2.996/6.971 Biomedical Devices Design Laboratory

Lecture 2: Fundamentals and PCB Layout

Instructor: Hong Ma

Sept. 12, 2007

Fundamental Elements

- Resistor (R)
- Capacitor (C)
- Inductor (L)

- Voltage Source
- Current Source

Enough to model any physical linear circuit

Fundamental Relationships

- Ohm's law: R = V / I
- KVL, KCL Conservation laws
- Impedance:

$$Z_C = \frac{1}{i\omega C} \qquad \qquad Z_L = j\omega L$$

- Treat capacitors and inductors as resistors
- Fundamental question:
 - Given an arbitrary circuit, what happens when you hook up another circuit up to it?

Thevenin-Norton Equivalents

- Represent an arbitrary circuit using a source and a source impedance
- Thevenin and Norton representation is equivalent
- Result: Reduce all circuits into one fundamental circuit

Source and Load

Sources

Power supply
Signal Generator
Sensor
Amplifier output

- Optimize for Voltage: Z_{LOAD} >> Z_{SOURCE}
- Optimize for Current: Z_{LOAD} << Z_{SOURCE}
- Optimize for Power: Z_{LOAD} = Z_{SOURCE}
- Purpose of amplifier / active circuit:
 - impedance transform

Simple Filters

- RC Low pass
- RC high pass
- Bandpass
- Bandstop (notch)

Simple Cascaded Filters

What if 2 stages are needed?

Practical Introduction to Passive Components

Resistors

- Range: 1Ω to $22M\Omega$
- Carbon composite (axial)
 - 5% accuracy typical

Images removed due to copyright restrictions.

Photo examples of resistors.

- Wirewound
 - 1% accuracy typical
- Thick film (Screen printed / electroplated)
 - Accuracies down to 1%
- Thin film (Vacuum deposited)
 - Accuracies down to 0.1%
- Temperature coefficient: 20-200 ppm / °C

Potentiometer

Concerns:

- Over-usage

- Courtesy of PagerMotors.com. Used with permission.
- Wiper skips not all values are achievable
- Mechanical stability > multi-turn not necessarily better

Practical Capacitor Considerations

- Accuracy: ±10% typical
- Effective series capacitance
- Dielectric soakage (dielectric absorption)
- Temperature dependence

Ceramic Capacitors

- Most common type
- 1pF to 1µF
- Accuracy
 - Through-Hole ±20%
 - SMT ±10%
- Low ESR, loss tangent ≈ 0.002
- Temperature coefficient
 - Z5U, X7R, C0G (NP0)
- Cost = \sim \$0.01 in quantity

Images removed due to copyright restrictions.

Photo examples of ceramic capacitors.

Aluminum Electrolytic Capacitors

- Primary use: power supply bypassing
- Range: 1μF 1F Typical: 100μF
- Cost: ~\$0.10 depending on size
- Polar, designated by the negative terminal
- Will blow up if reverse biased
- Nonpolar versions available

Images removed due to copyright restrictions. Photo examples of aluminum electrolytic capacitors.

- Very inaccurate
- Typical tolerance: +80%, -20%
- Limited lifetime
- High ESR, loss tangent = R/Xc ≈ 0.2

Tantalum Electrolytics

- Similar to aluminum electrolytics, but better energy density
- More expensive than aluminum electrolytics
- Range: 0.1μF to 1000μF
- Polarity designated by the positive terminal

Double Layer Capacitors

- Extremely high capacitance
- Range 0.1F 1000F
- Low voltage rating
- Used for energy storage

Specialty Capacitors: Polypropylene

- Improved performance:
 - Accuracy
 - ESR at high frequencies
 - Low dielectric soakage
 - Temperature stability
 - Higher breakdown voltage
- Tradeoffs
 - Larger size
 - Smaller range of values
 - Higher cost: ~\$0.10

Image removed due to copyright restrictions.

Photo of polypropylene capacitor.

Power Supply Bypassing

- Ideal sources do not exist!
- Source impedance increases with frequency
- Ceramic capacitor on each IC component
- Electrolytic on both sides of the power supply

Practical Inductors

- Inaccurate (at best ±10%)
- Expensive
- Parasitics
 - All inductors self resonate
- Avoid whenever possible

Where to find information / parts

- Manufacturer's website: datasheet & samples
- Distributors:
 - Digikey
 - Mouser
 - Newark
- Meta search engine: www.findchips.com

PCB Layers

Image removed due to copyright restrictions.

Substrate

- FR-4 standard; Specialty: G-10, polyimide (Kapton), ceramic
- Standard thicknesses: 0.062", 0.031"

Copper

- 2, 4, up to 12 layers
- Minimum trace/spacing 6 mil, smaller is possible
- Thickness: 1 oz copper = 500 $\mu\Omega$ per square
- Exposed copper tin'ed with solder
- Interlayer connection by vias; Blind and buried vias = \$\$\$
- Soldermask very important → Hydrophobic to solder
- Silkscreen

PCB Layout Error Sources

- Capacitive interference
- Inductive interference
- Electromagnetic interference

Need a ground plane... but why?!?

Image removed due to copyright restrictions.

Capacitive Interference

- Cause: capacitance between nearby traces
- When to watch out for it:
 - High impedance circuit nodes
 - High-voltage excitation signals
 - High frequency signals
- How to avoid it:
 - Lower the circuit impedance
 - Use groundplanes and shielding to isolate signal lines
 - Boot-strap to reduce capacitance to ground
 - Separate analog and digital ground planes

Inductive Interference

- Cause: mutual inductance between traces
- When to watch out for it:
 - Large AC current
 - Transient switching
 - Long traces
 - Loops

How to Avoid Inductive Interference

- Keep traces short
- Make traces perpendicular
- Use star power / ground routing
- Reduce loop area
- Careful use of ground planes
- Watch out for return lines

Electromagnetic Interference (EMI)

- Cause:
 - long traces/wires acting as an antenna
- When to watch out for it:
 - Length > 1/20 wavelength
- Source of interference
 - Wireless communication (900MHz, 2.4GHz, 5GHz)
 - FM radio
 - Microwave oven
 - Lightning, solar flares, cosmic rays
 - High speed processors
- Real products must pass FCC and CE testing

Ferrite Bead

Example photos removed due to copyright restrictions.

- A lossy inductor
- Resistor at high frequencies

Ferrite bead inductor

(The loss is high.)

Frequency (MHz)

Resistance is small.

(The loss is low, i.e. "Q" is high.)

Reference: Coil for high-frequency filter circuits

(Air-core coil)

100k

Where to put the ground planes?

- Ground planes outside, signals inside:
 - Essentially eliminate capacitive interference
- Ground planes inside, signal outside:
 - Ground plane with frewer interruptions

Image removed due to copyright restrictions.

Project Teams