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Agenda

1. Comparison of Treatments (One Variable)
«  Analysis of Variance (ANOVA)

2. Multivariate Analysis of Variance
Model forms

3. Regression Modeling
Regression fundamentals
«  Significance of model terms
«  Confidence intervals
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Assume variances in A and B are equal.



Two Means with Internal Estimate of Variance

Method A Method B
count na = 10 count ng = 10
sum 842 .4 sum 855.4
average ya = 84.24 average yp = 85.94

sum squares > (ya — §a)? = 75.784  sumsquares > (yp — ¥p)* = 119.924

Yy —ya = 1.30
Pooled estimate of o2 g2 — 75.784+119.924 __ % = 10.8727 with v=18 d.o.f

10+10—-2
Estimated variance 2 (1 1) _2 B ﬁ
of yp —ya ng na ) o
Estimated standard error / [10. 8727 147
of YB — YA -
ty = ¥B= ya)—(pB—pa)
s\/l/nA-l—l/nB

For up — pa =01 = 1—? = (.88 with v = 18 degrees of freedom.

Pr(t > to) = Pr(t > 0.88) = 0.195 So only about 80.5% confident that
B - ' mean difference is “real” (significant)



Comparison of Treatments
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« Consider multiple conditions (treatments, settings for some variable)
— There is an overall mean p and real “effects” or deltas between conditions T;.
— We observe samples at each condition of interest

« Key question: are the observed differences in mean “significant”?

— Typical assumption (should be checked): the underlying variances are all the
same — usually an unknown value (c,?)



Steps/Issues in Analysis of Variance

1. Within group variation
— Estimate underlying population variance

2. Between group variation
— Estimate group to group variance

3. Compare the two estimates of variance

— If there is a difference between the different treatments,
then the between group variation estimate will be inflated
compared to the within group estimate

— We will be able to establish confidence in whether or not
observed differences between treatments are significant

Hint: we’ll be using F tests to look at ratios of variances



(1) Within Group Variation

« Assume that each group is normally distributed and shares a
common variance o,

« SS, = sum of square deviations within t™" group (there are k groups)

SSt = (4 — %:)*> where n; is number of samples in treatment ¢
1=1
« Estimate of within group variance in t™ group (just variance formula)
SS
s; =88 /vy = ‘

nt—l

Pool these (across different conditions) to get estimate of common
within group variance:

1St + st o+t Sk SSe X, —3)? X, SS.

where v; is d.o.f. in treatment ¢

2 — — —
R = U1+ Vo + -+ U VR N —k N —k N —k
* This is the within group “mean square” (variance estimate)
SS
MSR == i = 8%

VR



(2) Between Group Variation

* We will be testing hypothesis p;, = u, = ... =,

 |If all the means are in fact equal, then a 2”0' estimate
of o2 could be formed based on the observed
differences between group means:

, Zt | (s — y)2 B SS Where n; is number of. samples
ST = P A in treatment ¢, and £ is the
number of different treatments

e |[f the treatments In fact have different means, then
s;? estimates something larger:

Zt T where 73 is the (real) difference between
k—1 group ¢ mean and the grand mean pu

\ Variance is “inflated” by the
real treatment effects t,

55~ 0f +



(3) Compare Variance Estimates

*  We now have two different possibilities for s;2,
depending on whether the observed sample mean

differences are “real” or are just occurring by chance
(by sampling)

 Use F statistic to see If the ratios of these variances
are likely to have occurred by chance!

* Formal test for significance:

Reject Hy (Hy : no mean difference)
2

if ETT is significantly greater than 1.
R



(4) Compute Significance Level

« Calculate observed F ratio (with appropriate
degrees of freedom in numerator and
denominator)

» Use F distribution to find how likely a ratio this
large Is to have occurred by chance alone
— This is our “significance level”
— Define observed ratio: Fy = s3/s%
—If Fo > Fop—1,N—k
then we say that the mean differences or treatment

effects are significant to (1-a)100% confidence or
better
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(5) Variance Due to Treatment Effects

* We also want to estimate the sum of squared
deviations from the grand mean among all
samples:

k n¢

SSp =Y > (yu—19)°
t=1 =1
52D = SSD/VD = ]\S["S;Dl = MSD

where N is the total number of measurements

11



(6) Results: The ANOVA Table

degrees
source of  sum of of mean square  F, Pr(Fo)
variation squares  fraadom
Between 2
2 __ SST s
treatments O OT =l S = By 8—2T table
5
Also referred to
Within /as “residual” SS
2 _ S8g
treatments SSg N —k S = %
Total about
2 _ SSp
the grand SSD N —1 Sp = N_=1
average f \

