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1 UNITS AND CONVERSIONS

Unfortunately, both metric and English units are commonly used in the design,
construction and operation of ships and offshore platforms. While the trend towards
the metric (SI) system is growing worldwide, the United States is still locked into
the English system (except in technical journals). It is therefore best for you to
be familiar with both systems. For your convenience, this section defines the more
common quantities, and their conversion factors.

length The length unit is the meter in the SI System, and the foot in the English
system. One foot is 0.3048 meters (exactly). The reciprocal value, 3.28, is
not exact. If you are fussy, convert meters to feet by dividing by 0.3048. In
the English system, there is also the inch (1/12 of a foot), which commonly
appears in the measurement of pressure (pounds/in?), and is used to denote
an infinitesimally small quantity, such as tons per tnch tmmersson which we
will run into later.

mass The relevant SI mass units are the kilogram and the tonne (which is 1000
kilograms). While there are mass units in the English system (such as slugs
or pounds mass) it is safer not to use them.
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force In the SI system, the basic unit of force is the Newton, which is defined as
the force acting on one kilogram of mass when subjected to an acceleration
of one meter per second squared. The weight of one kilogram mass under
standard gravity g = 9.80665m/sec? is therefore 9.80665 Newtons. Similarly,
the force acting on a tonne mass is 9,806.65 Newtons, which is defined as the
metric ton, or tonnef. The preferred SI unit for heavyweights is the mega-
Newton (MN) which is 10° Newtons. However, the metric tonnef is much more
common in the real world. The corresponding units in the English system are
the pound force, which is 4.44822 Newtons, and the ton, which is defined as
2240 pounds. The metric tonnef is therefore 9,806.65 X 4.44822 = 2204.62
pounds. Thus, the metric tonnef and the English ton are almost equal— one
English ton equals 1.016 metric tonnef. Finally, the standard acceleration of
gravity in the English system is 9.80665/0.3048 = 32.174 ft/sec?.

2 WHAT IS SEA WATER?

In ocean engineering hydrostatics, we will study the static interaction of a fluid
(sea water) with engineering objects floating on or underneath the sea surface. It
is therefore logical to begin with a discussion of the relevant properties of the fluid
medium.

Most of the world consists of fluids and solids. How can we tell which is which?

An obvious distinction is that fluids have no distinct shape, but will adapt to the

shape of a container in which they are placed. On the other hand, solids retain

(more or less) their original shape, even if moved around or placed in a different

container. The reason for this difference is that a fluid at rest cannot sustain a shear

- stress, while a solid can. A fluid can sustain shear stresses by means of relative

motion. Thus a sphere of fluid placed in a rectangular container will undergo rapid

deformations until it conforms to the shape of the container, and equilibrium is
restored without the presence of any shear stresses.

What are shear stresses? Stresses, by definition, are forces per unit area. The
force acting on one surface of a small element of a fluid or solid can be decomposed
into a normal stress, and two components of stress tangent to the surface, as shown
in figure 1. The tangential components of the total stress are termed shear stresses,
while the normal component is termed pressure.
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Figure 1: Definition of normal and shear stresses

Fluids can be further subdivided into two categorie.s: liquids and gasses. Here
we go again with our handy box. If you put a liquid in a box, it fills up the lower
part, up to some level. If you put a gas in a box, it fills it all up.

What makes solids, liquids and gasses different can be explained on the basis of
the molecular behavior of each substance. However, for many engineering purposes,

it is sufficient to accept the very obvious differences between these substances as
given. '

Speaking of molecules, however, brings up the concept of a continuum. In the
treatment of both hydrostatics and hydrodynamics, one frequently talks about fluid
properties at a point or talks about a flurd particle. Strictly speaking, if we look at
a sufficiently small region of a fluid, we will see a bunch of atomic particles buzzing
around in a random fashion. Hence, a statement of a fluid property at a point really
means the average property within a region which is negligibly small compared
to the scale of the engineering problem at hand, but infinitely large compared to
the molecular scale. This idealization is called a continuum representation of the
material. One hardly needs to apologize for introducing this idealization, since the
two length scales are many orders of magnitude apart. \

One important property of a fluid is its density, which is defined as its mass
per unit volume and given the symbol p. The density of a fluid depends on its
temperature, pressure and on the presence of impurities. The latter is particularly
significant for sea water, where the presence of salts increases its density by approx-
imately 2.6%. This number, of course, depends on the salinity of the water, but
the figure given is accepted as characterizing “standard sea water” in the absence
of other information.
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Table 2 gives the variation of density with temperature for fresh water and sea
water at atmospheric pressure.

The mass density of fresh water, at standard conditions, is 1000kg/m> or one
tonne/m?®. tried converting the English unit value at 59 degrees using the constants
provided in the first section, and got 999.008/kg/m®, which is close enough.

The density of sea water also depends on pressure. While water is generally
idealised as an sncompresstble fluid, you can compress anything if you push hard
enough. The measure of compressibility is the bulk modulus, K, which is defined as

Ap ‘
Tiv\ (1)
(%)

v

K=-

where V is an element of volume of the fluid. The standard value for sea water is
K = 339,000 pounds per square inch. Thus, )f an element of volume is subjected -
to a pressure of 9,000 pounds per square inch, its volume will be reduced by

(A% 9,000
—_— —’ = . 2
V 339,000 0 026 2)

or around 2.6 percent. This does not seem like much, but we will see that this can
disturb the delicate balance between weight and buoyancy of a deeply submerged
vehicle.

Another consequence of the compressibility of a medium is that acoustic waves
will propogate in it. It can be shown (obviously not within the scope of 13.00!) that

the speed of sound in a medium is
K .
c=4/— . 3
v/ . (3)

which for standard conditions for sea water comes out to be 4,954 feet per second.
Thus, sound travels much faster in water than in air—a fact which is well known
to whales and to humans that design sonars.
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Table of Density of Water at Atmospheric Pressure

Density of Density of Density of Density of
Fresh Water | Temperature | Sea Water Fresh Water | Temperature | Sea Water
p degree F Ps p degree F Ps

1b x sec?/ft 1b x sec?/ft* 1b x sec?/ft* 1b x sec?/ft*
1.9399 32 1.9947 1.9381 61 1.9901
1.9399 33 1.9946 1.9379 62 1.9898
1.9400 34 1.9946 1.9377 63 1.9895
1.9400 35 1.9945 1.9375 64 1.9893
1.9401 36 1.9944 1.9373 65 1.9890
1.9401 37 1.9943 1.9371 66 1.9888
1.9401 38 1.9942 1.9369 67 1.9885
1.9401 39 1.9941 1.9367 68 1.9882
1.9401 40 1.9940 1.9365 69 1.9879
1.9401 41 1.9939 1.9362 70 1.9876
1.9401 42 1.9937 1.9360 71 1.9873
1.9401 43 1.9936 1.9358 72 1.9870
1.9400 44 1.9934 1.9355 73 1.9867
1.9400 45 1.9933 1.9352 74 1.9864
1.9399 46 1.9931 1.9350 75 1.9861
1.9398 47 1.9930 1.9347 76 1.9858
1.9398 48 1.9928 1.9344 77 1.9854
1.9397 49 1.9926 1.9342 78 1.9851
1.9396 50 1.9924 1.9339 79 1.9848
1.9395 51 1.9923 1.9336 80 1.9844
1.9394 52 1.9921 1.9333 81 1.9841
1.9393 53 1.9919 1.9330 82 1.9837
1.9392 54 1.9917 1.9327 83 1.9834
1.9390 55 1.9914 1.9324 84 1.9830
1.9389 56 1.9912 1.9321 85 1.9827
1.9387 57 1.9910 1.9317 86 1.9823
1.9386 58 1.9908
1.9384 59 1.9905
1.9383 60 1.9903

Figure by MIT OCW.
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Figure 3: Element of fluid to illustrate omnidirectional property of hydrostatic
pressure

Finally, we have to define what is above sea water. Unless we are in a cave, it
is air, at a standard sea-level atmospheric pressure of p, = 14.7 pounds per square
inch.

3 HYDROSTATIC PRESSURE

We will first establish the fact that hydrostatic pressure at a given point in a fluid is
omnidirectional. That is, if we look at a surface of an infinitesimal object immersed
in a fluid at rest, the pressure acting on that surface is independent of the orientation
of the surface. We can show this easily by taking a triangular prism of fluid of width
6z, height 6z and depth b as shown in figure 3. The axis are chosen so that gravity
points in the —z direction. Let the pressure on the left face be p;, the pressure on
the bottom face p, and the pressure on the hypotenuse p;.

Summing the forces in the x direction:

F, = p,bbz — p3by/(62)* + (6z)%sinb = 0 (4)

but
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. 62
stnfl = ———o—
(62)" + (62)"
cosl = bz (5)

(62)° + (62)?

so that equation 4 becomes

F,=(p1 —p3)bbz=0 p;—ps=0 (6)

Summing the forces in the z direction is similar, except that we now have to
include the gravitational force acting on the mass of fluid in the prism:

F, = pbbz — psby/(62)2 + (6z)% cos b — %pgb&z&z =0 (1)

Using equation 5 to eliminate 8 and dividing through by b6z

1
F, = (p; — ps) — P96z =0 : (8)

For finite values of 6z p3 # p,, but in the limit as 6z — 0 the two must become
equal. In physical terms, this means that as the fluid element shrinks, its volume
decreases at a faster rate than its surface area, so that the weight force becomes
negligible compared to the pressure force. Thus, in the limit, the pressures on the
opposite faces of the element must become equal.

