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Lecturer: Stanley B. Gershwin 



Probability and Trick Question 

Statistics 

I flip a coin 100 times, and it shows heads every time.


Question: What is the probability that it will show 
heads on the next flip? 



�

Probability and

Statistics


Probability = Statistics 

Probability: mathematical theory that describes 
uncertainty. 

Statistics: set of techniques for extracting useful 
information from data. 



Interpretations Frequency 

of probability 

The probability that the outcome of an experiment is A 

is P (A) 

if the experiment is performed a large number of times 
and the fraction of times that the observed outcome is 
A is P (A). 



Interpretations Parallel universes 

of probability 

The probability that the outcome of an experiment is A 

is P (A) 

if the experiment is performed in each parallel universe 
and the fraction of universes in which the observed 
outcome is A is P (A). 



Interpretations Betting odds 

of probability 

The probability that the outcome of an experiment is A 

is P (A) 

if before the experiment is performed a risk-neutral 
observer would be willing to bet $1 against more than 
$ 1−P (A).

P (A) 



Interpretations State of belief 

of probability 

The probability that the outcome of an experiment is A 

is P (A) 

if that is the opinion (ie, belief or state of mind) of an 
observer before the experiment is performed. 



Interpretations Abstract measure 

of probability 

The probability that the outcome of an experiment is A 

is P (A) 

if P () satisfies a certain set of conditions: the axioms 
of probability. 



Interpretations Abstract measure 

of probability Axioms of probability 

Let U be a set of samples . Let E1, E2, ... be subsets 
of U . Let φ be the null set (the set that has no 
elements). 

• 0 ≤ P (Ei) ≤ 1 

• P (U) = 1 

• P (φ) = 0 

• If Ei ∩ Ej = φ, then P (Ei ∪ Ej) = P (Ei) + P (Ej)




Probability Discrete Sample Space 

Basics 

• Subsets of U are called events. 

• P (E) is the probability of E. 



Probability Discrete Sample Space 

Basics 

U 

Low probability 

High probability 



Probability Set Theory


Basics Venn diagrams


U 

A 

A 

P (A) = 1 − P (A)¯



 

Probability Set Theory 

Basics Venn diagrams 

U 

AUB 

U 
A B 

A B 

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)




Probability Independence 

Basics 

A and B are independent if 

P (A ∩ B) = P (A)P (B). 
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Probability Conditional Probability 

Basics 

If P (B) = 0, 

P (A|B) = 
P (A ∩ B) 

P (B) 

U 

AUB 

U 
A B 

A B 

We can also write P (A ∩ B) = P (A|B)P (B). 



Probability Conditional Probability


Basics Example


Throw a die. 

• A is the event of getting an odd number (1, 3, 5). 

• B is the event of getting a number less than or equal 
to 3 (1, 2, 3). 

Then P (A) = P (B) = 1/2 and 
P (A ∩ B) = P (1, 3) = 1/3. 

Also, P (A|B) = P (A ∩ B)/P (B) = 2/3. 



  

Probability Law of Total Probability 

Basics 

U 

C 

U U 

B 

A D 

A C A D 

• Let B = C ∪ D and assume C ∩ D = φ. Then 

P (A|C) = 
P (A ∩ C)

and P (A|D) = 
P (A ∩ D) 

. 
P (C) P (D) 



Probability Law of Total Probability 

Basics 

Also, 

• P (C|B) = 
P (C ∩ B)

= 
P (C)

because C ∩ B = C.

P (B) P (B) 

P (D)
Similarly, P (D|B) = 

P (B) 

• P (A ∩ B) = P (A ∩ (C ∪ D)) = 

P (A ∩ C) + P (A ∩ D) − P (A ∩ (C ∩ D)) = 

or 
P (A ∩ B) = P (A ∩ C) + P (A ∩ D) 



Probability Law of Total Probability 

Basics 

• Or, P (A|B) prob (B) = P (A|C)P (C) + P (A|D)P (D) 

or, 

P (A|B) prob (B) P (A|C)P (C) P (A|D)P (D) 
= + 

P (B) P (B) P (B) 
or, 

P (A|B) = P (A|C)P (C|B) + P (A|D)P (D|B) 



 

 

Probability Law of Total Probability 

Basics 

An important case is when C ∪ D = B = U , so that 
A ∩ B = A. Then 
P (A) = P (A ∩ C) + P (A ∩ D) = 

P (A|C)P (C) + P (A|D)P (D). 