SSp =557+ SSr

Vp = VT + VR



Example: Anova

A — — 11 . o
12 1 h ys =11
A B C o . . i

11 10 12 8““‘ """ ©TToo i A

10 8 10 T — =38

12 6 11 °T . )

| . - A B C
Excel: Data Analysis, One-Variation Anova t=1) (t=2) (t=3)
Anova: Single Factor
SUMMARY SS; = (12—-11)2+ (11 —-11)2+ (10 -11)2 =2
G i . . .
- roups Count - Sum = Averagi1 Varlance1 S 52 _ 22 + 02 + 22 — 8
B 3 24 8 4 SS3 = 124+0*°+172
C 3 33 11 1
s2 = MS, = 85/2=2/2=1
ANOVA s3 = MS, = 8/2=4
Sour f Variation SS__| df __ MS___ F P-val Fcri o 7 o _
le:vsfeﬁ Griuitso 18 2 9 4.5 aoe§64 Cst. 14 s% = MS; = 2/ 2=1
Within Groups @ @ 5 /4_ /4 g9 gg gg
+ +

Total 30 8 / / 3%{ = ! N _2 3 ’ :%:@

S2 9 //
F=2L _-"_45
812{ 5 15) 2

Fo.05,2,6 = 5.14
Fy.10,2,6 = 3.46

3(11—10)2+3(8—10)2+3(11—10)2

SSy¢ : 3—1
{9)

v
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ANOVA - Implied Model

The ANOVA approach assumes a simple mathematical

model: Yei = L+ T+ e

— Mt T €t

Where L, Is the treatment mean (for treatment type t)
And , Is the treatment effect
With g, being zero mean normal residuals ~N(0,6,?)

Checks

— Plot residuals against time order

— Examine distribution of residuals: should be 1D, Normal
— Plot residuals vs. estimates

— Plot residuals vs. other variables of interest
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MANOVA — Two Dependencies

« Can extend to two (or more) variables of interest. MANOVA
assumes a mathematical model, again simply capturing the means
(or treatment offsets) for each discrete variable level:

Ytqi = K T Tt + _.qq T €tgi
A indicates estimates: UYtg = [ + T + By
# model coeffts = 1 + k + n
T 1 T
# independent model coeffs = 1 + (k—1) + (n—1)

Recall that our 7; are not all independent model
coefficients, because > 7 = 0. Thus we really only
have k —1 independent model coefls, or v, = k—1.

« Assumes that the effects from the two variables are additive
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Example: Two Factor MANOVA

« Two LPCVD deposition tube types, three gas suppliers. Does supplier matter
In average particle counts on wafers?

— Experiment: 3 lots on each tube, for each gas; report average # particles added

Analysis of Variance

Factor 1 :
Gas Source DF Sum of Squares Mean Square F Ratio
Model 3 1350.00 450.0 32.14
A B C Error 2 28.00 140 Prob>F
Factor2 1 | 7 36 2 | 15 C. Total 5 1378.00 0.0303
Tube 2 13 44 18 | 25 Effect Tests
Source Nparm  DF Sum of Squares F Ratic Prob>F
10 40 10 Tube 1 1 150.00 10.71 0.0820
Gas 2 2 1200.00 42.85 0.0228
Yti = KB+ 0T + 3y s Etqi
Yigi = ﬂ + [jf - ﬂ]l + {ﬁq — ﬂ} + {yfqi — ﬂt — ﬂq + ﬂj
7 36 2 20 20 20 -10 20 -10 5 -5 5 2 1 -3
13 44 18 20 20 20[T |-10 20 -10] T 5 5 5|1 2 -1 3
S5 = S§54 + S50 + S5g + SSgr
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MANOVA - Two Factors with Interactions

* May be interaction: not simply additive — effects may depend
synergistically on both factors:

Ytqi = Mtq T Etqi

\ An effect that depends on both
t & g factors simultaneously

__—1ID, ~N(0,6?)

t =firstfactor=1,2, ... k (k = # levels of first factor)
g = second factor=1,2, ... n (n = # levels of second factor)
i =replication=1,2, ... m (m = # replications at t, g" combination of factor levels

Can split out the model more explicitly...

p+ T+ By + Wiq + €tqi
y+ (e —y)+ (Ug —Y) + Yeg — Ut —Yqg +Y)

Ytqi
Estimate by:  Utq

Tf—'.l -"313'

interaction effects = (yeg — Ut — Uy + )
main effects

17



MANOVA Table — Two Way with Interactions

degrees
source of ~ sum of of mean square Fo Pr(F,)
variation squares freedom
Between levels 9 9 ;9
of factor 1 (T) SST k1 ST ST/SE table
Between levels 9 9 /9
of factor 2 (B) SS58 = 1 S SB/SE table
Interaction SS; (k—1)(n—1) 52 52/ 5%, table
Within Groups
(EI’I’OI’) SSE nk(m = 1) S2E
Total about
the grand $Sp T

average
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Measures of Model Goodness — R?