Equation 6 showed that hydrostatic pressure does not vary in a direction per-
pendicular to the gavity, since the equality of p, and ps holds for any value of éz.
However, hydrostatic pressure can vary in the z direction. To see how it varies,
consider the total force acting on a rectangular column of water extending from the
surface to a point 2z = —h. As shown in figure 4.

F, = —p,b6ybéz + p(z)6ybz + pgzbybz = 0 (9)
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Figure 4: Illustration of hydrostatic pressure

so that

dp
= Pg — -_— = 0
p(2) = pa — pgz 5, = P9 (10)

Hydrostatic pressure therefore starts out at atmospheric pressure on the surface,
and increases linearly with depth, with a pressure gradient equal to the negative of
the weight density of the fluid. The minus sign is simply because we chose to have
the positive z direction point upward.

At the surface, the pressure is 14.7 pounds per square inch. At a submergence
of 32 feet, the pressure in 59 deg F sea water, using English units is

p(—32) = 14.7 — 1.9905 x 32.174 x (—32)/144 = 28.9 pounds/in®  (11)

‘which is about double atmospheric pressure. Hence, as every SCUBA. diver knows,
the pressure increfses by approximately one atmosphere for each 32 feet of sub-
mergence. At a depth of 20,000 feet, the pressure is 8,909 pounds/in® or 606
atmospheres.
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5 ARCHIMEDES PRINCIPLE

Knowing how hydrostatic pressure varies with depth, we can now derive Archimedes

- principle, which states that a submerged body is buoyed up by a force equal to the

weight of fluid which it displaces. Consider a prismatic body of arbitrary form,
and thickness b as shown in figure. The force in the z direction may be found by
integrating the pressure around the body,

zlk

/ Su réAC&
O

o

z2

F, = b/(p,(:c)—pu(z))dz

Zz)

= pgb/h(z)d:z: -

= pgV (12)

~where V is the volume of the submerged body and h(z) = z, — z. The law also

applies to floating bodies (whose volume protrudes through the free surface), except
that the integral is limited to the submerged part of the volume. ’

The same analysis could be applied to a general three-dimensional body, but
since we know this is the right answer, why not stop here?

We can also compute the moment of the buoyant force about the y axis,
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M, = b [(n(e) - pu(s))zds
= —pgb/h(x)zd:z:
= —:T:Vn (13)

where % is the £ coordinate of the resultant buoyant force. The negative sign is
required in order to conform to a right-handed convention for moments.

2 4 t\/\:J .

Suppose, for the time being, that the orientation of our coordinate system is
changed so that gravity points in the +z direction. Then, the z coordinate of the
resultant buoyant force will be

Z2

M, = —b / (p1(z) — pu(z))2dz
= -—pgb/h(z)zdz |
I (14)

Thus, the buoyant force always acts through the centroid of the volume. The
centroid of a submerged volume and the center of buoyancy are therefore identical.
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All these results can be deduced in a much more simple minded way by consid- B

ering that the pressure distribution around body immersed in a fluid is the same as
it would be if the body were just more of the same fluid. The resultant of the pres-
sure integrated around the body surface must therefore yield a force which exactly
equals the weight of the fluid, and acts through the center of mass of the fluid.

6 GEOMETRICAL PROPERTIES OF A HULL

Shown below is a sketch of a ship hull. The zz plane is the longitudinal plane
of symmetry, and the z axis again points upward. However, the origin of the
coordinates is not on the water surface, but is located at some convenient reference

point on the hull (most generally at the bottom). The water surface, which we will
allow to vary, is at z = z,,.

and centroid
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6 GEOMETRICAL PROPERTIES OF A HULL

Zyw

2 [ zy(z,z)dz

zp(z)
Az(z,2u) '
0 (16)
A
2w
A, |
— Y

The profile height zy(z) is illustrated below
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- Plotted below are a set of sectional area curves for different values of Zy.

AAV

& Heeeud veluven

\‘\Jr o 2w




6 GEOMETRICAL PROPERTIES OF A HULL 13

Another way to plot this same information is to plot A(z) vs z, for different val-
ues of z. These carry the name Bonjean curves, and used to be useful in graphically
interpolating sectional areas for different waterlines.

A‘?w ’\“‘é‘&{dm;f’(

1 e

If we slice the hull at constant values of z we obtain a waterline as shown below,

-
: l 7 <
Xs
with waterplane area A,(z)
zy(2)
A(z,2) =2 / y(z,2)dz (17)
zo(2)

with centroid

z3(2)

2 [ zy(z,2)dz
2(z) = =)

A (z)
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y(z) = 0 (18)

We can now obtain the total volume of the hull, V, two different ways:

zb(zw) Za
V(ZW) = / Az(.'E, zw)d$.= / A,(z)dz. (19)
Zo(2w) zp(min)

where z,(min) is the lowest point on the profile.

Similarly, the z coordinate of the centroid of the immersed volume, which is
commonly called the longitudinal center of buoyancy (LCB), we will call zp,

zp(zw) Zew
b zAz(z, 2,)dz I z(2)A,(2)dz
xB(ZID) = z'(zW) V = zp(m’n) V (20)

The z coordinate of the centroid of immersed volume is called the vertical (po-
sition) of the center of buoyancy (VCB), we will call zg,

zy(2w) Zw
- z(z, zw) Az(z, 24 )dz [ zA.(2)dz
Za(2w) z,(min)
2B (z‘”) = v = ( v (21)

Some of these geometric quantities are useful when expressed in non-dimensional
form. Define £ B T as the length, beam and draft of the hull. Then the block
coefficient, Cp is defined as the ratio of the actual volume of the hull to that of a

block of dimensions LB T,

v .
CB = m (22)

A supertanker might have a block coefficient of 0.9 while a sailboat might have
a value of 0.5.
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A measure of how “pointed” the ends are is the prismatic coefficient,

v
A (z=0,2,)L

Cp= (23)

which is the ratio of the actual volume to that of a prism with cross section equal
to the sectional area at = = 0.

The waterplane coefficient is the ratio of the area of the waterplane to that of a
rectangle,

A,(zy)
LB

Cw = (24)

and the mfdships coefficient is the ratio of the sectional area at z = 0 to a rectangle’,

_ A.(z=0,z,)

Cm BT

(25)

Carrying out the integrations formulated in this section is practical if the hull
is smooth. However, if abrupt discontinuities in the geometry occur, one must be
careful. Examples are the fins shown in the photograph of the submarine below, or
the sailboat keel shown earlier in the course notes. In these cases, it is better to
consider these as separate appendages. Their volumes and centers can be computed
separately and combined with those of the main hull.

1The position of amidships is somewhat arbitrary, but we won’t worry about that here

Image removed due to copyright reasons.
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7 THINGS THAT AREN’T SHIPS

Hydrostatic properties of non-streamlined underwater vehicles, buoys, or floating
offshore platforms are important. However, the traditional ship lines drawing ap-
proach to defining their volume properties is not necessarily appropriate. For exam-
ple, slicing the offshore platform shown below into stations would be very inefficient.
One approach in this case, is to ignore Archimedes, and to calculate the forces and
moments by direct integration of the pressure over the surface. This can be done by
dividing the surface into a large number of quadrilateral panels as shown in the plot
below. This type of panel approximation is becoming widely used for hydrodynamic
and structural calculations for offshore platforms.
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7 EQUILIBRIUM OF A FLOATING BODY

Supose an object is floating with a draft of z,, in the absence of any external forces,
as shown below

‘3

The submerged volume is V, with centroid at zp, zg. The buoyant force is

F,=pgV =A (26)

where A is the symbol customarily given for the weight of the displaced volume
of fluid, or just displacement. Since the net force in the z direction must be zero
(or else it would accelerate up or down), the displacement must be exactly equal
to the weight, W, of the body. Similarly, for equilibrium of moments about the
y axis, the longitudinal position of the center of gravity, 5 must be equal to the
longitudinal position of the center of buoyancy, zg. The vertical positions of the
centers of gravity and center of buoyancy, 2 and zp, need not coincide. Intuitively,
we would expect that if the center of gravity is too high, the floating body will
capsize. However, that is a matter of stability, which we will be looking at soon.
For now, all we can say is that the body will be in equilibrium for any vertical

position of the center of gravity, but that a condition of stable equilibrium may not
exist.

Getting to practical matters, if the weight of the object is given in English
(long) tons, the weight density pg must be expressed in tons per cubic foot, and
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the volume of displacement V in cubic feet. For sea water at a termperature of
59 degrees Farenheit, we see from the table in Section 1 that p = 1.9905/lbs —
sec?/ft4, and for a standard gravitational acceleration of 32.174/ft/sec? so that
pg = 1.9905 X 32.174/2240 = 0.0286 tons/ft*>. The reciprocal of this constant is
34.98 ft3/ton. This is generally rounded to 35 ft%/ton, and this serves to define
standard sea water in the English system.

In the SI system, for sea water, p = 1025 kg/m*, and g = 9.80665 m/sec?, so
that pg = 0.01005 M N/m®. This value is customarily rounded to 0.01 MN/m?*
which is certainly not too hard to remember!

