the 
current partition) become negative. In that case, the basis must 
change and the solution moves to a new corner. This could 
mean there is a large change in the solution. 

x 

x3 

2 

x1 

Old Optimum 

New Optimum 



Linear Shadow price


Programming 

If the optimal value of the LP is J = cTx ∗, the shadow 
price of constraint j is 

∂J 

∂bj 

∂J 
You should be willing to pay δbj to increase the 

∂bj 

right hand side bj of constraint j by δbj. 



Linear Network Problems


Programming 

• Let bk be the flow introduced at node i destined for i 

node j. 

• Let xij 
k be the flow on link (i, j) destined for node k. 

xij 
k = 0 if there is no direct link from i to j. 

• Let cij 
k be the cost per unit of flow on link (i, j) for


flow destined for node k. ck = ∞ if there is no
ij 

direct link from i to j. 
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Linear Network Problems 

Conservation of flow Programming 

Flow into a node = flow out of the node. 

xk + bk = xk for i 6= kji i ij 

j 6 j=i=i 6



�
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Linear Network Problems 

Network LP Programming 

min ck xk

ij ij 

i,j,k 

xk
ji + bi

k = xk
ij for all j, k; for all i 6= k 

j 6 j=i=i 6

xij 
k ≥ 0 for all i, j, k




Dynamic

Programming


• Optimization over time. 

⋆ Decisions made now can have costs or benefits 
that appear only later, or might restrict later options. 

• Deterministic or stochastic. 

• Examples: investment, scheduling, aerospace 
vehicle trajectories. 

• Elements: state, control, objective, dynamics, 
constraints. 



� 

Discrete time, Deterministic 

Special Class of NLPs 

Dynamic

Programming


Objective: J(x(0)) = 
T −1 

min L(x(i), u(i)) + F (x(T )) 
u(i), i=0 

0≤i≤T −1 

such that 

Dynamics: x(i + 1) = f(x(i), u(i), i); x(0) specified


Constraints: h(x(i), u(i)) = 0; g(x(i), u(i)) ≤ 0. 



Dynamic
Programming 

Continuous time, Deterministic 

Objective: J(x(0)) = 
� T 

min g(x(t), u(t))dt + F (x(T )) 
u(t), 0 

0≤t≤T 

such that 

dx(t)
Dynamics: = f(x(t), u(t), t); x(0) specified


dt


Constraints: h(x(t), u(t)) = 0; g(x(t), u(t)) ≤ 0.




MORE

OPTIMIZATION


• integer programming/combinatorial optimization


• stochastic dynamic programming 
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