2.996/6.971 Biomedical Devices Design Laboratory

Lecture 5: Microprocessors I

Instructor: Dr. Hong Ma

Sept. 26, 2007

Analogy: A Complex Machine with Lots of Knobs

Courtesy of NASA.

Microprocessor vs. PCs

- Microprocessors
 - Optimized to keep track of time
 - MSP430: 16MHz clock → 62.5ns timing
- PCs
 - Optimized to process large amounts of data
 - Windows: ~100Hz timing
 - Linux: ~1kHz timing
- <u>Timing accuracy can be leveraged for measurement functions</u>

Trends in Sensor Architectures

Single processor → distributed processors

The MSP430F2xx Family

- Optimized for <u>low-power</u> and <u>versatility</u>
- Modern architecture, simple to program
- Many peripheral devices designed to not require input from the CPU
- Unified address space, no paging
- Device emulates itself
- Inexpensive development tools
- Highly optimized code, designed for C compiler
- Low cost, price >\$0.50

MSP430F2xx Architecture

MSP430F2274 Pinout

MSP430x22x4 device pinout, DA package

Port Functions

- Digital input
- Digital output
- Pulled-up / Pulled-down
- Peripheral input / output
- Interrupt on edge

Memory Map Von Neuman Architecture

Hex Numbers and Memory

MSP430 Memory

8-bit addressing resolution

The Header File (msp430x22x4.h)

- Assigns aliases for registers
- Specific to each processor sub-group

Port	Register	Short Form	Address
P1	Input	P1IN	020h
	Output	P1OUT	021h
	Direction	P1DIR	022h
	Interrupt Flag	P1IFG	023h
	Interrupt Edge Select	P1IES	024h
	Interrupt Enable	P1IE	025h
	Port Select	P1SEL	026h
	Port Select 2	P1SEL2	041h
	Resistor Enable	P1REN	027h

Bit-wise Operators

- Bit-wise "OR": |
 - $-1000 \mid 0101 \rightarrow 1101$
- Bit-wise "AND": &
 - $-1001 & 0101 \rightarrow 0001$
- Bit-wise "NOT": ~
 - $-\sim1001 \rightarrow 0110$
- Bit-wise "XOR": ^
 - $-1001 ^0101 \rightarrow 1100$

Assigning Individual Bits

- Assigning all 8-bits at once
 - -P1OUT = 0xA7
- Assigning individual bits high
 - P1OUT |= 0x81
- Assigning individual bits low
 - P10UT &= ~0x81
- Toggling individual bits
 - $-P1OUT ^= 0x81$

How to Assign Individual Bits (Better)

- Assign all 8-bits at once
 - -P10UT = BIT7 + BIT5 + BIT2 + BIT1 + BIT0
- Assign individual bits high
 - P10UT |= BIT7 + BIT0
- Assign individual bits low
 - $-P1OUT &= \sim (BIT7 + BIT0)$
- Toggling individual bits
 - P10UT ^= BIT7 + BIT0

Configuring Ports

```
Main()
P1DIR |= BIT0 + BIT1 + BIT2 + BIT3 + BIT4 + BIT5;
//Set output mode
P1SEL |= BIT1 + BIT2;
//Output Timer A1 and Timer A2
P1REN |= BIT6 + BIT7;
//Enable pull-up/down resistors for BIT6 and BIT7
P1OUT |= BIT0 + BIT6
//Output high on BITO; Pull-up BIT6
P10IIT \&= BTT3 + BTT4 + BTT5 + BTT7
//Output low on BIT3, BIT4, and BIT5; Pull-down BIT7
```

Next Topic: Clocks

MSP430 Clocking Scheme

Crystal Oscillators

- Extremely accurate standard frequency tolerance = 20ppm
- Many frequencies: 20kHz GHz
- Real Time Clock: 32.768kHz
- Requires 2 external capacitors
- LFXT1 has integrated capacitors
- Ceramic resonator
 - Smaller, cheaper cousin
 - Frequency tolerance ~ 0.5%

Photo removed due to copyright restrictions.

DCO (Digital Controlled Oscillator)

- 0 to 16 MHz
- Fast start-up <1uS
- ±3% tolerance
- ±6% tolerance over temperature
- Factory calibration in Flash
- Good enough for UART
- Application: watch

Images removed due to copyright restrictions.