All right, here is an example. A whale watching vessel has a length of 100 feet,
a beam of 20 feet and a draft of 8 feet. It has a block coefficient of Cg = 0.52,
What does it weigh, in tons?

V = CpXx LBT
= 0.52 x 100 x 20 x 8 = 8,320 ft® _
A = pgV = 8,320/35 = 237.7 tons (27)

In metric units, the length is 30.48/m, the beam is 6.096/m and the draft is
2.4384 m (down to the last tenth of a millimeter).

vV = Cp X LBT
0.52 x 30.48 x 6.096 x 2.4384 = 235.60 m?
A = pg¥V =0.01 x 235.60 = 2.356 MN (28)

Since 1 MN = 100.36 tons, converting the metric weight back to English tons
gives 2.356 x 100.36 = 236.4 tons. This is slightly different from the value of 237.7

that we got before, due to the use of rounded nominal values of sea water weight
density.



8 RESPONSE TO A SMALL WEIGHT ADDITION 19

8 RESPONSE TO A SMALL WEIGHT ADDI-
TION

8.1 Sinkage

Now suppose that we add an infinitesimal weight 6w to the floating body. The body
will sink down some small amount 6z, and may also rotate about the y axis. The
latter is called the trim angle §. Presumably if the weight is added near the bow,
that end will sink down more than the stern, and vice versa. However, for the time
being, let us assume that the weight is added at just the right z location so that
the trim angle is zero.

As shown in the sketch, for vertical equilibrium, the displacement must increase

by éw. Thus, the increment in submerged volume must be such that pgéV = sw.
But, '

6V = A,(zy)62,
Sw

6z,

~  pgAz(zw) (29)

AZ

x

In the limit of vanishing added weight, this ratio, which is the weight per unit
immerston becomes exact. In practice, this quantity is reasonably accurate for many
purposes. In English units, the unit immersion is generally taken to be one inch.
Using standard sea water density, the weight per unit immersion then becomes
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: 1
bw = pgA.(zy) X T A,(2,)/420 (30)

When expressed in these units, this quantity is known as the tons per inch
tmmersion or TPIL. The same quantity in metric units is the meganewtons per meter
immersion

bw = pgA,(zw) X 1 = 0.014(2,) (31)

where the waterplane area, in this case, is expressed in square meters.

Back to the whale watching ship— Twelve Norwegian bachelor farmers, on a
trip east from Minnesota join the group of passengers on board. How much does
the draft increase? They each weigh 220 pounds, and the ship has a waterplane
coefficient C,, = 0.70 at a draft of 8 feet.

12 farmers @ 220 lbs = 1.179 tons
A (zw) 0.70 x £B = 1400 ft*
TPI A, /420 = 1400/420 = 3.33
6z = 6w/TPI=1.179/3.33 = 0.354 inches  (32)

8.2 Trim

We assumed in the previous section that the weight was added at the z location
which would result in no trim. Our next task is to find that point. A quick response
would be that this is the longitudinal position of the center of buoyancy, zg, but this
generally not true. The additional buoyancy which supports the weight comes from
a volume A,(z,)6z whose longitudinal center is (approximately) at the centroid of
the waterplane, Z(2,). Therefore, as shown in the sketch, moments about the y axis
are balanced if the weight is added at this position. This might seem like a subtle
difference for a ship, where these centers may not differ very much. Perhaps, the
sea gull landing on the submarine periscope is more convincing.

P%W 42 ['SN

- R 229 -
T ]

\ \‘ A2(iw)

¥

b T

il X 1B 3
%%-v) v

=
x



8 RESPONSE TO A SMALL WEIGHT ADDITION 21

The centroid of the waterplane is therefore a significant quantity, and is given
the name center of floatation, LCF. Thus, Z(2,) and LCF mean the same thing.

We next consider the response of a floating body to an ininitesimal pure moment,
6§M, about the y axis. Our first step is to determine the axis about which the object
trims. Since we are applying a pure moment, there is no external force, and hence,
the displacement must remain constant. Let us designate the position of the axis of
rotation z., and compute the increment of volume 6V associated with an increment-
in angle 64.

T
b
- 20
///U (x‘x{)ée f
™ x
| 6V = 2'7(2:—:1:c)60ydz
= 260 [/xydx—zc/yd:c] =0
r, = 2lzvds zydz (33)

But this is the equation for the centroid of the waterplane. Hence z, = zy, so
that a floating body trims about an axis through the center of floatation. Of course,
this is only true for infinitesimal disturbances.

The hydrostatic moment caused by a small trim angle 68 is:

oM, = -—/(z — zs)zybbdz
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= _—2pg§0/a:2yd:z: + 2pgz,60/zydz

2 [ zydz
S TA
I, = 2 / ziydz
§M, = —pgb8 [I, — z3A,]
6M, |
58— P9l (34)

We now have the simple result that the rate of change of hydrostatic moment
with trim angle is proportional to the moment of inertia of the waterplane, taken
about an axis through its centroid. This is labelled I,. It can be obtained from the
moment of inertia about the y axis using the parallel axis theorem by subtracting.
zﬁA,. This means that in addition to volumes and centers, we must add second

moments (i.e. moments of inertia) to our library of geometric properties of floating
bodies. ‘

So far, we have only considered the hydrostatic moment. As shown in the figure
below, as a floating body trims, the centers of buoyancy and gravity are no longer
in line (with respect to the direction of gravity) so that an additional moment

6M, = ABG§6 (35)

exists which has a positive sign if G is above B and is therefore destabilizing.

Az [‘(\j
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The hydrostatic moment, which we computed from the moment of the immersed
and emerged waterplane wedges, could also be described in terms of a shift of the
center of buoyancy of the complete submerged volume from its original location
zp to a new location zj;. We can therefore express the hydrostatic moment two
different ways,

6M, = —A(zy — zp) = —pgl,60 (36)

Remembering that A = pgV, the longitudinal shift in the center of buoyancy is
therefore

gy — zp = L66 (37)

|

This can be given a geometrical interpretation, as shown in the same figure.
Under the initial condition of zero trim, the buoyant force acts vertically (in the
positive z direction) through B. After an infinitesimal trim 60, the buoyant force
acts through B’', but in a direction inclined at an angle 60 from the z axis (which
is fixed on the body, not in space). The new buoyant force vector intersects the
original vertical line through B at a point which we will designate the longitudinal

metacenter, M,. The distance between B and M, is the longitudinal metacentric
radius, BM .

-

BM, = (z}y — z5)/60 = (38)

v

The total moment due to trim, including both the hydrostatic component and
the moment due to the vertical distance between B and G is

(6M,),,,u = A[BG — BM, 660 = —AGM 66 (39)

The resultant moment has a negative sign (which is stabilizing) if the metacenter
is above the center of gravity. The distance between the center of gravity and the
metacenter, GM, is called the metacentric height. If a floating body has a positive
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metacentric height, it is stable with respect to small angular disturbances. That is,
a small angular displacement in trim, §6 will result in a net moment about the y
axis which is in a direction to restore the body to its initial orientation. Note that

the center of gravity does not need to be below the center of buoyancy for the body
to be stable.

The metacenter is analogous, in a way, to the center of gravity. No matter how
an object is oriented, the force of gravity acts through it’s center of gravity. The
force of buoyancy, of course, acts though the center of buoyancy. However, as a
floating body is displaced, the center of buoyancy moves. In the limit of small
angular displacements, however, the buoyant force acts through a fized point fixed
on the body, which we call the metacenter.

It is time to look at a couple of specific examples. Suppose that we have a box
shaped floating body with dimensions £, 8, T, as shown below.
A _ %:t
BMy

P B

=4

A

x

v
<

G e Z_ e e (D . B .

Since the origin of our coordinate system is centered with respect to the length,
z; = 0. Knowing the formula for the moment of inertia of a rectangle (or looking
it up, or deriving it), we can find the metacentric radius without much difficulty,

4 <
==
(3]

BM, 1
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The last line is instructive, since it shows that the non-dimensional metacentric
radius is simply proportional to the ratio of length to draft of the floating rectangular
body. For typical ship proportions, the ratio of £/ T is 12 or greater. Therefore, the
longitudinal metacentric radius for ships is of the order of their length. Since ships
generally have a low center of gravity, the distance between the center of gravity and
the center of buoyancy BG is small, say of the order of T. This means that ships
are always extremely stable with respect to small displacements in trim angle. We
will see later that ships are much less stable with respect to angular displacements
about the z axis (as anybody who has jumped into a canoe knows), so that the
latter is generally critical with regards to safety.

On the other hand, offshore drilling platforms might have lower values of £/T,
and much higher values of the center of gravity. In that case, stability with respect
to trim angle might be of much greater concern.

Buoys and floating instrument packages are another example. As illustrated
below, an instrument detects the presence of red and yellow striped fish as they
swim by, and transmits a radio signal each time to a satellite. The instrument is
packaged in a square container and has a specific gravity of 0.5 relative to sea water,
with a center of gravity in the middle of the box. Is it stable as shown?

