Queues
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et IS time.

e X () is a stochastic process if X (t) is a random
variable for every t.

et IS a scalar — it can be discrete or continuous.
e X (t) can be discrete or continuous, scalar or vector.



Stochastic Markov processes

Processes

e A Markov process Is a stochastic process in which
the probability of finding X at some value at time
t + ot depends only on the value of X at time t¢.

e Or, let x(s), s < t, be the history of the values of X
before time ¢t and let A be a possible value of X.
Then
prob{ X (t 4+ 0t) = A| X (s) = x(s),s < t} =
prob{ X (t + ot) = A| X (t) = x=(t)}




Stochastic Markov processes

Processes

¢ In words: If we know what X was at time ¢, we don't
gain any more useful information about X (¢ 4 dt) by
also knowing what X was at any time earlier than t.

e This is the definition of a class of mathematical
models. It is NOT a statement about reality!! That
IS, not everything is a Markov process.



Markov Example

Processes

e | have $100 at time ¢ = 0.
e At every time t > 1, | have $IN (t).

*x A (possibly biased) coin is flipped.
* If it lands with H showing, N(t + 1) = N(t) + 1.
* If it lands with T showing, N(t + 1) = N(t) — 1.

N (t) is a Markov process. Why?



IScrete state, discrete tim

e States can be numbered O, 1, 2, 3, ... (or with
multiple indices if that iIs more convenient).

e Time can be numbered O, 1, 2, 3, ... (or 0, A, 2A,
34, ... If more convenient).

e The probability of a transition from 3 to z in one time
unit is often written P;;, where

P;; = prob{X (¢

1) =X () =3}



IScrete state, discrete tim

Transition graph
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P;; is a probability. Note that P;; =1 — ) P,;.

m,m=#1



IScrete state, discrete tim

Example : H(t) is the number of Hs after ¢ coin flips.

Assume probabillity of H is p.




IScrete state, discrete tim

Example : Coin flip bets on Slide 5.

Assume probability of H is p.
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IScrete state, discrete tim

e Define m;(t) = prob{ X (t) = ¢}.

e Transition equations: m;(t + 1) = » . P;;m;(t).
(Law of Total Probability)

e Normalization equation: > . m;(t) = 1.



IScrete state, discrete tim
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_iscrete state, discrete timI

prob{X(t + 1) = 2}

— prob{ X (t + 1) = 2| X (t) = 1}prob{ X (¢) = 1}

prob{ X (t
+prob{ X (t

1) =2
- 1) = 2

+prob{ X (t

1) =2

X(t) = 2}prob{X () = 2}
X (t) = 4}prob{X(t) = 4}
X (t) = 5}prob{X(t) = 5}



IScrete state, discrete tim

1-e-e-2 Qr, SINCEe
P;; = prob{ X (t + 1) =¢|X(¢) = j}
and

Note that Py =1 — Pss.



IScrete state, discrete tim

e Steady state: m; = lim; . m;(t), if it exists.
e Steady-state transition equations: m; = » . P;;m;.

e Alternatively, steady-state balance equations:
Uy Zm,m;éz sz — Zj,j;éi P’ijﬂ-j

e Normalization equation: > . m; = 1.



IScrete state, discrete tim

P -p
@ 14 24 64
/gﬁ 3 Balance equation:

@ 4 (P14 + Pay + Pey)
= 755

In steady state only .



IScrete state, discrete tim

Consider a two-state system. The system can go from 1 to 0, but

not from O to 1.
1-p 1

P

Let p be the conditional probability that the system is in state 0 at
time t 4+ 1, given that it is in state 1 at time t. Then

p = prob [a(t+1) =0|a(t) =1].



IScrete state, discrete tim

Let w(a, t) be the probability of being in state o at time t¢.
Then, since
7(0,t + 1) =prob [a(t+ 1) = 0|a(t) = 1] prob [a(t) = 1]
+ prob [a(t + 1) = 0|a(t) = 0] prob [a(t) = 0],

we have
w(0,t + 1) = pmw(1,t) + 7 (0,1),
m(1,t+1) = (1 — p)w(1,1),
and the normalization equation
w(1,t) + = (0,t) = 1.




IScrete state, discrete tim

Assume that v(1,0) = 1. Then the solution is

7"'(Ovt) =1 (1 — p)ta

m(1,t) = (1 —p)".



IScrete state, discrete tim

Geometric Distribution
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IScrete state, discrete tim

1=up; O=down.




