Statistical Inference

Lecturer: Prof. Duane S. Boning
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Agenda

Review: Probability Distributions & Random Variables

Sampling: Key distributions arising in sampling

Chi-square, t, and F distributions

Estimation:
Reasoning about the population based on a sample

Some basic confidence intervals
Estimate of mean with variance known
Estimate of mean with variance not known
Estimate of variance

Hypothesis tests



Discrete Distribution: Bernoulli

« Bernoulli trial: an experiment with two outcomes

Pr(success) = Pr(1)
Pr(failure) = Pr(0)
. . . _Jpr z=l
* Probability mass function (pmf): f(z,p) = { l—p =0
f(x) |
3 ‘ p=E[f(z,p))=1-p+0-(1—-p)=p
o T P
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Discrete Distribution: Binomial

* Repeated random Bernoulli trials

f('l"ﬂ p,ﬂ-) — ( ; ) p$(1 o p)ﬂ-—:rj L = ﬂa 1 2: ey T
n - Lk 73 n! H=np
where ( ) is “n choose x" = o)1 )
- on—z! o = np(1 )

r ~ B(n,p) where ~ reads “is distributed as” a binomial

* nis the number of trials
* pis the probability of “success” on any one trial
* X IS the number of successes In n trials



Binomial Distribution

Binomial Distribution
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Discrete Distribution: Poisson

e A\T

2!

fla,A) = , £=0,1,2,... r ~ P())

Mean: L= A
Variance: g2 = )
Example applications:

— # misprints on page(s) of a book
— # transistors which fail on first day of operation

Poisson is a good approximation to Binomial when n is
large and p is small (< 0.1)

p=A~np



Poisson Distributions

Poisson Distribution
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Continuous Distributions

 Uniform Distribution

* Normal Distribution
— Unit (Standard) Normal Distribution



Continuous Distribution: Uniform

» probability density function (pdf)t f(x)
f(a;):{ ﬁ a<x<b

o  otherwise P |

 cumulative distribution function* (cdf) F(x),
0 T <a 1.
Flz)=< =2 a<xz<b
{ 1 x>b
a b
xz ~ U(a,b)

Talso sometimes called a probability distribution function
*also sometimes called a cumulative density function



Standard Questions You Should Be Able To Answer
(For a Known cdf or pdf)

* Probability x less than or F(x),
equal to some value

1

Pr(z <x) = f(x) dox =

* Probability x sits within
some range

Pr(zi <z <z9) = /332 f(z) de = F(x2) — F(z1)



Continuous Distribution: Normal (Gaussian)
* pdi oz~ N(p,0%)

' 0.99865
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Continuous Distribution: Unit Normal

Normalization =2 HF z ~ N(0,1)
o

Mean E(z) =0

Variance Var(z) =1 = std.dev.(z) =1
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Using the Unit Normal pdf and cdf

* We often want to talk about
“percentage points” of the
distribution — portion in the

a = 0.20 f(z) = N(0,1)

talls a/2=0.1 S N a/2=0.1
(I)(Za/g) = 05/2 5
1 —®(24/2) = 1—a/2
= ®(2)

o2 — Q)_l(a/z)
F1—a/2 = -0 ' (a/2)

<0.10 — —1.28 -

20.90 = 1.28 ~
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Philosophy

The field of statistics Is about
reasoning In the face of
uncertainty, based on evidence
from observed data

« Beliefs:
— Distribution or model form
— Distribution/model parameters
* Evidence:
— Finite set of observations or data drawn from a population

* Models:
— Seek to explain data

14



Moments of the Population
vs. Sample Statistics

Population Sample
Mean 1=, = E(z) te n— e
| _
Variance  o?=02, =E[(z — )% 5 == —7) (z -2’
=1
Standard Vo2
.. g — g _ 2
Deviation 5= Vs?
2 . B o n
Covariance v = Elle—#a)ly —m)] Say = : > (i —2)(yi — 9)
= E(zy) — E(2)E(y) n—1e
Correlation o2,  Cov(zy) Say
Coefficient ¥~ 5,0, ~ /Nar(z)Var(y) T s,
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Sampling and Estimation

Sampling: act of making observations from populations

Random sampling: when each observation is identically
and independently distributed (lID)

Statistic: a function of sample data; a value that can be
computed from data (contains no unknowns)
— average, median, standard deviation
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SticiGui; Statistics Tools for Internet and Classroom
Instruction with a Graphical User Interface

http://stat-www.berkeley.edu/~stark/SticiGui

Sampling Demo
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http://stat-www.berkeley.edu/~stark/SticiGui

Population vs. Sampling Distribution
f(x)

Population
(probability density function)

z ~ N(p,0%)

n =20 =
Sample Mean A~ Sample Mean
(statistic) / \ n=10 (sampling distribution)
1
r = szz ‘ | r o~ N(M702/”)
f(z) =1
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Sampling and Estimation, cont.