Since the specific gravity is 0.5, it floats with half of the volume under water.
Thus £L/T = 2 and BM,/L = 1/6 and BM,/T = 1/3. Since the center of
buoyancy is at half the draft, BG = T /2. Thus, we see that the metacenter is
below the center of gravity (by T /6) so that the device is unstable. Better tell the
designer to put some lead ballast in the bottom of the package.
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The second example is circular cylinder of radius R floating on its axis, as shown
below

P W W]

It is obvious in this case that the center of buoyancy will not move when the body
is subjected to a trim angle displacement (small or not), and that the metacenter
must therefore coincide with the axis. Let’s calculate it anyway.

I = Loppep=2
I, = 12(2)!2) B= 3RSB
_ 4R
BM, = I,/V=_- (41)

but we also know that the centroid of a semi-circle is at a distance (4R)/(37) from
its axis (25 = R(1—4/(37))), which confirms the fact that the metacenter is at the
waterline. We now know that homogeneous logs of specific gravity 0.5 are neutrally
stable, since their center of gravity and metacenter coincide. A semi-circular shape
is therefore only stable if its center of gravity is below the waterline.

9.2 Moment per unit trim

We saw in the preceding section that for floating bodies that are long with respect
to their draft, and have low centers of gravity, BM, > BG. In this case, the height
of the center of gravity is unimportant in determining the moment due to trim
angle. We can therefore make the approximation that GM, ~ BM,. In this case
the response to a trim disturbance becomes a geometric property of the body itself,
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and is independent of its weight distribution. One can therefore derive simple to
apply expressions for the trim response of a floating body, in 2 manner 31m11a.r to
the tons per snch smmersion derived previously.

To begin with, trim angle 60 is hard to deal with in the real world since small
angles are hard to measure. A more convenient quantity is trim, t, which is defined
as the difference in draft at the bow and at the stern, t = T}, — T, as shown below.

—
"
,—:—:_"_T-_____ e —— T\')
T T
e A e earem -
P e ARES B i

Ships generally have draft marks palnted at the bow and stern at regular in-
tervals, so that the operator can simply read the two values and subtract them to
determine the trim. For small angles, 60 ~ t/L.

In English units, one can define the moment to trim one inch, MTI, as

MTI = 6M,~ABM,— £

pgl, I,
1202 4200 (42)

where the constant 420 = 35 x 12 contains the standard weight density for sea
water. ‘

It’s time to get back to the Norwegian bachelor farmers on the whale watching
ship. They all eagerly walk up to the bow to get a better look at the whales. (It is
too cold up there for the rest of the passengers). How much does the ship trim? If
the waterplane were a rectangle, its inertia would be

|
L= 100® x 20 = 1,666,667 ft* (43)
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However, since it is a more streamlined shape (Cw = 0.70), we will assume that
the real moment of inertia is half of that value. The moment to trim one inch is
therefore

1. 1,666,667

——— = 19.84 44
2) 420 x 100 (44)

MTI = (

If the twelve farmers move half the length of the ship from the center of floata-
tion, the trim moment is 12 x 220 x 50/2240 = 58.93 ft — tons. The trim is there-
fore 58.93/19.84 = 2.97 inches. The trim angle is 2.97/100 = 0.0297 radians =
1.7 degrees.

In the metric system, the equivalent quantity is the meganewtons per meter trim.
Using the nominal weight density of sea water, the moment to trim one meter is
0.011,/L. :

9.3 Heel

Rotation about the z axis is called heel angle or sometimes roll angle, although the
latter implies a dynamic, rather than a static quantity. The symbol ¢ is used to
denote this angle, and we will use 8¢ to denote an infinitesimally small displacement
in heel.

By a simple substitution of coordinates, the hydrostatic moment due to heel can
be obtained from our previous result for trim,

oM, | =
= —pgl, ' 45
7 pgl (45)

If we assume symmetry about the zz plane, the center of floatation is at y =0
so we don’t need the bar over the I,. We will derive the formula anyway, since it
will illustrate the computation of waterplane inertia in a different order.
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2
M, = —2pg/(2?y-y;6¢d1:
oM, 2 .
- £ dz = pgl, 46
56 3pgfy T = pg (46)

In the above figure, the sides of the body were drawn vertically in the vicinity
of the free surface, so that the approximation of the incremental buoyancy wedges
by right triangles was reasonable. What if the body is narrow, and has extreme
slope to the sides at the waterline? Sketched below is a waterline wedge showing
the sides making an angle a with respect to the vertical. The additional wedge area
on one side due to the sloping side is approximately

: /- oy R

S ysy Soays¢’ (47)

and the moment of the wedge on one side is approximately

(4) (Gav*68%) ~ av’64" (48)

Thus in the limit as 6¢ — 0, the contribution of the sloping sides to the wedge
moment goes to zero. However, for finite values of the heel angle, the slope of the
sides will affect the shape of the curve of hydrostatic moment versus heel angle, as
we will see later.

Following the same argument as before, the buoyant force intersects a vertical
line through the center of buoyancy at a point M, which is called the transverse
metacenter, and the distance BM, = =/V is called the transverse metacentric
radius. Finally, the combined hydrostatic and weight moment is

§M, = —A(BM, — BG) (49)

as illustrated below. Since ships generally have a ratio of beam to draft of around
two to four, the transverse metacentric radius, BM, is of the same order as the
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distance between B and G. The height of the center of gravity is therefore critical
in establishing transverse stability. The equivalent to moment to trim one inch is
therefore not of any utility.

Ba.ck to the whale watchers. Our friends finally got cold up in the bow, walked
back to z = 0, but then walked out to the rail on one side (possibly motivated by

sea sickness). How much does the ship heel?

Again assuming a rectangular waterplane,

1 _
L= x 20° x 100 = 66,667 ft* (50)

and assuming again that the real inertia is half that of a rectangle, we find that the
transverse metacentric radius is '

Bif, _ 1z _ 66,667
vV~ 8,320

= 8.01 ft (51)

Now we need to know where the center of gravity is in order to get the meta-
centric height. Remember that this is not a geometrical quantity of the hull that
we can calculate, but comes from a detailed knowledge of the complete contents of
the ship. Anyway, we are given the fact that BG =6.0

The heeling moment for 12 farmers moving out half of the beam is 11.786 foot —
tons, so we have

oM, = AGM,b¢
11.786

56 = = 0.025 radi
¢ = 3377x (8.01=6.00) raduans

= 1.41 degrees _ (52)
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11 HYDROSTATIC CURVES

We saw from the preceding sections that we could calculate the response of a floating
body to small disturbances given simple geometrical properties of its submerged
volume and waterplane, and given the object’s weight and center of gravity. Since
these geometrical characteristics depend on the draft of the floating body, it is
convenient to calculate them over a range of possible drafts, and then interpolate
as necessary at the desired draft.

In the past, the interpolation process could be carried out most conveniently by
having the hydrostatic data plotted to a large scale on graph paper. For some reason,
it was accepted practice to plot everything on one large graph. Since different
hydrostatic properties differ in units and magnitude, this meant that the scale"
to which each quantity was plotted had to be noted. Examples of this type of
presentation can be found in traditional naval architectural texts.

In more recent years, tabulated computer generated hydrostatic data or on-
board computers have replaced the old graphs. An example of tabulated data
contained in an operating manual for a containership! is shown on the next page.

However, it is always nice to have graphs to see trends and to spot possible
errors. In addition, regulatory agencies frequently require them in connection with
safety reviews. Shown on the next few pages are small scale plots of the hydrostatic
characteristics of an oceanographic ship. The sections of the ship used as input for
these calculations are shown below.

'Macy,R.H.,“VESSEL DAMAGE CONTROL-SL-18 CONTAINER SHIPS”, Sea Land Services,
1972
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Hydrostatic Data

Keel Draft Displ. TPI MT1" KM LCB LCF
EET Tons Tons/Inch Foot-Tons Feet Feet Feet
32 0 34427 108.8 3741.6 39.00 325.88 314.03
32 1 34536 108.9 3752.8 39.01 325.84 313.92
32 2 34646 109.0 3764.0 39.02 325.80 313.81
32 3 34755 109.1 3775.2 39.03 325.76 313.70
32 4 34865 109.3 3786.5 39.03 325.72 313.59
32 5 34975 109.4 3797.8 39.04 325.68 313.49
32 6 35085 109.5 3809.2 39.05 325.64 313.38
32 7 35195 109.6 3820.6 39.06 325.60 313.27
32 8 35305 109.7 3832.1 39.07 325.56 313.16
32 9 35416 109.9 3843.6 39.08 325.52 313.06
32 10 35526 110.0 3855.2 39.09 325.48 312.95
32 11 35637 110.1 3866.8 39.10 325.44 312.84
33 0 35748 110.2 3878.4 39.11 325.40 312.74
33 1 35858 110.4 3890.1 39.12 325.36 312.63
33 2 35969 110.5 3901.8 39.13 325.32 312.53
33 3 36080 110.6 3913.5 39.14 325.28 312.42
33 4 36192 110.7 3925.2 39.15 325.23 312.32
33 5 36303 110.9 3937.0 39.16 325.19 312.21
33 6 36414 111.0 3948.8 39.17 325.15 312.11
33 7 36526 111.1 3960.6 39.18 325.11 312.01
33 8 36638 111.2 3972.5 39.20 325.07 311.91
33 9 36750 111.4 3984.3 39.21 325.03 311.81
33 10 36862 111.5 3996.2 39.22 324.99 311.71
33 11 36974 111.6 4008.1 39.23 324.95 311.61
34 0 37086 111.7 4020.0 39.25 324.90 311.51
34 1 37199 111.9 4031.9 39.26 324.86 311.41
34 2 37311 112.0 4043.8 39.27 324.82 311.31
34 3 37424 112.1 4055.8 39.29 324.78 311.22
34 4 37536 112.2 4067.7 39.30 324.74 311.12
34 5 37649 112.3 4079.6 39.32 324.70 311.03
34 6 37762 112.5 4091.6 39.33 324.65 310.93
34 7 37876 112.6 4103.5 39.34 324.61 310.84
34 8 37989 112.7 4115.4 39.36 324.57 310.75
34 9 38102 112.8 4127.4 39.37 324.53 310.66
34 10 38216 113.0 4139.3 39.39 324.49 310.57
34 11 38330 113.1 4151.2 39.40 324.45 310.48
35 0 38444 113.2 4163.1 39.42 324.40 310.39
35 1 38558 113.3 4175.0 39.44 324.36 310.31
35 2 38672 113.5 4186.9 39.45 324.32 310.22
35 3 38786 113.6 4198.7 39.47 324.28 310.14
35 4 38900 113.7 4210.5 39.48 324.24 310.06
35 5 39015 113.8 4222.4 39.50 324.20 309.98
35 6 39129 114.0 4234.1 39.52 324.15 309.90
35 7 39244 114.1 4245.9 39.53 324.11 309.82
35 8 39359 114.2 4257.6 39.55 324.07 309.75
35 9 39474 114.3 4269.4 39.57 324.03 309.67
35 10 39589 114.4 4281.0 39.59 323.99 309.60
35 11 39705 114.6 4292.7 39.60 323.95 309.53