_iscrete state, discrete timI

The probability distribution satisfies

w(0,t+1) = w(0,¢)(1 —r) + w(1,¢)p,
w(l,t+ 1) = w(0,t)r + w(1,t)(1 — p).



IScrete state, discrete tim

It is not hard to show that

m(0,t) = m(0,0)(1 —p — )"

Irpp[l—(l—p—'r)t},

w(1,t) = w(1,0)(1 —p — r)t

:rip[1—(1—p—r)t}.



IScrete state, discrete tim

Discrete Time Unreliable Machine
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_iscrete state, discrete timI

ASt — oo,
D
(0 >
) = A,
T
(1)
D

which iIs the solution of
7(0) = 7(0)(1 — r) + w(1)p,
(1) = 7(0)r + 7w (1)(1 — p).



IScrete state, discrete tim

If the machine makes one part per time unit when it is
operational, the average production rate Is




crete state, continuous ti

e States can be numbered O, 1, 2, 3, ... (or with
multiple indices if that iIs more convenient).

e Time is a real number, defined on (—oo, c0) or a
smaller interval.

e The probabillity of a transition from 7 to 2 during
[t,t + dt] is approximately \;;0t, where 4t is small,
and

Ai;0t =~ prob{ X (t + 6t) = i| X (t) = j} fori # j



crete state, continuous ti

Transition graph

Ai; IS a probability rate. X;;0t is a probability.



-crete state, continuous tiIe

Transition equation

Define m;(t) = prob{X (t) = ¢}. Then for 6t small,
(]. — )\255t — )\455t — )\655t)71'5(t)

—|—)\525t71'2 (t) —|— A53(5t71'3 (t) —|— A565tﬂ'6 (t) —|— A575tﬂ'7(t)



-crete state, continuous tiIe

Or,
7t5(t + 0t) = 75(t)

— (25 + A5 + Xe5)75(L) 0t

+(As5272(t) + As3m3(t) + As6m6(t) + A5r7rr(t)) 0t



-crete state, continuous tiIe

or t 4 ot t) d
75 (T + )_775():§(t):

lim
ot—0 ot

—(A25 + Aus + Ags) 75(1)

+A522(t) + As3m3(t) + As6m6(t) + As77m7 (1)



crete state, continuous ti

e Define 7r;(t) = prob{X (t) = 2}

e Itis convenient to define A;; = — > . Aji

dm;(t
e Transition equations: o ( ) = Z i (t).

e Normalization equation: > . m;(t) = 1.



crete state, continuous ti

e Steady state: m; = lim; . m;(t), if it exists.
e Steady-state transition equations: 0 = » . A;;m;.

e Alternatively, steady-state balance equations:
Uy Zm,m;éz Amz — Zj,j;éi Aijﬂ-j

e Normalization equation: > . m; = 1.



crete state, continuous ti

Sources of confusion In continuous time models:

e Never Draw self-loops in continuous time markov
process graphs.

e Never write 1 — Ayqy — Aoy — Agq. Write
* 1 — (A14 + A2g + X6q)0t, OF
* —(A14 + X214 4+ A6a)

o)\, = — Z#i Aji is NOT arate and NOT a
probabillity. It is ONLY a convenient notation.



crete state, continuous ti

Exponential random variable T': the time to move from
state 1 to state 0.



-crete state, continuous tiIe

(0, t 4 0t) =

prob [a(t 4+ 0t) = O0|a(t) = 1] prob [a(t) = 1]+
prob [a(t 4+ dt) = 0|a(t) = 0] probla(t) = 0].
or

7(0,t + 8t) = pdtw(1,t) + 7(0,t) + o(dt)

or
dm(0,t)

dt

= pm(1,1).



crete state, continuous ti

Since w(0,t) + w(1,t) = 1,
dm(1,t)

— —pm(1,1).
7 pm(1,t)
If w(1,0) = 1, then
w(1l,t) = e P

and
w(0,t) =1 — e P



crete state, continuous ti

The probability that the transition takes place at some
T € [t,t+ 6t] is

prob [a(t + 6t) = 0 and a(t) = 1] = e P'pdt.

The exponential density function is pe~?".

