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Lecture Note 13

1 Temporal-Difference Learning

We now consider the problem of computing an appropriate parameter 7, so that, given an approximation
architecture J(x,7), J(-,7) = J*(-).

A class of iterative methods are the so-called temporal-difference learning algorithms, which generates a
series of approximations J, = J(-, ;) as follows. Consider generating a trajectory (z1,uy, ..., Ty, uz), where
uy is the greedy policy with respect to J,. We then have the error /temporal differences

Ak = Guy (T1) + oy (@p1,78) — Tk (Th, 78),

which represent an approximation to the Bellman error (T.Jy)(xx) — Ji(z1) at state z,. Based on the
temporal differences, an intuitive way of updating the parameters r; is to make updates proportional to the

observed Bellman error/temporal difference:
Tht1 = Tk + Vedk 2k,

where 7 is the step size and z; is called an eligibility vector — it measures how much updates to each
component of the vector r; would affect the Bellman error.

To gather more intuition about how to choose the eligibility vector, we will consider the case of au-
tonomous systems, i.e., systems that do not involve control. In this case, we can estimate the cost-to-go
function via sampling as follows. Suppose that we have a trajectory x1,...,x,. Then we have

n

T(@) ~ Y a"lg(x)

t=1
n
TH(@2) ~ Y a"Pg()
t=2
In other words, from a trajectory xi,...,x,, we can derive pairs (x;, j(xz)), where j(zl) is a noisy and

biased estimate of J*(z;). Therefore we may consider fitting the approximation .J(z,r) by minimizing the

empirical squared error:
LN - 2
mrinz (Jn(a:t) - J(xt,r)> (1)
t=1

We derive an incremental, approximate version of (1). First note that jn(xt) could be updated incrementally
as follows:

Tni1(ze) = Jn (@) + ™ g(wnga) (2)
Alternatively, we may use a small-step update of the form

n+1
Fusaw) = ntan) + 7 [ 3 0l glay) — Julan) | O



which makes J,, 41 (2;) an average of the “old estimate” J,,(z;) and the “new estimate” (2). Finally, we may

approximate (3) to have Jn (z¢) function dy,ds, ..., dy:
Z d7lg(wy) = In(w) = g(xe) + adu(@ip1) = Julwe) + a(g(@err) + adn(@iso) = Ju(@i41)) + - ..
j=t

+an7t(9(xn) + ajn(anrl) - Jn(xn)) - an+17tjn(xn+1

n
E oﬂ_tdt.
Jj=t

Q

Hence
n+1

Jnt1(e) = Ju(2e) + Z ol =t (4)

j=t
Finally, we may consider having the sum in (1) implemented incrementally, so that the previous temporal

differences do not have to be stored:
jn+1(l't) = jn(xt) =+ ’}/Oén+17tdn+1.

Hence, in each time stage, we would like to find r,, minimizing
"o - 2
min > (o () + 70"y — J(w,7)) (5)
i

Starting from the solution r,, to the problem at stage n, we can approximate the solution of the problem at

stage n + 1 by updating r,, 11 along the gradient of (5). This leads to
n ~
Tntl =Tn +7 <Z at_anJ(rna mt)) dn+1~
t=1
We can also have an incremental version, given by
Tkl =Tk + VE2kdg
zy = azg—1+ Ved(Tg,T))

The algorithm above is known as T'D(1). We have the generalization TD()\), A € [0, 1].

The1 =Tk + Ye2rdy

_ TD(A)
2k = arzp_1 + Vo J (2, 78)

Before analyzing the behavior of TD()), we are going to study a related, deterministic algorithm —
approximate value iteration. The analysis of TD(A) will be based on interpreting it as a stochastic approxi-

mation version of approximate value iteration.

2 Approximate Value Iteration
Define the operator T)

ThJ = (1=X) > AT for e [0,1)
m=0

J = J%, for A =1.

We can show that T} satisfies the same properties as T



Lemma 1

- a(l —X)
T —ThJ|oe < ——=
1T oo < 57—

Jr=T\J"

1T = Jllees  VJ,J

The motivation for T} is as follows. Recall that, in value iteration, we have Jy11 = T'J;,. However, we
could also implement value iteration with Jy; = TZJ,, which implies L steps look ahead. Finally, we can
have an update that is a weighted average over all possible values of L; Jx11 = ThJ gives one such update.

In what follows, we are going to restrict attention to linear approximation architectures. Let

) P

J(x,r) = Z(bi(x)r,-, and

¢1(1)  @2(1) ... op(1)
$1(2) #2(2) ... ¢p(2)

J = or
Moreover, we are going to consider only autonomous systems. We denote by P the transition matrix

associated with the system.