Figure by MIT OCW.
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HYDROSTATIC PROPERTIES OF THE HULL
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FWD PERP 16,000 17.000
MID PERP 16.000 17.000
AFT PERP 16.000 17,000

WL HEIGHT ABOVE
18.000 99.000
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TONS/IN-FW 32.06 33.44
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LONG C.B. 2.58 1.24
LONG C.F. -9.97 -12.40
WETTED SURF 16635.1 17556.4
BLOCK COEFF .403 619
LONG PRISM .539 .552
MIDSHIPS . .748 760
VERT PRISM .583 .584
WATERPLANE .692 .718
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19997.3 20614.8 21266.4 21871.1
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12 LARGE WEIGHT CHANGES

We can use the hydrostatic curves to solve problems involving weight changes that
are too large for the small weight approximations to be valid. Here is an example.
Suppose the oceanographic ship has just been built and is floating empty at a level
draft of 16 feet. A total of 2000 tons of equipment is added at longitudinal position
zy, = —5.0 ft. Find the resulting draft and trim.

The small weight approximation would be to find the tons per inch immersion
at the 16 ft draft (32.9), and get

6z = 2000/32.9 = 60.79 inches = 5.06 ft
2y, — 2z,+6z=16+5.06=21.06 (54)

Instead, we know that the displacement at the original 16 ft draft is 3682 tons,
so that the new displacement is A = 3682 + 2000 = 5682. Entering the graph of
displacement versus draft at this value, we find that the new draft is 20.66 fi.2.
Hence, the small weight approximation overestimated the draft by 0.44 ft. This is
to be expected, since the waterplane area (and hence the tons per inch) increases
with draft. '

Now we have to deal with the trim. Using the small weight approximation, the
center of floatation at the initial draft is z; = —9.97 ft and the moment to trim
one inch is 508.98. The approximate trim is therefore

t = —2000 x (—9.97 + 5.00)/508.98 = 19.53 inches (55)

A more accurate way to do it is first to calculate the new longitudinal position
of the center of buoyancy,

2] must admit that I couldn’t read the graph to that accuracy, but I have the program and you
don’t!
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3682 + 2000) x z&, = 3682 X zg + 2000 X Tw
G
3682 x 2.58 + 2000 X —5
- = —.00 ft 56
6 5682 f (56)

and then calculate the unbalanced moment as the product of the new total displace-
ment and the distance between the new center of buoyancy and the new center of
gravity,

M, = —A(zy — zg)
= 5682 x (3.35 — 0.00) = 18,523 ft — tons (57)

So far this is exact. We must now make the assumption that the trim is small,
but we will use the moment to trim one inch at the new draft. Reading the curves,
this is 684.81. The trim is then

t = 18,523/684.81 = 27.0 inches (58)

compared with 19.5 inches obtained before. One reason why the trim results are so
different is that the position of the center of floatation changes rapidly with draft
for this particular hull shape.
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13 STABILITY AT LARGE ANGLES

We saw that ships are generally much more stable with respect to trim than with
-respect to heel. This is a direct consequence of their large ratio of length to breadth.
As a result, trim angles seldom get to be very large, and the small trim approxima-
tion developed earlier is good enough in most cases. On the other hand, heel angles
can become very large, and in some cases we need to know a ship’s stability char-
acteristics all the way to +180 degrees. The small angle approximation is therefore
useless for this purpose.

Offshore -platforms, buoys and other non-ship like objects may have length to
beam ratios close to one. In this case, large displacements in either heel or trim {or
combinations) are possible.

For the present discussion, we will consider the problem of finding the righting
moment as a function of heel angle. As the heel angle increases, the immersed and
emerged wedges of volume become more and more dissimilar. We can therefore
no longer rely on waterplane properties alone to deduce the buoyant moment. As -
shown in the sketch below, all we can say is that the buoyant force moves from the
initial point B to B'. The righting moment is therefore

M, =-AGZ | (59)

where the point Z is the intersection of a vertical line through the point B' and
a horizontal line through G. The vertical and horizontal directions are, of course,
taken with respect to the direction of gravity, not fixed relative to the body. The
-distance G Z is called the righting arm.
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In the limit of small angles, we saw earlier that the bouyant force passes through
the point M, which we called the transverse metacenter. However, at arbitrary
heel angles, the bouyant force could pass above or below this point. In a way, the
problem is conceptually simpler, since all we have to do is find the centroid of the
submerged volume at a given heel angle. However, there is one hidden complication.
We saw earlier that a floating body trims or heels about an axis through the center
of floatation. However, this is only true in the limit of small angles. As the heel
angle increases, the point of rotation moves. The actual point must be determined
by requiring that the submerged volume remain constant.

This means that in addition to calculating the centroid of the assymetric sub-
merged volume, one must adjust the height of the waterplane at each heel angle
until the volume matches the initial upright volume to within a prescribed tolerance.
In addition, for most shapes, the longitudinal position of the center of buoyancy
changes with heel angle. In that case, an unbalanced trim moment exists, and the
floating body must then trim until the moment is balanced.

s

7
v
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Shown below are the calculated righting arms for our sample oceanographic
ship for a range of initial drafts, and for an assumed height of the center of gravity
of 20 feet. Notice that GZ(¢) starts out fairly linear (the initial slope is just
the metacentric height, GM), but after about twenty degrees, the slope changes
significantly. The maximum righting arms occur at around ¢ = 40 degrees, and the
stability then goes to zero in the neighborhood of 110 degrees. This angle is called
the range of stability, since if the ship heeled over beyond this point (say due to a
gust of wind or the impact of a big wave), it would capsize. The curves show that
the ship is very stable upside down, at ¢ = 180 degrees. However, since large ships
are generally not designed to be watertight upside down, they will inevitably sink
if they get in this predicament.
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The righting arm curves on-the preceding page were for one p-articular value of
the height of the center of gravity. However, it is easy to see that if we shift G to a
new point G', the righting arm will be changed by an amount

GZ =GZ - GG'sin¢

(60)

thus if G is raised, GZ is reduced, and vise-versa. This is illustrated below. Note
that the range of stability is increased to around 140 degrees with the lowest center
of gravity, while it is only 30 degrees for the highest value.

Since this correction for the height of the center of gravity does not affect the
hydrostatic moment, the laborious calculation does not have to be repeated if the
center of gravity is changed. One only needs to apply the simple correction formula
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Another way of presenting righting arm data is to plot righting arm versus
displacement for different values of heel angle, instead of righting arm versus heel
angle for different values of displacement. These are called the cross curves of
stability, and are shown below (for the same data).

This obviously provides a convenient way to interpolate righting arm results at a
particular displacement. They also served a useful purpose in the pre-computer era
when balancing the hull at each heel angle to yield constant displacement. In that
case, one simply calculated righting arms at a fixed heel angle for a set of assumed
waterlines, and accepted whatever displacements came out. It didn’t matter if they
came out different at each heel angle, since the cross curves could be plotted in any
event. In this case, however, trim balance was not necessarily achieved.
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14 VARIOUS STABILITY TOPICS

14.1 The Inclining Experiment

It is important to know the exact height of the center of gravity of a floating object.
In principle, it can be calculated from a careful tabulation of the weight and center
of gravity of each part. However, many small boats and ships are built without a
careful control of the exact position and weight everything that ends up on board.
Even for large ships, where careful weight control is essential during design and
construction, the predicted position of the center of gravity is subject to some
uncertainty.

On the other hand, the position of the center of buoyancy and the metacenter can
be calculated with fairly high accuracy if the shape of the hull is build accurately. In
that case, one can derive the position of the center of gravity by applying a known
heeling moment, measuring the heel angle, and then calculating the metacentric
height from the small angle approximation

M, = AGM,6¢ (61)

Knowing both GM, and the position of M, we can determine the position of G.
This is frequently done when a ship is just built, before it is loaded with cargo and
expendable supplies. The center of gravity can then be calculated at later times by
allowing for the change due to the particular weights added.