« A statistic is a random variable, which itself has a
sampling distribution
— l.e., if we take multiple random samples, the value for the statistic
will be different for each set of samples, but will be governed by
the same sampling distribution
 If we know the appropriate sampling distribution, we can

reason about the population based on the observed
value of a statistic

— E.g. we calculate a sample mean from a random sample; in what
range do we think the actual (population) mean really sits?
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Sampling and Estimation — An Example

Suppose we know that the thickness of

a part is normally distributed with std. T' ~ N(fbunknown, 100)
dev. of 10:
1 mn
We sample n = 50 random parts and T = — Z T; =113.5
compute the mean part thickness: [
First question: What is distribution of 777 -
q I E(T) = u
_ Var(T) = o /n = 100/50
T ~ N(p,2) Normally distributed

Second question: can we use
knowledge of 7" distribution to reason
about the actual (population) mean u
given observed (sample) mean?
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Estimation and Confidence Intervals

Point Estimation:

— Find best values for parameters of a distribution

— Should be
« Unbiased: expected value of estimate should be true value
 Minimum variance: should be estimator with smallest variance

Interval Estimation:

— Give bounds that contain actual value with a
given probability
— Must know sampling distribution!

Confidence Interval Demo
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Confidence Intervals: Variance Known

 We know o, e.g. from historical data
« Estimate mean in some interval to (1-0)100% confidence

T — Zq/2" S B S TH 2o/

« Remember the unit normal =——p

percentage points

« Apply to the sampling
distribution for the
sample mean
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Example, Cont’d

Second question: can we use knowledge of T distribution to
reason about the actual (population) mean u given observed
(sample) mean?

f(T)é
n=50 T ~ N(u, %)
95% confidence interval, o = 0.05
~959% of distribution . —
— 4 . std.dev.(T
lies within +/- 2c of mean a H 20,025 78 ev.(T)
= 4+1.96-V2

113.5 £2.77

v

fi=1T=113.5
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Reasoning & Sampling Distributions

« Example shows that we need to know our sampling
distribution in order to reason about the sample and
population parameters

« Other important sampling distributions:

— Student-t

 Use instead of normal distribution when we don’t know actual
variation or o

— Chi-square
« Use when we are asking about variances
— F
« Use when we are asking about ratios of variances

24



Sampling: The Chi-Square Distribution

If & ~ V(0,1) fori=1,2,....mand
y=x%+x5+---+x2, then y ~ x2 or chi-square
with n degrees of freedom.

f(z)
. . . . . 0.1
« Typical use: find distribution 0.00l
of variance when mean is 0.08} \ n=10d.o.f.
known 88; '
2 .06
(?’L . 1)32 ) 0.04}
5 ~ X1 0.03f
g 0.02¢
_ 0.01} ! :
So if we calculate s?, we can use 0 . ! . . T

knowledge of chi-square distribution

to put bounds on where we believe 5
: . . Note: E =

the actual (population) variance sits ote: B(xz) =n
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Sampling: The Student-t Distribution

If 2z~ N(0,1) then Tzk ~ tp with y ~ x% is
distributed as a student t with k£ degrees of freedom.

« Typical use: Find distribution of average when ¢ is NOT known

« Fork!1,t !N(0,1) T — [

« Consider x; ~ N(u, 02) Then ™~ N(Ov 1)
o / vn

* This'is just the "normalized” dlstance from mean (normalized
to our estimate of the sample variance)
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Back to our Example

Suppose we do not know either the variance or the mean in
our parts population:

T ~ N(M, 0'2) = N(N/unknowna o’

unknown)

We take our sample of size n = 50, and calculate
50 50

_ 1 1 _
T= ZT =113.5 =1 Z(T,,; —T)? = 102.3

Best estimate of population mean and variance (std.dev.)?
=T =113.5 & =+/s2=10.1

If had to pick a range where p would be 95% of time?