Goodness of fit — R?2

— Question considered: how much better does the model do than just
using the grand average?

2 _ SSr
R — SSp

— Think of this as the fraction of squared deviations (from the grand

average) in the data which is captured by the model

Adjusted R?

— For “fair” comparison between models with different numbers of
coefficients, an alternative is often used

2 _ 1 _ SSr/vr _ 1 sk
Radj o SSD/VD o 1 S2D
— Think of this as (1 — variance remaining in the residual).

19



Regression Fundamentals

« Use least square error as measure of goodness to
estimate coefficients in a model

* One parameter model:
— Model form
— Squared error
— Estimation using normal equations
— Estimate of experimental error
— Precision of estimate: variance in b
— Confidence interval for 3
— Analysis of variance: significance of b
— Lack of fit vs. pure error

* Polynomial regression



Least Squares Regression

We use least-squares to estimate
coefficients in typical regression models

One-Parameter Model:

y?; = ,B.I'i—I-EQ;, Z = 1,2,...,7’?,; €; NN(O,O'Q)
3)}' = bz,

Goal Is to estimate 3 with “best” b

How define “best”?

— That b which minimizes sum of squared
error between prediction and data

SS(B) — Z?:l(yi - y\z)z — Z?:l(yi — Bﬂ?z)g

— The residual sum of squares (for the
best estimate) is

SSmin = Z?:ﬂyz' — bﬂ?’z’)z =SSk

Ay °
'
i Residual
[ b T
> L
SS(9)
3
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Least Squares Regression, cont.

Least squares estimation via normal
equations

— For linear problems, we need not

calculate SS(B); rather, direct solution for >(y—9)r = 0
b is possible >(y—br)z = 0 .

— Recognize that vector of residuals will be 2ury = . bx
normal to vector of x values at the least S 2y
squares estimate = b= <

Estimate of experimental error

— Assuming model structure is adequate, 9 SSn
estimate s? of o2 can be obtained:
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Precision of Estimate: Variance in b

We can calculate the variance in our estimate of the slope, b:

V(b) = < se.0) =\/V (D)
' b+ s.e.(b)
Why’? b = ngmg Y1 + 52372 Y2 T 53}2 Yn

V(b)) = (a%+a35+---+a?)o?
— (fﬁmg)z_I_ ..+(§;2)2} 72
D DY S
- ¢
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Confidence Interval for 3

 Once we have the standard error in b, we can calculate confidence
Intervals to some desired (1-a)100% level of confidence

= B=bxt,m-s.e.(b)

« Analysis of variance
— Test hypothesis: Hy: 8=b=20
— If confidence interval for (3 includes 0, then 3 not significant

— Degrees of freedom (need in order to use t distribution)

>V >0+ 2y — )
n

= P I n—p

p = # parameters estimated
by least squares



Example Regression

Age Income
3 6.16 Whole Mod.el |
22 9.88 Analysis of Variance |
Source DF Sum of Squares Mean Square F Ratio
35 14.35 Model 1 8836.6440 8836.64  1093.146
40 24.06 Error 8 64.6695 8.08 Prob > F
' C. Total 9 8901.3135 <.0001
57 30.34 Tested against reduced model: Y=0
73 32.17 Parameter Estimates
78 42 18 Term Estimate Std Error t Ratio Prob>|t|
Intercept  Zeroed 0 0 . .
87 43.23 age 0.500983 0.015152 33.06 <.0001
98 48.76 Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
S50 age 1 1 8836.6440 1093.146 <.0001
2 I S
(] 7
& 20 ’  Note that this simple model assumes an intercept of
10| A zero — model must go through origin
£ |

o

L « We will relax this requirement soon

age Leverage, P<.0001
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Lack of Fit Error vs. Pure Error

¢ Sometimes we have replicated data
— E.g. multiple runs at same x values in a designed experiment

« We can decompose the residual error contributions
Where
SSR = SSL -+ SSE SSy = residual sum of squares error
SS, = lack of fit squared error
SS¢ = pure replicate error

 This allows us to TEST for lack of fit
— By “lack of fit” we mean evidence that the linear model form is inadequate

ST

—== N~

82 vy Vg
E
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Regression: Mean Centered Models

 Model form y=a+ 8(z — )
+ Estimate by 9=a+0b(z—1z2), (yi — )~ N(0,0%)

Minimize SSgr = >

k
1=1

(y; — 9;)* to estimate o and 3

po— X(@i—)(wi—p)
¥ (@i—2)?
E(b) =

% Var(b) — Z(a:(:—i‘)z
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Regression: Mean Centered Models

 Confidence Intervals
Ui = Y+blz; —7x)
Var(g;) = Var(y)+ (z; — z)*Var(b)

p— ﬁ —|— 82(331:_@)2 — S%
n S (x;—x)? Yi

* Our confidence interval on y widens as we get
further from the center of our data!