' Here is an example. The familiar oceanographic ship has just been launched,
and is floating at a level draft of 16 ft. A 1000 pound weight, moved transversely a
distance of 40 feet, produces a heel angle of 0.631 degrees. Find the height of the
center of gravity.

From the curves of form, the displacement is 3682.2 tons. The metacentric
height is therefore '

§M, 1000 X 40
Abp 2240 x 3682.2 x 0.0631 x 0.017453293

GM, =

=440 ft  (62)
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From the curves of form, we also see that the height of the transverse metacenteér
is 39.15 feet. The height of the center of gravity is therefore

KG =KM, — GM, = 39.15 — 4.40 = 34.75 ft (63)

Now suppose 2000 tons of equipment with a combined center of gravity of 12
feet above the base line are installed. The new center of gravity of the ship can now
easily calculated. We leave this as an exercise ...

14.2 Transverse Shift in G

Even if a ship is symmetrical with respect to the zz plane, its center of gravity may
be to one side due to the way it is loaded. This is frequently the case for sailboats,
where the crew may move to one side to counterbalance the aerodynamic force on
the sails. We already treated the small heel angle approximation in the example of
the whale watching ship with the passengers moving out to one side. In the general
case, if the center of gravity moves from the centerplane to a point G’ which is a -
distance yg out from the centerplane, the righting arm is changed by an amount
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14.3 Free Surface Effects

Ships and offshore platforms generally have tank compartments contaﬁﬁng fluids
such as fuel oil, drinking water or salt water ballast. If these tanks are completely
full, the center of gravity of their contents does not change with heel angle. In that
case, the fluids in these tanks act as though they were solids. On the other hand,
if a tank is not completely full, it will have a free surface which remains horizontal
as the vessel heels over. The center of gravity of the fluid is then not constant, but
will change with heel angle.

This effect can be treated very simply if we again assume that the heel angle is
small. As shown in the sketch, the gravitational force acting on the mass of fluid in
the tank is directed along a line passing through the metacenter of the tank, M.

L‘ t

!
L

We can find the distance between the center of gravity of the fluid in the tank
and the metacenter from

@) = & (65)

where I is the moment of inertia of the free surface of fluid in the tank about an
axis parallel to the z axis, but through its centroid, and V* is the volume of fluid in
the tank. This means that the virtual center of gravity of the tank (as far as small
angular displacements are concerned) is at the point M:. We can therefore imagine
that the fluid in the tank is replaced by a solid point mass at its virtual center of
gravity. This, in turn, raises the virtual center of gravity of the ship by an amount
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pgVGG, = pgV'GM,
pils
p V

GG, (66)

where p; is the mass density of the fluid in the tank. Note that the volume in the
above equation is the volume of the ship, not the volume in the tank.

For example, suppose our sample oceanographic ship was floating at a level draft
of 20 feet and had a 50 foot long, 30 foot wide tank on the deck. The tank was
partially filled with sea water to provide a place to keep live specimens. What is
the virtual rise in the center of gravity of the ship? '

The transverse moment of inertia of the tank about its centroid is

1
I = 7550 30° = 112,500 ft* (67)

and the displaced volume of the ship is 5385.2 x 35 = 188,482 ft%. Since the fluid
in the tank has the same density as the fluid the ship is floating in, the density ratio
is 1.0. The free surface correction is therefore

GG, = 112,500/188,482 = 0.598 ft (68)

This is a significant increase in the height of the center of gravity, which might
have an adverse effect on stability. Free surface corrections are therefore important.
It is safer if tanks are either completely full or completely empty, but this is not
always possible, since some fluids (such as fuel) need to be consumed during a
voyage. If tanks are subdivided into smaller tanks, their free surface effect is greatly
reduced since the sum of the moments of inertia of the subdivided tanks is much
less than the moment of inertia of the original single tank.

The opposite situation exists if tanks on opposite sides of the ship are cross-
connected, as shown in the sketch. These act like an inside out catamaran, so that
the moment of inertia of the tank surface must be taken about an axis through the
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combined centroid of the two tanks. The free surface correction is therefore much
higher than if the two tanks were isolated. Cross connecting tanks is sometimes
done for convenience, for example so that fuel is consumed equally from tanks on
both sides. But it is also done to increase safety after damage. We will return to
this point later when we discuss damaged stability. Tt

p g ty - oxer ke T,
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14.4 Hanging Weights

A hanging weight is similar to a free surface since the weight force acts through the
suspension point, rather than through the initial center of gravity of the weight.
This situation comes up frequently in offshore construction where heavy weights
may be lifted by shipboard cranes. While the weight is resting on the deck, its
virtual center of gravity is located at its physical center of gravity. As soon as
the weight is lifted up an infinitesimal amount from the deck, its virtual center of
gravity immediately moves to its suspension point. A ship which was initially stable
could suddenly become unstable. It would then start to heel over and the weight
would swing out to one side. This could spoil an otherwise good day.
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14.5 Running Aground

Speaking of bad days—suppose you ran aground on a sharp pointed rock and the
tide went down. The buoyant volume of the hull would be reduced, and this would
have to be balanced by the contact force of the rock acting on the bottom of the
hull. If we assume that this force remains vertical as the ship heels over, this is
equivalent to removing a weight of equal magnitude at the contact point. This
again raises the height of the virtual center of gravity, thus reducing stability. The
same situation occurs intentionally when a ship is launched or drydocked. To insure
that these operations are safe, one must carefully calculate the grounding force and
the corresponding virtual rise in the center of gravity during all stages of the process.

14.6 Dynamic Stability

Strictly speaking, hydrostatics is limited to the study of the equilibrium of objects
at rest. However, there are situations involving motion of a floating body where the
predominant force exerted on the body by the fluid is hydrostatic. Since the body
‘may be moving, inertial forces and moments may act on the mass of the floating
body.

An example is the response of an initially stationary, upright floating body to
suddenly imposed heeling moment. This could be a sudden gust of wind hitting a
sailboat or offshore platform, or an impulsive moment caused by firing a cannon (or
maybe a water balloon).

/ - ’ SN——
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At time ¢t = 0 when the moment is applied, a heeling moment My exists, while
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the hydrostatic righting moment Mp, is zero, since the object is initially upright. An
unbalanced moment therefore exists, which will result in an angular acceleration.
As the heel angle increases, the righting moment increases until it equals the heeling
moment. At this point, the acceleration is zero, but since the floating object has
developed an angular velocity (and hence kinetic energy), it will keep on going until
the excess righting moment reduces the angular velocity to zero. Now the righting
moment exceeds the heeling moment, and the object will now start rolling back in
the opposite direction.

This oscillatory behavior would keep on indefinitely like a pendulum unless there
were some form of energy dissipation. Of course, there always is, sothat the object
eventually settles down to the heel angle resulting in static equilibrium between
the heeling and righting moment. The actual mechanism for energy dissipation,
which includes both viscous losses and the radiation of waves, is beyond the scope
of this subject. However, we can determine one very important quantity—what is

- the maximum possible oscillatory heel angle?

This can be done from a simple energy analysis. The work done by the heeling
moment up to the angle ¢,, is

$m
Wi = [ Ma(¢)db (69)
while the work done by the righting moment is

Wa= [*" M(d)dd (70)

0

The latter will generally be negative, since My will be negative if it is really a
righting moment. The net work is the sum of the two, which must then equal the
sum of the kinetic energy of the floating object plus the energy dissipated in waves
and friction. If we ignore energy dissipation, then the maximum heel angle is the
angle for which the sum of the work done by the heeling and righting moments is
zero. This is illustrated in the plot below
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If the maximum dynamic heel angle exceeds the range of statical stability, the
object will capsize, even though the static equilibrium heel angle might be less than
the range of stability. This is a safety concern, particularly for small ships, and
regulations exist to insure that both the static and dynamic stability curves are
adequate.
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15 FLOODING—WHEN THINGS GO WRONG

While ships, offshore platforms and other floating devices are supposed to be wa-
tertight, they sometimes become partially flooded. The most common cause is
collision, but structural failure, faulty operation, or even attacks by killer whales
can result in unintentional flooding.

Sometimes flooding of a portion of a floating object is done intentionally. Sub-
marines have ballast tanks which are flooded in order to reduce their buoyancy so
that they will submerge. Floating drydocks flood and pump out compartments to
turn themselves into floating elevators. Large offshore platforms, whose final draft
may far exceed the water depth at the site of their construction, may be intentionally
flooded during offshore assembly.

We will treat two kinds of flooding analysis. The first, which is called floodable
length, consists of finding out. how much of a floating object can be flooded without
sinking. With this information, one can decide where to put watertight internal
subdivision so that the ship or platform will be safe.

The other topic is to predict the floatation and stability after a prescribed set
of internal compartments have been opened to the sea. We will look at this first
as a small weight problem, and then treat the general case where the change in
floatation may be large.