VLO (Very Low-power Oscillator)

- 0.6µA typical at 25°C
- ~12 kHz (min 4kHz, max 20kHz)
- Can be calibrated using the DCO or XT
- Applications: temperature monitor, blood glucose sensor

Internal VLOCLK DIVAx LP/LF Oscillator[†] **Clock Module** 10 Divider LFXT1CLK Min. Pulse /1/2/4/8 else ACLK **Diagram** Filter Auxillary Clock OSCOFF LFXT1Sx XTS 0 V - | XIN LFOff XT1Off XOUT SELMx LFXT1 Oscillator DIVMx CPUOFF **XCAPx** 00 01 Divider Min. Pulse /1/2/4/8 Filter MCLK XT2OFF■ XT2S XT2IN Main System Clock Connected only when XT2 not present on-chip XT2OUT MODx XT2 Oscillator† VCC Modulator < DCOR SCG0 RSELx DCOx SELS DIVSx SCG1 off 0 Min. Puls DC DCO 0 Divider Filter Generator 0 DCOCLK /1/2/4/8 SMCLK

Setting Up the Clock Module

```
Main()
// 16MHz xtal clock setup: MCLK = 16MHz, SMCLK = 2MHz
BCSCTL1 = XT2OFF | XTS;
// No XT2, LFXT1 in high frequency mode
BCSCTL2 = SELM1 | SELM0 | SELS | DIVS1 | DIVS0;
// MCLK source is LFXT1;
// SMCLK source is LFXT1;
// SMCLK is divided by a factor of 8
BCSCTL3 = LFXT1S1;
// Select integrated capacitors for 3-16MHz resonator
```

Clock Ports

MSP430x22x4 device pinout, DA package

Watch-dog Timer (WDT)

- Designed to detect
 - Software halting
 - Oscillator fault
- Active after device reset
- "Kicking the dog" → Reset the WDT
- WDT runs down to 0 → Processor reset
- MSP430 WDT:
 - Automatically switch clocks after failure
 - Password protected
 - Can be used as an ordinary timer

MSP430 WDT

15 14 13 12 11 10 9 8

Read as 069h

WDTPW, must be written as 05Ah

	7	6	5	4	3	2	1	0
	WDTHOLD	WDTNMIES	WDTNMI	WDTTMSEL	WDTCNTCL	WDTSSEL	WDTISx	
•	rw-0	rw-0	rw-0	rw-0	r0(w)	rw-0	rw-0	rw-0

```
WDTCTL = WDTPW + WDTCNTCL;
// Clear WDT
```

```
WDTCTL = WDTPW + WDTHOLD;
// Stop WDT
```

Structure of MSP430 Program

- 1. Declarations
- 2. main()
 - 1. Watch-dog timer servicing
 - 2. Setup clocking module
 - Setup peripheral modules
 - 4. Enable interrupts
 - Infinite loop
- 3. Subroutines
- 4. Interrupt Service Routines (ISR)

Variable Types

Туре	Size	Single-cycle instruction
char	8-bits	Yes
int	16-bits	Yes
long	32-bits	No
float	64-bits	No

Number Representation

One's Complement

1	1	1	1	1	1	1	1	=	256
0	1	1	1	1	1	1	1	=	127
0	0	0	0	0	0	1	0	=	2
0	0	0	0	0	0	0	1	=	1
0	0	0	0	0	0	0	0	=	0

8-bit one's complement integers

//One's comp. definition unsigned char var1 unsigned int var2

8-bit two's complement integers

```
//Two's comp. definition
signed char var1
signed int var2
```

Always explicitly define signed / unsigned !!!

Global Variables

 Global variables not always updated due to compiler optimization

```
//Declarations
unsigned char var
volatile unsigned char gvar
Main()
qvar=1;
while(1);
#pragma vector=USCIABORX VECTOR
  interrupt void UART RX(void)
gvar=2;
```

MSP430F2xx Address Space

Embedded Programming Styles

Simple

- Poll for events in main()

Interrupt-driven

- Code reside in the ISR
- Used for handling a single interrupt source

Event-driven

- ISR sets flags for events
- main() poll for flags and services them
- Used for handling multiple interrupts sources

Components for Microprocessor Programming

- ICE In-Circuit Emulator
 - Flash Emulation Tool (FET)
 - JTAG
 - Spy-Bi-Wire (2-wire JTAG)
- Bootloader
 - Rewrite flash via RS232
 - Password protected
- IDE Integrated Development Environment
 - Editor, compiler, debugger
- Libraries for each microprocessor

Image removed due to copyright restrictions.

Brownout Detector and SVS

- Brownout detector triggers a POR when supply voltage drops below 1.8V
- SVS (Supply Voltage Supervisor) Comparator-based (flash) ADC

Timer Related I/O

MSP430x22x4 device pinout, DA package

Communications Ports

MSP430x22x4 device pinout, DA package

Start / Reset Sequence

- PUC (Power Up Clear)
- POR (Power On Reset)

Example C Code