The time of the transition from 1 to O is said to be
exponentially distributed with rate p. The expected
transition time is 1 /p. (Prove it!)



crete state, continuous ti

o f(t) = pe M fort > 0; f(t) = 0 otherwise;
F(t)=1—e#fort > 0; F(t) = 0 otherwise.
e ET = 1/u, V3 = 1/u?. Therefore, cv=1.

fom, FO,

1 15 2 2.5 3 3.5 4 4.5 0 0.5
|
|
|



crete state, continuous ti

e Memorylessness:
P(T>t4+x|T >x)=P(T >1)
e P(t<T <t+dt|T > t) = pdt for small it.

o If T7, ..., T, are independent exponentially
distributed random variables with parameters
1eees by @aNd T = min(Ty, ..., T,), then T is an
exponentially distributed random variable with

parameter p = puq + ... + Wyp.



crete state, continuous ti

Continuous time unreliable machine. MTTF=1/p;
MTTR=1/r.



crete state, continuous ti

RIS

0 T1+T2+T3 +T2+-E;+T4

Let T;,2 = 1, ... be a set of mdependent exponentially distributed
random variables with parameter A that each represent the time
until an event occurs. Then > T; is the time required for n
such events.

0iIfTy; >t
Define N (t) =
nsuchthat 7 T; <t, S0 T; >t

Then N (t) is a Poisson process with parameter A.
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crete state, continuous ti




crete state, continuous ti
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M /M /1 Queue
Queueing theory

------------------- foee RRAMRE

e Simplest model is the M /M /1 queue:
* Exponentially distributed inter-arrival times — mean is 1/\; A
Is arrival rate (customers/time). (Poisson arrival process.)

* Exponentially distributed service times — meanis 1/u; p is
service rate (customers/time).

* 1 server.
% Infinite waiting area.

e Define the utilization p = \/pu.



M /M /1 Queue

Number of customers in the system as a function of

time.




- M /M /1 Queue I
aoe cee @tat@ ..




- M /M /1 Queue I

Let P(n,t) be the probability that there are n parts in
the system at time ¢. Then,

P(n,t + 6t) = P(n — 1,t)A\6t + P(n + 1,t) udt

+P(n,t)(1 — (NGt + udt)) + o(dt)

forn >0
and

P(0,t+8t) = P(1,t)udt+ P(0,t)(1—\dt) +o(dt).



- M /M /1 Queue I

Or,
deZZ’ Y- Pn—1,)A+ P(n+ 1,t)p — P(n,t)(A + p),
n >0
dPC(l(t)’t) = P(1,t)pu — P(0, ).

If a steady state distribution exists, it satisfies
0=Pn—-DA+Pn+1)p—Pn)A+p),n>0
0=P(1)u — P(0)\.

Why “if’?



M /M /1 Queue

Let p = A\/u. These equations are satisfied by

P(n)=(1-p)p",n >0
If p < 1. The average number of parts in the system Is

_ p A
p— P pu— — .
n Zn:n (n) =" uoa




M /M /1 Queue

e True for most systems of practical interest.

e Steady state only.
e L. = the average number of customers in a system.

e W = the average delay experienced by a customer in the
system.

L =AW

Inthe M /M /1 queue, L = n and
1

W = .
w— A




M /M /1 Queue

e 11 IS the capacity
of the system.

100

o If A < i, system
IS stable and
waiting time
remains bounded.

80

60

20 J o If A > p, waiting
. time grows over

0 05 L 15 2 ) time.

p=1




M /M /1 Queue

100

80

e TO Increase
capacity, increase
L.

e To decrease delay

for a given A,
Increase L.
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M /M /1 Queue

Things get more complicated when:

e There are multiple servers.
e There is finite space for queueing.
e The arrival process is not Poisson.

e The service process is not exponential.

Closed formulas and approximations exist for some
cases.



- M /M /s Queue I
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s-Server Queue, s = 3



M /M /s Queue

e The service rate when there are k > s customers in the
system is su since all s servers are always busy.

e The service rate when there are k < s customers in the
system is kpu since only k of the servers are busy.

(s=2)p  (s-1)p SH



M /M /s Queue

on

Sk k
P(0) k’", k< s

P(k) = k
PO k>

9
s!

where

A
p=-—<1; P(0)chosensothat) P(k) =1
St -



M /M /s Queue

20

(mu,s)=(4,1) ; ' - - . .

(mu,s)=(2,2) -

(mu,s)=(1,4) --------

(Mu,s)=(.5,8)
15 | -
> 10 F -
5 I -
o |
0 0.5 1 1.5 2 25 3 pye :

lambda



M /M /s Queue
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M /M /s Queue

20

15

10 |

lambda lambda

e \Why do the curves go to infinity at the same value of A?

e Why is the (u, s) = (.5, 8) curve the highest, followed by
(pys) = (1,4), etc.?