D = C 

U 

U 

U 

C 
A 

A D 

A C 



Probability Law of Total Probability 

Basics 

More generally, if A and 
E1, . . . Ek are events and 

Ei and Ej = ∅, for all i �= j 

and 


 

Ej = the universal set 
j 

(ie, the set of Ej sets is mu­
tually exclusive and collec­
tively exhaustive ) then ... 

Ei 

A




� 
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Probability Law of Total Probability 

Basics 

prob (Ej) = 1 
j 

and 

prob (A) = prob (A|Ej) prob (Ej).
j 



Probability Law of Total Probability 

Basics Example 

A = {I will have a cold tomorrow.}


B = {It is raining today.}


C = {It is snowing today.}


D = {It is sunny today.}


Assume B ∪ C ∪ D = U


Then A ∩ B = {I will have a cold tomorrow and it is raining

today}.


And P (A|B) is the probability I will have a cold tomorrow given

that it is raining today.


etc.




Probability Law of Total Probability


Basics Example


Then


{I will have a cold tomorrow.}=


{I will have a cold tomorrow and it is raining today} ∪

{I will have a cold tomorrow and it is snowing today} ∪

{I will have a cold tomorrow and it is sunny today}


so


P ({I will have a cold tomorrow.})=


P ({I will have a cold tomorrow and it is raining today}) +


P ({I will have a cold tomorrow and it is snowing today}) +


P ({I will have a cold tomorrow and it is sunny today})




Probability Law of Total Probability


Basics Example 

P ({I will have a cold tomorrow.})= 

P ({I will have a cold tomorrow | it is raining 
today})P ({it is raining today}) + 

P ({I will have a cold tomorrow | it is snowing 
today})P ({it is snowing today}) + 

P ({I will have a cold tomorrow | it is sunny today}) 
P ({it is sunny today}) 



Probability Random Variables 

Basics 

Let V be a vector space. Then a random variable X 

is a mapping (a function) from U to V . 

If ω ∈ U and x = X(ω) ∈ V , then X is a random 
variable. 



Probability Random Variables


Basics Flip of a Coin


Let U=H,T. Let ω = H if we flip a coin and get heads;

ω = T if we flip a coin and get tails.


Let X(ω) be the number of times we get heads. Then

X(ω) = 0 or 1.


P (ω = T ) = P (X = 0) = 1/2


P (ω = H ) = P (X = 1) = 1/2




Probability Random Variables


Basics Flip of Three Coins


Let U=HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. 

Let ω = HHH if we flip 3 coins and get 3 heads; ω = HHT if we 
flip 3 coins and get 2 heads and then tails, etc. The order matters! 

• P (ω) = 1/8 for all ω. 

Let X be the number of heads. Then X = 0, 1, 2, or 3. 

• P (X = 0)=1/8; P (X = 1)=3/8; P (X = 2)=3/8;

P (X = 3)=1/8.




Probability Probability Distributions 

Basics 

Let X(ω) be a random variable. Then P (X(ω) = x) 

is the probability distribution of X (usually written 
P (x)). For three coin flips: 

P(x) 

1/8 

1/4 

3/8 

0 1 2 3 x 



Probability Probability Distributions 

Basics Mean and Variance 

Mean (average): x̄ = µx = E(X) = 
� 

x xP (x) 

Variance: 
Vx = σx 

2 = E(x − µx)
2 = 

� 

x(x − µx)
2P (x) 

Standard deviation: σx = 
√

Vx 

Coefficient of variation (cv): σx/µx 



Probability Probability Distributions 

Basics Example 

For three coin flips: 

x̄ = 1.5; Vx = 0.75; σx = 0.866; cv = 0.577. 



Probability Probability Distributions


Basics Functions of a Random Variable 

A function of a random variable is a random variable. 

For every ω, let Y (ω) = aX(ω) + b. Then 

• Ȳ = aX̄ + b. 

• VY = a2VX; σY = |a|σX. 