15.1 Floodable Length

We first define a margin line z,,(z) as the maximum allowable height of the water-
plane at any longitudinal position, z, occurring as a result of flooding. For ocean
going ships, this line is defined by regulatory agencies to be at least 3 inches (76
mm) below the highest watertight deck. Regulations require that this point be even
lower if the sheer (the difference in depth of the hull amidships and at the ends) is
less than a prescribed amount. We will not cover these details here. The point is
that we are told how much the hull is allowed to sink down in an emergency and
still be considered safe.
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Suppose the object were floating at a particular draft prior to damage. We
therefore know its initial displacement, A and its longitudinal center of buoyancy,
zp. After flooding, there are an infinite number of possible floatations which will
just keep the margin line dry. In fact, the margin line can be thought of as the
envelope curve to this set of floatation lines. '
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Let us select one of these possible floatations, and find the length of flooded space
within the hull that caused it. We will assume that the flooding is confined to the
space in the hull between two planes z = const located at z; and z,. The flooding
within this region is assumed to be homogeneous, but that the volume of flooding is
less than the volume of the space due to the presence of impermeable objects inside.
This is expressed in téerms of a ratio called the permeability, 4. If the volume of
the flooded space is V, the volume of flooding is uV, and the weight of the water
entering the flooded compartment is pguV.. As shown in the sketch below, the
length of the flooded compartment is [ and its mid point is z,, = (z; + z4)/2. The
centroid of the volume of the water flooding the space is at z., which depends on the
details of the shape. If the shape were prismatic (say, a barge), then the centroid
of the flooding and the midpoint of the compartment would be the same. L
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The value of the permeability, 1, depends on the contents of the region which is
flooded. Generally one has neither the time or the detailed information necessary to
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compute an exact value. One therefore relies on statistical averages, which regula-
tory agencies generally prescribe. For example, empty compartments are generally
assigned a value = 0.95, indicating that on an average, five percent of the internal
volume is occupied by structural elements, piping, wiring and other impermeable
objects. Machinery spaces are assigned a permeability of u = 0.85, indicating that
a somewhat larger part of the space is impermeable. Finally, cargo spaces have
values which depend on the type of cargo being carried, and one can find tables for
just about anything®.

We can find V. and z. by writing down the force and moment equilibrium
equations. Define V’ as the volume of the hull underneath the flooded waterplane,
and zy as the centroid of this volume. Then,

uv, = V' -V
V'zy = Vzp+uV.z, : (71)

Note that we are ignoring the contribution of BGé# to the moment, which is
the assumption made earlier in developing the convenient moment per unit trim
formula. This is only valid for ship-like forms.

Inverting the preceding equations gives the result

v -V

m
V'zly —Vzp
"EC p'vc ( )

This is simple enough, but we still need to find z,, and I. Unless we are analyzing
a prismatic shape, this requires an iterative process. There are 2 number of ways
to do it, but here is one possible algorithm:

1. Assume z,, = z,

! Grapefruit(in boxes) 46%, Onions(bags) 48%, Lanterns(cases) 80%, Tallow(barrels) 35%
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. Find A;(z,,) up to the flooded waterline
. Estimate length from | = V. /A,

. Estimate the positions of the ends of the compartment; z; = z,, + /2, z, =

T —1/2.

. Calculate a more exact value for V., and z. by dividing up the interval from

z; to z, into a number of sub-intervals, find A, for each one, and numerically
integrate to obtain the volume and first moment.

These values will generally not be the same as the required values. Calculate
the errors 6V, and éz..

Move the positions of z; and z, using the values of A,(z,) and A,(z,) in such
a way as to reduce the error in volume and moment.

Repeat from step 5 until the errors are within a prescribed tolerance.

Now, this gives us the value of the floodable length, {(z), corresponding to
this one assumed floatation (these are sometimes called trim lines). Repeating the
process for a systematically varied set of trim lines results in a floodable length
curve, as shown in the figure for the sample oceanographic ship for an initial draft

of 20 feet.
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How can this information be used? A simple graphical interpretation of the
result is shown below. If we start at any point on the floodable length curve and
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draw two lines with slope 2/1, the intercept with the z axis will be the forward
and aft ends of the compartment which will just sink the hull down to the margin
line. Conversely, if we start at the two ends of a given compartment, and draw
lines upward with the same 2/1 slope, we can see whether or not the compartment
is too long by checking whether their intersection is above or below the floodable
length curve. If they intersect below the curve (corresponding to the appropriate
permeability), we are safe, otherwise, we are not.

This brings up another point. The preceding discussion implies that we are safe
if we can survive one compartment flooding. But, suppose some crazy runs into us,
and hits right on a watertight bulkhead. In that case, two adjacent compartments
will be flooded. Regulatory agencies therefore require that some types of ships have
sufficient floodable length that two adjacent compartments can be flooded without
submerging the margin line. But then, suppose that we run along side of an iceberg
at high speed, and it rips open three or four compartments? In some cases, more
than two-compartment subdivision may be required. However, as with any safety
regulation, there is no such thing as perfectly safe. Those involved with safety
standards must study the probability of occurrence of various hazards, and then
come up with standards which are always a compromise between absolute safety
and economic reality. One the standard is defined, however, a hydrostatic analysis
can show with precision whether or not a given design meets the accepted level of
safety.
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15.1 Small Flooding Approximations

We now want to estimate the final floatation after a prescribed length of the hull
is flooded to the sea. However, we will assume here that the extent of flooding is
small enough that we can make the same kind of assumptions that we did before
in treating small weight additions.

Using the same notation as for floodable length, the flooded space extends from
zs to z,, with centroid at z,. We want to find the final floatation, which can either
be expressed as the sinkage, 6z, and trim, ¢, or the final drafts 7} and T, at the
bow and stern. This is the inverse of the floodable length problem, where the final
floatation was given, and the extent of the flooding had to be found.

There are two ways to analyze this problem; the Added Weight Method and the
Lost Buoyancy Method. Both give the same final answer, are equally correct, but
very different conceptually.

The added weight method starts with the ship floating at initial draft T, or
equivalently, with the waterplane at z = z,,. If the compartment is opened to the
sea, a weight wy, = pguV, of sea water will come in. Note that V. is the volume
of the flooded space below the tnitial waterplane, not up to the final waterplane as
in the floodable length analysis. This is just as well, since we do not know the final

floatation yet. A 2

P x

The quantity wy, is our initial guess for the added weight. With this value of
the weight, we can use the good old small weight method to find the change in draft
and the trim based on the tons per inch and the moment to trim one inch,
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6310 = w,,/(leTPI)

t = wy X (z.—zr)/(12 X MTI)
bz, = bzy+ (L/2—zF) x1/L
6z, = bz, — (L/2+zp)xt/L
b2, = bzy+ (2. —zF) Xt/L (73)

where 6z, is the increment in draft calculated at the centroid of the damaged space.

Now here comes the problem. Since the waterplane at the location of the flooding
has increased, more water will come in. If the waterplane area of the damaged
compartment (at the initial floatation) is A., the increment of added weight will
be approximately éw;, = pguA. 6z, so that the total added weight will be w, =
wy, + pguA.bz.. We can therefore compute our next estimate of the final floatation
by replacing wy, with w; in equation 73.

As a result, the hull sinks down more, thus more water comes in, causing it to
sink even more. Fortunately, the process converges to some limiting value, which
is the answer that we are looking for. This is illustrated in the sample FORTRAN
program listed in this section. In this example, the sample oceanographic ship is
assumed to be damaged at an initial draft of 20 feet. The weight of the water
flooding the damaged space up to the initial waterplane is assumed to be 397 tons,
located with centroid 50 feet forward of amidships. The waterplane area of the
damaged space is given as 965 ft2. All other quantities are taken from the tabulated
hydrostatic data that we have seen before. Note that the result is converged to 0.001
ft of draft after six iterations.

We will now look at the lost buoyancy approach. In this case, the looded region
is no longer considered to be part of the hull. As shown in the sketch, it is though
the flooded part had been sawed off and thrown away, and the two remaining halves
mechanically connected in some way. No weight is added, since the water inside
the flooded compartment is just part of the ocean. The displacement of the hull
is therefore the same, before and after the damage. The buoyancy must also be
the same. This is accomplished by replacing the lost buoyancy in the flooded space

with buoyancy gained by sinking the remaining part of the hull deeper.
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Similarly, the longitudinal position of the center of gravity of the hull is un-
changed, so that the moment about the y axis of the lost buoyancy must equal the
moment of the gained buoyancy.

Proceeding with the details of the solution, the lost buoyancy is pguV., which
is the same as our first approximation to the added weight in the added weight
method, wy,. To get the gained buoyancy, we first need to get the tons per inch,
center of floatation and moment to trim one inch of our newly remodelled ship,

A, = 420xTPI

A = (A,—pxA)
TPI, = A,/420
zrq = (A;Xzp—puXx A Xz.)/(A:— 1 xA)
I, = 420x MTIx L
Ii = I,—px A, x(z, — zp)*
Ii = I,u— Azd X (zps — zp)*
MTI; = 1,4/(420x L) (74)

We now have all the necessary characteristics of the hull after damage. While
this was more work that in the added weight method, we can now solve directly for
the sinkage and trim without any iteration,

6z, = wy, /{12 x TPI)
t = wys X (2. — zra)/(12 X MTI)
bzy = bzy+(L/2—zpa) Xt/L
6z, = bz,— (L/2+ zFa) X t/L v (75)

The lost buoyancy method is also included in the program shown in this section.
Believe it or not, the final drafts at the bow and stern are exactly the same. However,
intermediate quantities are not. For example, the draft increment, 6z, is 0.996 ft
for the added weight method and 0.941 ft for the lost buoyancy method. This
might seem like a mistake, but the explanation is that these both represent the draft
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increment at the center of floatation, and the centers of floatation are different in
the two methods. In the first case, it is in the same position as for the intact hull,
while in the second case, it has moved to the centroid of the new waterplane which
has excluded the damaged part.