Let us introduce some notation. First, we have

1) o 0
oo fl(2) ?
0 0 d(n)

where d : S — (0,1)¢ is a probability distribution over states. Define the weighted Euclidean norms

|20 = J'DJ =" d(z)J*(x)
zeS
<JJ>p = J'DI=> dx)J(x)J(x)
zeS
For simplicity, we assume that ¢;,7 = 1,...,p is an orthonormal basis to the subspace J = ®r, i.e.,

|fill2,p =1 and < ¢;,¢; >=0,Vi #j

In matrix notation, we have
®TDP = 1.

We are going to use the following projection operator II:

IIJ = ®ry, where ry = argmin ||®r — J|2.p
T
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Figure 1: Approximate Value Iteration



We can characterize II explicitly by solving the associated minimizing problem. We have

Ty argmin ||[®r — J||3 5
= argmin(®r — J)TD(®r — J)

— (®"D®)"'®"DJ

= <d,J>p

Hence, we have [1J = & < ®,J >p.

Lemma 2 For all J,
IJj=®<®,J>p (6)
<IJ,J—-11J >p=0 (7)
1713,0 = T35 + IJ = T3 (8)

Note that ®ryq = [T\ Pri. We know that the projection II is a nonexpansion from
ITLJ =T |l2,p = [TI(J = J)|l2.0 < |J = Jll2,p-

Moreover, T’ is a contraction:
0] = Todlloe < K|lT = Tl

However, the fact that II and T are a non-expansion and a contraction with respect to different norms
implies that convergence of approximate value iteration cannot be guaranteed by a contraction argument, as
was the case with exact value iteration. Indeed, as illustrated in Figure 2, IIT) is not necessarily a contraction
with respect to any norm, and one can find counterexamples where T'D(\) fails to converge.

As it turns out, there is a special choice of D that ensures convergence of TD(X) for all A € [0,1]. Before
proving that, we need the following auxiliary result. First, we present two definitions involving Markov

chains.

Definition 1 A Markov chain is called irreducible if, for every pair of states x and y, there is k such that
P*(z,y) > 0.

Definition 2 A state = is called periodic if there is m such that P*(x,xz) > 0 iff k = mn, for some
n€{0,1,2,...}. A Markov chain is called aperiodic if none of its states is periodic.

Lemma 3 Given a transition matriz P and assume that P is irreducible and aperiodic. Then there exists a
unique w such that

al'p =gt
and
T
T
P" — )
7T



HT)\(I)Tk

Y

Figure 2: T)®r; must be inside the smaller square and II7T)\®r; must be inside the circle, but II'7T) ®r; may

be outside the larger square and further away from J* than ®ry.



This lemma was proved in Problem Set 2, for the special case where P(z,z) > 0 for some z.
We are now poised to prove the following central result used to derive a convergent version of TD(A):

Lemma 4 Suppose that the transition matrixz P is irreducible and aperiodic. Let

1 0 0

0 T 0
D: )

0 0 7T‘3|

where w is the stationary distribution associated with P. Then
[1PJll2.0 < |[Jl2,p-

Proof:

zeS

> w(@)>  P(x,y) I ()

zeS

= 35 (@) P(x,y) S (y)
= Y ) 2w

Y
= 750

2
1PI5p = Y w(@) (ZP(x,y)J(y)>

IN

The first inequality follows the Jensen’s inequality and the third equality holds because 7 is a stationary
distribution. O

Based on the previous lemma, we can show that T} is a contraction with respect to || - ||2,p,, where

st 0 0

0 T2 0
D, =

0 0 TS|

and 7 is the stationary distribution of the transition matrix P. It follows that, if the projection IT is performed
with respect to || - ||2,p,, IIT\ becomes a contraction with respect to the same norm, and convergence of
TD()) is guaranteed.

Lemma 5
(4) |TJ = TJ|2,p, <allJ = J|2p,
.. = a(l - a) _
_ < TP g
(i7) IT5J = TaJll2,pn < 5=~/ = 2D,
_ 1-— _
(dii) |OT\J — OT)\J||2,p, < %HJ— Jll2,p.




Proof of (1)

ITJ = TJ|2.p. lg+aPJ—(g+a J)|2p,
a|[PJ = PJla.p,

allJ = Jll2,p,

IN

Theorem 1 Let
q)'f'k_H = HTA@T]C

and
1 0 0
0 T2 0
D, =
0 0 7T|5‘

Then ry, — r* with
187 ., < KoL — T,

Proof: Convergence follows from (iii). We have ®r* = IIT\®r* and J* — ThJ*. Then

|@r* = T3 p, = [®r" =TT +ILJ* = J*|3 p,
= | ®&r* —TJ*|3 5+ |TLJ* — J*||3 5.  (orthogonal)
= |OT\®r* —OTaJ |5 o, + ITLT* = J*|f5
a?(1—)\)?
- (1-a))?

~———
Y

|@r™ =T[5 p, + IILT* = J*[I3

Therefore 1
127" J*ll2,p, < 37— I1LJ" = J*|l2,0,
-7