Probability Covariance


Basics


X and Y are random variables. Define the covariance of X and 
Y as: 

Cov(X, Y ) = E [(X − µx)(Y − µy)] 

Facts: 

• Var(X + Y ) = Vx + Vy + 2Cov(X, Y ) 

• If X and Y are independent, Cov(X, Y ) = 0. 

• If X and Y vary in the same direction, Cov(X, Y ) > 0. 

• If X and Y vary in the opposite direction, Cov(X, Y ) < 0. 



Probability Correlation 

Basics 

The correlation of X and Y is 

Cov(X, Y )
Corr(X, Y ) =


σxσy 

−1 ≤ Corr(X, Y ) ≤ 1 



Discrete Bernoulli 
Random 
Variables 

Flip a biased coin. Assume all flips are independent.


XB is 1 if outcome is heads; 0 if tails.


P (XB = 1) = p.


P (XB = 0) = 1 − p.


XB is Bernoulli.
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Discrete Binomial

Random

Variables


The sum of n Bernoulli random variables XB with the
i 

same parameter p is a binomial random variable Xb . 

n 

Xb XB = i


i=0


n! 
P (Xb = x) = 

x!(n − x)!
px(1 − p)(n−x) 



Discrete Geometric

Random

Variables


The number of Bernoulli random variables XB with the same i 

parameter p tested until the first 1 appears is a geometric 
random variable Xg. 

Xg = min {XB = 1}i
i 

To calculate P (Xg = x),


P (Xg = 1) = p; P (Xg > 1) = 1 − p


P (Xg > x) = P (Xg > x|Xg > x − 1)P (Xg > x − 1)


= (1 − p)P (Xg > x − 1), so 

P (Xg > x) = (1 − p)x and P (Xg = x) = (1 − p)x−1p 



Discrete Poisson Distribution

Random

Variables


λx 

P (XP = x) = e−λ

x! 

Discussion later. 



Continuous Philosophical issues 
random 
variables 

1. Mathematically , continuous and discrete random 
variables are very different. 

2. Quantitatively , however, some continuous models 
are very close to some discrete models. 

3. Therefore, which kind of model to use for a given 
system is a matter of convenience . 



Continuous Philosophical issues 
random 
variables 

Example: The production process for small metal 
parts (nuts, bolts, washers, etc.) might better be 
modeled as a continuous flow than as a large number 
of discrete parts. 



Continuous Probability density 
random 
variables 

High density 

The probability of a 
two-dimensional random 
variable being in a small 
square is the probability 
density times the area of 
the square. (Actually, it is 
more general than this.) 

Low density 



Continuous Probability density 
random 
variables 



Continuous Spaces

random

variables


• Continuous random variables can be defined 

⋆ in one, two, three, ..., infinite dimensional spaces;

⋆ in finite or infinite regions of the spaces. 

• Continuous random variables can have 

⋆ probability measures with the same dimensionality 
as the space; 

⋆ lower dimensionality than the space; 
⋆ a mix of dimensions. 



Continuous Spaces 
random 
variables
 Dimensionality 

M1 B1 M 2 B 2 M3 

M1 

M 2 

M3 

B1 

x 1 

B 2 

x 2 



Continuous Spaces 
random 
variables Dimensionality 

M1 B1 M 2 B 2 M3 

M1 

M 2 

M3 

B1 

x 1 

B 2 

x 2 



Continuous Spaces 
random 
variables Dimensionality


One−dimensional density 

Two−dimensional 

Zero−dimensional 

density (mass) 

density 

x1 

M1 M3B M B1 2 2 

2x

Probability 
distribution of the 
amount of 
material in each 
of the two buffers. 



Continuous Spaces 
random 
variables Discrete approximation 

2x

Probability 
distribution of 
the amount of 
material in each 

x1 of the two 

M1 B M B M1 2 2 3 

buffers.
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Densities and Distributions Continuous

random

variables 

In one dimension, F () is the cumulative probability distribution of 
X if 

F (x) = P (X ≤ x)


f() is the density function of X if 
x 

F (x) = f(t)dt

−∞ 

or 
dF 

f(x) = 
dx 

wherever F is differentiable. 