@i == toz/Q * SS9,

28



Polynomial Regression

We may believe that a higher order model structure applies.

Polynomial forms are also linear in the coefficients and can be fit
with least squares

N = Bo + Bix + ﬁQZCQ Curvature included through x? term

Example: Growth rate data

29



Regression Example: Growth Rate Data

Bivariate Fit of y By x

Observation

Number

Growth Rate Data

Amount of Supplement

(Grams) x

Growth Rate
(Coded units) y

S D G0 =] Oy Lh o e b —

ot

ID}
10
15
20
20
25
25]
25

30
35

3 }
78
85
90
o1
87
86 ]
91

S5
65

95

- L
85_\4\

80—
>

75

70—

65—

60 I I I I
5 10 15 20 25

X

|
30

|
35

40

——Fit Mean

——Linear Fit

Image by MIT OpenCourseWare.

——Polynomial Fit Degree=2

* Replicate data provides opportunity to check for lack of fit
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Growth Rate — First Order Model

« Mean significant, but linear term not
» Clear evidence of lack of fit

Source Sum of squares PSS o Mean square
freedom
mean 67,404.1 1 67,404.1
Model Sy =67,428.6 ’ 2{ ’ h
oce M { extra for linear 24.5 1 24.5
lack of fit Sy =659.40 { 4 {164.85 _
; Sr = 686.4 8 85.8 ratio = 24.42
# Residual { pure error R { Sp=27.0 4 6.75
Total St=68,115.0 10

Image by MIT OpenCourseWare.
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Growth Rate — Second Order Model

 No evidence of lack of fit
* Quadratic term significant

Source Sum of squares [LEETEES O Mean square
freedom
mean 67,404.1 1 67,404.1
Model Sy = 68,071.8 | extra for linear 24.5 341 24.5
extra for quadratic 643.2 1 643.2
S;=16.2 3 540 ..
: Sp=43.2 7 " ratio = 0.80
# Residual R { Sp=27.0 { 4 {6.75
Total St=68,115.0 10

Image by MIT OpenCourseWare.



Polynomial Regression In Excel

» Create additional input columns for each input
« Use "Data Analysis” and “Regression” tool

10
10
15
20
20
25
25
25
30
35

X2

100
100
225
400
400
625
625
625
900
1225

73
78
85
90
91
87
86
91
75
65

Regression Statistics

Multiple R
R Square

0.968
0.936

Adjusted R Square 0.918

Standard Error 2.541
Observations 10
ANOVA
df SS MS F Significance F
Regression 2 665.706 332.853 51.555 6.48E-05
Residual 7 45.194 6.456
Total 9 710.9
Standard Lower Upper
Coefficients Error tStat P-value 95% 95%
Intercept 35.657 5.618 6.347 0.0004 22.373 48.942
X 5.263 0.558 9.431 3.1E-05 3.943 6.582
X2 -0.128 0.013  -9.966 2.2E-05 -0.158 -0.097
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Polynomial Regression

Analysis of Variance

Source DF  Sum of Square Mean Squar F Ratio :
Model 2 665.70617 332.853 51.5551 * Generated using JMP package
Error 7 45.19383 6.45¢ Prob>F
C. Total 9 710.90000 <.0001
Lack Of Fit Summary of Fit
Source DF  Sum of Square Mean Squar F Ratio
Lack Of Fit 3 18.193829 6.0646  0.8985 Rig;ﬁi ad g'gi’g;éz
Pure Error 4 27.000000 6.7500 Prob>F '
Total Error 7 45.193829 0.5157 Root Mean Sq Error 2.540917
Max RSq Mean of Response 82.1
0.9620 Observations (or Sum Wqts) 10
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 35.657437 5.617927 6.35 0.0004
X 5.2628956 0.558022 9.43 <.0001
X*X -0.127674 0.012811 -9.97 <.0001
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
X 1 1 574.28553 88.9502 <.0001
X*X 1 1 641.20451 99.3151 <.0001
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Summary

Comparison of Treatments — ANOVA
Multivariate Analysis of Variance
Regression Modeling

Next Time

Time Series Models
Forecasting
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