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2.997 Decision­Making in Large­Scale Systems March 29 

MIT, Spring 2004 Handout #18 

Lecture Note 14 

Convergence of TD(λ) 

In this lecture, we will continue to analyze the behavior of TD(λ) for autonomous systems. We assume that 
the system has stage costs g(x) and transition matrix P . 

Recall that we want to approximate J∗ by J∗ ≈ Φr̃. We find successive approximations Φr0,Φr1, . . . by 

applying TD(λ): 

rk+1 = rk + γkdk zk (1) 

dk = g(xk ) + α(Φrk )(xk+1) − (Φrk )(xk ) (2) 
k

zk = αλzk−1 + φ(xk ) = (αλ)τ φ(xτ ) (3) 
τ =0 

We make the following assumptions: 

Assumption 1 The Markov chain characterized by P is irreducible and aperiodic with stationary distribu­
tion π. 

Assumption 2 The basis functions are orthonormal with respect to � · �2,D , where D = diag(π), i.e., 
ΦT DΦ = I. 

In the previous lecture, we introduced and analyzed approximate value iteration (AVI). The main idea is 
that TD(λ) may be interpreted as a stochastic approximations version of AVI. Before finishing the analysis 
of TD(λ), we review the main points related to AVI. 

Recall the operators Tλ and Π: 

∞

λmTm+1TλJ = (1 − λ) J, 
m=0 

ΠJ = Φ < Φ, J >D . 

Then AVI is given by 

Φrk+1 = ΠTΦrk, (4) 

and we have the following theorem characterizing its limiting behavior: 

Theorem 1 If ⎤⎡ 

D = 

⎢⎢⎢⎢⎣ 

π1 0 . . . 0 

0 π2 . . . 0 
. . . . . . . . . . . . 
0 0 . . . π|S| 
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and πT P = πT , then rk → r∗, and 

1 �J∗ − Φr∗�2,D ≤ √
1 − k2 

�J∗ − ΠJ∗�2,D 

α(1−λ)where k = 1−αλ ≤ α. 

We can think T D(λ) as a stochastic approximations version of AVI. Recall that the main idea in stochastic 

approximation algorithms is as follows. We would like to solve a system of equations r = Hr, but only have 

access to noisy observations Hr = w for any given r. Then we attempt to solve r = Hr iteratively by 

considering 

rk+1 = rk + γk (Hrk − rk + wk ). 

Hence in order to show that T D(λ) is a stochastic approximations version of AVI, we would like to show 

that 
Φrk+1 = ΠTλΦrk − Φrk + wk , 

for some noise wk. 
The following lemma expresses (4) in a format that is more amenable to our analysis. 

Lemma 1 The AVI equations (4) can be rewritten as 

Φrk+1 = Φ < Φ, TλΦrk >D , (5) 

or, equivalently, 
rk+1 = Ark + b, (6) 

where � � ∞

A = (1 − λ)ΦT D λt(αP )t+1 Φ (7) 
t=0 

and 
∞

b = ΦT D (αλ)tP t g. (8) 
t=0 

Proof: (5) follows immediately from the definition of Π. Now note that 

rk+1 = < Φ, TλΦrk >D 

= ΦT DTλΦrk 
m∞

g + αm+1P m+1Φrk = (1 − λ)ΦT D λm (αP )t 

m=0 t=0 
∞ ∞ ∞

λm= (1 − λ)ΦT D λm(αP )m+1Φrk + (1 − λ) (αP )t g 
m=0 t=0 m=t 

∞

= Ark + (λαP )t g

t=0


= Ark + b.


At the same time, we have the following 
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Lemma 2 T D(λ)’s equations (1) can be rewritten as 

rk+1 = rk + γk (Akrk − rk + bk), (9) 

where 

lim EAk = A, 
k→∞
lim Ebk = b, 

k→∞ 

where A and b are given by (7) and (8), respectively. 

Proof: It is easy to verify that (1) is equivalent to (9), where 

Ak = zk (αφ(xk+1) − φ(xk)) + I, 

bk = zk g(xk ). 

We will study the limit of EAk and Ebk. For all J , we have 

k

lim E [zkJk ] = lim E (αλ)k−τ φ(xτ )J (xk )

k→∞ k→∞ 

τ =0


k

= lim E (αλ)τ φ(xk−τ )J (xk ) (� P k (x, y) → π(y)) 
k→∞ 

τ =0 

∞

= E (αλ)τ φ(x0)J (xτ ) x0 ∼ π (P (xτ = x|x0) = P τ (x0, x))|
τ =0 

∞

= E (αλ)τ φ(x0)(P τ J )(x0) x0 ∼ π|
τ =0 

∞

= (αλ)τ < Φ, P τ J >D 

τ =0 

Letting 

J (xk , xk+1) = αφ(xk+1) − φ(xk), 

we conclude that 
∞

lim EAk = (αλ)τ < Φ, αP τ +1Φ − P τ Φ >D +I

k→∞ 

τ =0

∞∞

λτ ατ +1P τ +1Φ − ΦT D= ΦT D λτ ατ P τ Φ + I 
τ =0 τ =0 

∞

= ΦT D 
∞

λτ ατ +1P τ +1Φ − ΦT D λτ ατ P τ Φ − ΦT DΦ + I 
τ =0 τ =1 

∞∞

λτ ατ +1P τ +1Φ − λΦT D λτ ατ +1P τ +1Φ= ΦT D 
τ =0 τ =0 

∞

λτ ατ +1P τ +1Φ= (1 − λ) 
τ =0 

= A. 
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In the fourth equality we have used the assumption that ΦT DΦ = I. 
Similarly, letting 

J (xk) = g(xk) 

yields 

∞

lim Ebk = (αλ)τ < Φ, P τ g >D 
k→∞ 

τ =0 

= b. 