One final comment. Since the lost buoyancy method did not require an iterative
solution, there is no reason why the added weigh method should. In fact, one could
solve algebraically for the unknown final drafts, which would then result in a set
of equations which look like the lost buoyancy method. The iterative added weight
method is conceptually simpler, and also allows for the possibility of refinement to
allow for larger floatation changes.

The following FORTRAN program computes the floatation after damage using
both the added weight and lost buoyancy methods. The parameter statement sets
up the data for the calculation for the oceanographic ship discussed in this section.
The permeability is assumed to be one in this example.

REAL*4 MTI,LPP,IY,IYD,IYDF,MTID
PARAMETER( WFZ=397.0, AC=965.0, TPI=37.45, MTI=675.81 )
PARAMETER( LPP=294.0, XF=-16.72, XC=50.0 )
sxickakk ADDED WEIGHT METHOD ITERATIVE SOLUTION skskksokskokokokookakok sokosk sk ok dkokook ok ok

WRITE(*,"(A)') ADDED WEIGHT ITERATIVE METHOD °*
WRITE(*,'(A)’) * ----WF--- ---- DZ--- ---- T---- -== DZC--- --- DZB---
* ~--DZ8-~- '

WF=WF2

DO 1 N=1,6

DZ=WF/(12.0*TPI)
T=WF* (XC-XF)/(12.0«MTI)
DZC=DZ+{XC-XF)*T/LPP
WF=WFZ+AC*DZC/35.0
DZB=DZ+ (LPP/2.0-XF)*T/LPP
DZS=DZ- (LPP/2.0+XF) *T/LPP
WRITE(*,'(6F10.3)') WF,DZ,T,DZC,DZB,DZS
1 CONTINUE
oo ok A ok ok LOST BU[]YANCY METH[]D 1323332333333 3332323333332 2333333333238 33 8 24
AZ=420.0*TPI
AZD=AZ-AC
TPID=AZD/420.0
TIY=420.0*LPP*MTI
IYD=IY-AC* (XC-XF) %2
XFD=(AZ*XF-AC*XC) / (AZ-AC)
IYDF=IYD-AZD* (XFD-XF)*%2
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MTID=IYDF/(420.0+LPP)
DZ=WFZ/(12.0*TPID)

T=WFZx* (XC-XFD)/(12.0*MTID)
DZB=DZ+(LPP/2.0-XFD) *T/LPP
DZS=DZ-(LPP/2.0+XFD)*T/LPP

WRITE(*,'(A)*) LOST BUOYANCY METHOD :
WRITE(*,'(A)*') ' ---TPID-- --- MTID-- --—- XRD--- ---- DZ--- ---- T----
% -—-DZB--- --- DZ§---- °*

WRITE(*,'(7F10.3)°) TPID,MTID,XFD,DZ,T,DZB,DIS

STOP

END

ADDED WEIGHT ITERATIVE METHOD

--—-WF--- ---- DZ--- ---- T~ === DZC--- ~-~ DZB--- --~ DZS-~-
441.793 883 3.266 1.626 2.702 -.b64
446.847 983 3.635 1.808 3.007 -.628
447.417 .994 3.676 1.829 3.042 -.635
447.482 . 996 3.681 1.831 3.045 -.636
447.489 .996 3.682 1.831 3.046 -.636
447.490 .996 3.682 1.831 3.046 -.636
LOST BUOYANCY METHOD
~~-TPID-- --- MTID-- --- XFD--- ---- DZ--- ---- Te=== === DZB--- --- DZS----
3b6.152 638.747 -21.081 .941 3.682 3.046 -.636

Stop - Program terminated.

15.2 Damage Stability

Sinking is not the only concern if a floating object is partially flooded due to dam-
age. It is possible that transverse stability may be sufficiently reduced to cause
capsizing. Having solved for the new foatation, it is simple to estimate the meta-
centric height after damage, which provides with an indication of initial stability.
Large angle stability after damage requires brute force calculations which are con-
ceptually not any different from the case of intact stability. In this section we will
develop expressions for the metacentric height after damage, again using the added
weight and lost buoyancy method.
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In addition to the quantities used before to determine sinkage and trim, we need
to know the height of the centroid of the flooded space (up to the initial waterplane),
2., and the moment of inertia of the initial damaged waterplane about the z axis,
I.. To simplify the development, we will assume that the permeability, u is one.

Following the added weight approach, we first determine the height of the cen-
troid of the final added weight,

X X A, X 6z, X
2oy = Ze Wiy + waf ¢ ¢ Pyg (76)

Note that the height of the additional flooding (beyond the initial waterplane)
is taken to be at the height of the initial waterplane, z,, which is consistent with a
small weight approximation. We now know both the added weight and its vertical
center, so that we can now calculate the new center of gravity of the ship

/ A+U)f

(77)

If we consider the flooded water to be an added weight, it must act like water
in a tank, so that there must be a free surface correction. The virtual height of the
center of gravity is therefore

KG, = KGy+pgl./(A + wy) (78)

The height of the center of buoyancy is also changed, since some floatation has
been added (approximately) at the initial waterplane,

%B _Axﬁ+wfxzw
= A+w;

(79)

The transverse metacentric radius BM [ after flooding will also be different.
This is the moment of inertia of the waterplane divided by the displaced volume.
The waterplane inertia is (approximately) unchanged, but the displaced volume has
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increased. We can therefore obtain the metacentric radius after flooding from its
intact value by multiplying by the ratio of displacements,

_— = A
= 80
B 4 B A+ wy ( )

The final metacentric height after flooding is
GM;= KB;+ BM; - KG, (81)

Using the lost buoyancy approach, the height of the center of gravity is un-
changed (since no weight was added) and there is no free surface correction, since
the water in the flooded space is part of the ocean. However, the height of the cen-
ter of buoyancy has changed, but by an amount which is different from the added
weight method. In this case, buoyancy has been moved from the centroid of the
flooded compartment (the lost buoyancy) to the initial waterplane,

ﬁf:A><ﬁ+12fx(z.,,——zc)

(82)

The transverse metacentric radius is also different, but in this case it is because
the waterplane inertia of the flooded space has been lost, while the total displace-
ment remains the same.

— L
A

— I
BM; = pg—= (83)

The metacentric height, as before, is obtained from the difference in height of
B and G.

The following computer program performs these calculations, continuing from
the preceding example. The results show that the metacentric height according to
the added weight method is 4.827 ft, while according to the lost buoyancy method
it is 5.228 ft. This, again, would seem like a mistake until we realize that the
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righting moment is the physical quantity which should be the same, regardless of
the method used. Recalling that 6M, = AGM,64, the product of metacentric
height and displacement should be the same. Since the displacements are different
in the two cases (in the added weight case it is increased by the weight of the
flooding, in the lost buoyancy case it stays the same), the metacentric heights have
to be different. The example verifies that their product is the same with both
methods.

Note that the product of metacentric height and displacement of the intact ship
is 31,288. The stability is therefore about ten percent less as a result of the flooding.
This happens not to be a very major difference in this case, but this is not always
the case.

REAL*4 KG,KB,KM,IC,KGF,KGV,KBF, KBL, IXL

PARAMETER( KG=32.0, KB=12.64, KM=37.81, IC=208333.0 )
PARAMETER ( AC=965.0, DZC=1.831, DELTA=5385.2, WF=447.49)
PARAMETER( WFZ=397.0, ZC=12.9, Z¥=20 )

RHO0G=1.0/35.0

*eiokkk ADDED WEIGHT SODLUTION FDR DAMAGE STABILITY kskaokuokakan s sonobok bk bk
ZCF=(ZC+WFZ+ZW*AC*DZC*RHOG) /WF
DELTAF=DELTA+WF
KGF=(KG*DELTA+ZCF*WF ) /DELTAF
FSC=IC*RHDG/DELTAF
KGV=KGF+FSC
KBF=(DELTA*KB+WF*ZW) /DELTAF
BM=KM-KB
BMF=BM*DELTA/DELTAF
GMF=KBF+BMF-KGV
DELGMF=DELTAF*GMF _
WRITE(*,*(’’ ADDED WEIGHT: GM='’,F8.3,'’ GM*DISP='',F10.0)"’)
* GMF , DELGMF

*ackkkkx LOST BUOYANCY SOLUTION FOR DAMAGE STABILITY kskakokdokokdokdskokkskokkk

KBL=(DELTA*KB+WFZ* (ZW-ZC) ) /DELTA

IXL=BM+DELTA/RHOG-IC

BML=IXL*RHOG/DELTA

GML=KBL+BML-KG

DELGML=DELTA*GML

WRITE(*, ' (’' LOST BUOYANCY: GM=’',F8.3,'’ GM*DISP='",F10.0)')
* GML, DELGML

STOP

END
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ADDED WEIGHT: GM=  4.827 GM*DISP= 28154.
LOST BUOYANCY: GM=  5.228 GM=*DISP= 28164.
Stop - Program terminated. ‘
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