Have to use the appropriate sampling distribution:
In this case — the t-distribution (rather than normal
distribution)

27



Confidence Intervals: Variance Unknown

« (Case where we don’t know variance a priori

 Now we have to estimate not only the mean based on
our data, but also estimate the variance

 Qur estimate of the mean to some interval with
(1-00)100% confidence becomes

_ S _ S
L — t(I/Q,TL—]. - —= < ¥ < $+ta/2,n.—l S

Vn Vn

Note that the t distribution is slightly wider than the normal
distribution, so that our confidence interval on the true mean is
not as tight as when we know the variance.
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Example, Cont’d

Third question: can we use knowledge of T distribution to

reason about the actual (population) mean u given observed
(sample) mean — even though we weren’t told ¢?

T ~t with £k = 49 d.o.1.
t distribution is

slightly wider than —
gaussian distribution

W‘Wfl’;'

=
|
g
|
H
)—l
oy
T
v
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Once More to Our Example

Fourth question: how about a confidence interval on our
estimate of the variance of the thickness of our parts, based on
our 50 observations?
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Confidence Intervals: Estimate of Variance

(n —1)s? 9 (n —1)s?
2 S 07 S
Xa/2,n—1 Xi—a/2,n-1

« The appropriate sampling distribution is the Chi-square
« Because y? is asymmetric, c.i. bounds not symmetric.
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Example, Cont’d

Fourth question: for our example (where we observed

st? = 102.3) with n = 50 samples, what is the 95%

confidence interval for the population variance?

X49
(50—1)102.3

0.025,49

5012.7
70.22

71.4
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(50—1)102.3

3
X0.975,49

5012.7
31.55

158.1
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Sampling: The F Distribution

If y; ~ x2 and y» ~ X2, then R = 25@ F..» is an
F' distribution with u, v degrees of freedom.

« Typical use: compare the spread of two populations
« Example:

— X~ N(u,, %) from which we sample x;, X,, ..., X,

— ¥y ~ N(y,, 6%)) from which we sample y;, y,, ..., ¥,

— Then

2 2
s2/0% % Sz
~Fy_1m-1  or n—1,m—1
s2/o? ’
Yy Yy
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Concept of the F Distribution

Assume we have a normally
distributed population

We generate two different
random samples from the
population

In each case, we calculate a
sample variance s;?

What range will the ratio of
these two variances take?
) F distribution

Purely by chance (due to
sampling) we get a range of
ratios even though drawing
from same population

Example:
« Assume x ~ N(0,1)
« Take samples of size n = 20

» Calculate s,? and s,? and take ratio

* 95% confidence interval on ratio

Fe 1919 = £0.025,19,19

Fi1—2 19,19 = F0.975,19,19

Large range in ratio!
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Hypothesis Testing

A statistical hypothesis is a statement about the parameters of a
probability distribution

H, is the “null hypothesis”

— Eg Hy : = Lo
— Would indicate that the machine is working correctly
H, is the "alternative hypothesis”

— E.g. Hi: p+# o
— Indicates an undesirable change (mean shift) in the machine
operation (perhaps a worn tool)

In general, we formulate our hypothesis, generate a random
sample, compute a statistic, and then seek to reject H, or fail to
reject (accept) H, based on probabilities associated with the
statistic and level of confidence we select
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Which Population is Sample x From?

Two error probabilities in decision:

— Type | error: “false alarm” a = Pr(reject Hy|Hy is true)

— Type Il error: “miss” B = Pr(accept Hy|Hj is false)
— Power of test (“correct alarm”) 1 — 3 = Pr(reject Hy|H is false)

Consider H, the f(z|Ho) f(z|Hy)
“normal” condition 1 ‘

4

Consider H; an
“alarm” condition

A

»
|

Mo | > 241 €T
| . .. .
1 Decide i Set decision point (and
Decide Ho | sample size) based on

_ acceptable a, [ risks
Control charts are hypothesis tests:

— Is my process “in control” or has a significant change occurred?

36



Summary

1. Review: Probability Distributions & Random Variables
2. Sampling: Key distributions arising in sampling
« Chi-square, t, and F distributions

3. Estimation: Reasoning about the population based on a
sample

4. Some basic confidence intervals
« Estimate of mean with variance known
« Estimate of mean with variance not known
« Estimate of variance

5. Hypothesis tests

Next Time:

1. Are effects (one or more variables) significant?
) ANOVA (Analysis of Variance)

2. How do we model the effect of some variable(s)?
) Regression modeling
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