Densities and Distributions Continuous 
random 
variables 

Fact: F (b) − F (a) = 
� b

f(t)dt a 

Fact: f(x)δx ≈ P (x ≤ X ≤ x + δx) for sufficiently 
small δx. 

Definition: x̄ = 
� ∞ 

tf(t)dt −∞ 



� 

Continuous Normal Distribution

random

variables


The density function of the normal (or gaussian ) distribution with 
mean 0 and variance 1 (the standard normal ) is given by 

1 1 2 
f(x) = e −2x√

2π 

The normal distribution function is 

x 

F (x) = f(t)dt

−∞ 

(There is no closed form expression for F (x).) 



Continuous Normal Distribution 
random 
variables 

f(x) 
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Continuous Normal Distribution

random

variables


Notation: N(µ, σ) is the normal distribution with mean µ and 
variance σ2 .


Note: Some people write N(µ, σ2) for the normal distribution with mean µ and


variance σ2 .


Fact: If X and Y are normal, then aX + bY + c is normal. 

Fact: If X is N(µ, σ), then X
σ 

−µ is N(0, 1), the standard 
normal. 

This is why N(0, 1) is tabulated in books and why N(µ, σ) is 

easy to compute. 



�� � � 
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Continuous Theorems 
random 
variables Law of Large Numbers


Let {Xk} be a sequence of independent identically distributed 
(i.i.d.) random variables that have the same finite mean µ. Let 
Sn be the sum of the first n Xks, so 

Sn = X1 + ... + Xn 

Then for every ǫ > 0, 

� Sn � 

lim P 
� 

− µ 
� 

> ǫ = 0 
n→∞ n 

That is, the average approaches the mean. 



Continuous Theorems 
random 
variables Central Limit Theorem


Let {Xk} be a sequence of i.i.d. random variables 
with finite mean µ and finite variance σ2 . 

Then as n → ∞, P (Sn−nµ ) N(0, 1).√
nσ 

→

If we define An as Sn/n, the average of the first n 

Xks, then this is equivalent to: 

As n → ∞, P (An) N(µ, σ/
√

n).→



Continuous Theorems 
random 
variables Coin flip examples


Probability of x heads in n flips of a fair coin 
probability (n=3) probability (n=15) 
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Continuous Binomial distributions 
random 
variables 

Why are these distributions so similar? 
0.25 0.25

 N=10, p=0.4 N=20, p=0.2 
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Continuous Binomial distributions 
random 
variables 

Binomial for large N approaches normal. 
0.09
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Normal Density ... in Two Dimensions 

Function 
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More Uniform 
Continuous 
Distributions 

1 
f(x) = 

b − for a ≤ x ≤ b 
a 

f(x) = 0 otherwise 



More Uniform 
Continuous 
Distributions 

Uniform density 

Uniform distribution




More Triangular 
Continuous 
Distributions Probability density function
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More Triangular 
Continuous 
Distributions Cumulative distribution function 

License: CC-BY-SA. This content is excluded from our Creative .Wikipedia© 
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More Exponential 
Continuous 
Distributions 

• f(t) = λe−λt for t ≥ 0; f(t) = 0 otherwise; 
P (T > t) = e−λt for t ≥ 0; P (T > t) = 1 otherwise; 

• Same as the geometric distribution but for continuous time. 

• Very mathematically convenient. Often used as model for the

first time until an event occurs.


• Memorylessness: 
P (T > t + x|T > x) = P (T > t) 

The probability distribution 

F (t) = 1 − P (T > t) = 1 − e−λt for t ≥ 0; F (t) = 0 

otherwise; 



More Exponential 
Continuous 
Distributions 

1.2

 0  2  4  6  8  10


exponential distribution 

exponential density

 0

 0.2

 0.4

 0.6

 0.8

 1



More Exponential 
Continuous 
Distributions Poisson Distribution


P (XP = x) = e−λt(λt)x 

x! 

is the probability that x events happen in [0, t] if the 
events are independent and the times between them 
are exponentially distributed with parameter λ. 

Typical examples: arrivals and services at queues. 
(Next lecture!) 



MIT OpenCourseWare
http://ocw.mit.edu 

2.854 / 2.853 Introduction to Manufacturing Systems 
Fall 2010
 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