Networks of
Queues

e Set of queues where customers can go to another
gueue after completing service at a queue.

e Open network: where customers enter and leave
the system. X is known and we must find L and W.

e Closed network: where the population of the system
IS constant. L is known and we must find A and W.



Examples

e Internet traffic

e emergency room
e food court

e airport (arrive, ticket counter, security, passport
control, gate, board plane)

e factory with serial production system and no material
control after it enters



M Person
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Networks of Closed Networks

Queues

e factory with material controlled by keeping the
number of items constant (CONWIP)

e factory with limited fixtures or pallets



Benefits
Jackson

Networks

Queueing networks are often modeled as Jackson
networks.

e Easy to compute performance measures (capacity,
average time in system, average gueue lengths).

e Easily gives intuition.
e Easy to optimize and to use for design.

¢ VValid (or good approximation) for a large class of
systems ...



Limitations
Jackson

Networks

e ... but not everything. Storage areas must be Iinfinite
(I.e., blocking never occurs).

* This assumption fails for systems with bottlenecks.

¢ In Jackson networks, there is only one class. That is,
all items are interchangeable. However, this
restriction can be relaxed.



Open Jackson Networks

D

Goal of analysis: say something about how much inventory there
IS In this system and how it is distributed.



Open Jackson Networks

e Items arrive from outside the
Poisson process with rate «;.

e a; > 0 for at least one =.
e \When an item’s service at node z is finished, it goes to node 3
next with probability p;;.

olf pio =1 — sz-j > 0, then items depart from the network

J
from node z.

e p;o > O for at least one 2.

¢ \We will focus on the special case in which each node has a
single server with exponential processing time. The service
rate of node ¢ Is ;.



Jackson Open Jackson Networks

Networks
e Define \; as the total arrival rate of items to node <.
This includes items entering the network at = and
items coming from all other nodes.
e Then A = oy + iji)\j
J
e In matrix form, let A be the vector of \;, a be the
vector of a;, and P be the matrix of p;;. Then
A=a+ P
or
A= -PH a



Open Jackson Networks

e Define w(nq, ng, ..oy i)
probabllity that there are n; items at node 1,
1 =1,.... k.

e Define p; = Ai/pi; (i) = (1 — pi)p

e Then

Does this look familiar?



Open Jackson Networks

e This looks as though each stationisan M /M /1
gueue. But even though this is NOT in general true,
the formula holds.

e The product form solution holds for some more
general cases.

e This exact analytic formula is the reason that the
Jackson network model is very widely used —
sometimes where it does not belong!



| k N k
Jackson Closed Jackson Networks

Networks

e Consider an extension in which

*x o; = 0 for all nodes =.
*xPio = 1 — Zpij — 0 for all nodes i.

J
e Then

* Since nothing is entering and nothing is departing from the network, the
number of items in the network is constant .

Thatis, ) “n;(t) = N forall t.

*Xi = Y _pjiA; does not have a unigue solution:

J
If {7, A3, ..., AL} is a solution, then {sA], sAJ,...,sA;} is also a
solution for any s > 0.



Closed Jackson Networks
Jackson

Networks
For some s, define

o) = [[ [0 - 9067 = (T - 0| T of

1 | 2 d L 2

where

This looks like the open network probability distribution, but it is a
function of s.




Jackson Closed Jackson Networks

Networks
Consider a closed network with a population of IN. Then if

Zni:N,

T2 (11, Mgy eeey ML)

O
E o (My, Moy ey M)
mi+mo+...+mp=N

T (N1 M2y eeey M) =

Since 7 Is a function of s, it looks like 7r Is a function of s. But it is
not because all the s’s cancel! There are nice ways of calculating

C(k,N) = Z w2 (My, Moy eeey My)
mi+mao+...+mp=N



(Transport
Station)

-

Load/Unload

Solberg’s “CANQ” model.

Let {p;;} be the set of
routing probabilities, as
defined on slide 67.

pivg = 1ife A M
Pmj =gty # M
p;; = 0 otherwise

Service rate at Station z IS
i



Let IN be the number of pallets.

The production rate is

- C(M,N —1)

P = m
C(M,N) "

and C (M, N) is easy to calculate in this case.

e INnput data: M, N, q;, ni(j =1,..., M)
e Output data: P, W, p;(3 = 1,..., M)
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Average time in system
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Utilization
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Average time in system
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