If λ = 1, we have 

∞

(αλ)τ (g + αP τ Φrk − Φrk) = J ∗ + (I − αP )−1(αP − IΦr) = J ∗ − Φr. 
τ =0 

If λ < 1, then 

∞ ∞ ∞

λt(λα)τ P τ = ατ P τ (1 − λ) 
τ =0 τ =0 t=τ 

t τ

= (1 − λ) λτ αtP t 

τ =0 t=0 

Thus 
τ∞ ∞

(λα)τ P τ (g + αP Φrk − Φrk) = (1 − λ) λτ αtP t(g + αP Φr − Φr) 
τ =0 τ =0 t=0 

τ∞

αtP t g + αt+1P t+1Φr −Φr= (1 − λ) λτ 

τ =0 t=0 
T t Φrk 

= TλΦrk − Φrk 

Therefore, 
lim E [zkdk] =< Φ, TλΦrk − Φrk >D 

k→∞ 

Comparing Lemmas 1 and 2, it is clear that T D(λ) can be seen as a stochastic approximations version 

of AVI; in particular, TD’s equations can be written as 

rk+1 = rk + γk (Ark + b − rk + wk), 

where wk = (Ak − A)rk + (bk − b). If rk remains bounded, we should have limk→∞ Ewk = 0, so that the noise 

is zero­mean asymptotically. Note however that the noise is not independent of the past history, and in fact 
follows a Markov chain, since matrices Ak and bk are functions of xk and xk+1. This makes application of 
the Lyapunov analysis for convergence of T D(λ) difficult, and we must resort to the ODE analysis instead. 
The next theorem provides the convergence result. 

∞
γ2Theorem 2 Suppose that P is irreducible and aperiodic and that ∞

γk = ∞ and k=1 k < ∞. Then k=1 

rk → r∗ w.p.1, where Φr∗ = ΠTλΦr∗. 
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To prove Theorem 2, we first state without proof the following theorem. 

Theorem 3 Let rk+1 = rk + γk (A(xk )rk + b(xk )). Suppose that 

(a) ∞
γk = ∞, ∞

γ2 
k=1 k=1 k < ∞ 

(b) xk follows a Markov chain and has stationary distribution π 

(c) A = E[A(x) x ∼ π] is negative definite, and b = E[b(x) x ∼ π]| |

(d) �E[A(xk ) x0] −A� ≤ Cρk , ∀x0, ∀k, and |
�E[b(xk ) x0] − b� ≤ Cρk , ∀x0, ∀k|

Then rk → r∗ w.p.1, i.e., Ar∗ + b = 0. 

Sketch of Proof of Theorem 2 We verify that conditions (a)­(d) of Theorem 3 are satisfied. 
Conditions (a) and (b) are satisfied by assumption. 
(c) For all r, we have 

r T Ar = r T < Φ, (1 − λ) 
∞� 

λτ ατ +1P τ +1Φr − Φr >D 

τ =0 

= < Φr, (1 − λ) 
∞� 

λτ ατ +1P τ +1Φr >D −�Φr�2 
2,D � τ =0 �� � 

T̄λ φr, a contraction w.r.t. �·�2,D 

¯ 2TλΦr�2,D − �Φr�≤ �Φr�2,D � 2,D 

2 2β�Φr�2,D − �Φr�2,D (β ≤ α)≤ 

< 0 

Hence, A is negative definite. 
(d) We must consider the quantities


E[Ak −A] = E[zk (αφ(xk+1) − φ(xk) −A],


E[bk − b] = E[zk g(xk ) − b]. 

This involves a comparison of E[αzkφ(xk+1], E[zkφ(xk)] and E[zkg(xk)] with their limiting values as k goes 
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to infinity. Let us focus on term zkφ(xk); the other terms involve similar analysis. We have ⎤⎡ 

k

t=0 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
(αλ)k−tφ(xt)E[zkφ(xk) x0] = E φ(xk) | x0 = x|

zk 

k

= E φ(xt)(αλ)k−tφ(xk) xt ∼ π, t ≤ 0|
t=−∞ 

k

+ E φ(xt)(αλ)k−tφ(xk)|x0 = x 
t=0 

k

φ(xt)(αλ)k−tφ(xk) x0 ∼ π− E |
t=0 

−1

φ(xt)(αλ)k−tφ(xk) xt ∼ π− E |
t=−∞ 

It follows from basic matrix theory that P (xt = x x0) − π(xt) ≤ Cρt, where ρ corresponds to the second | | |
highest eigenvalue of P, which is strictly less than one since P is irreducible and aperiodic. Therefore we 

have 

k k

E φ(xt)(αλ)k−tφ(xk)|x0 = x − E φ(xt)(αλ)k−tφ(xk) x0 ∼ π 
t=0 t=0 ⎤⎡⎤⎡ 

k k 

φ(xt)(αλ)k−tφ(xk) + 
2 2 ⎣ φ(xt)(αλ)k−tφ(xk) ⎦− E⎣ x0 ∼ π⎦E x0| = x≤ 

t=0 

k

t=0 ⎤⎡⎤ 
k

⎡ ⎣ φ(xt)(αλ)k−tφ(xk) ⎦− E⎣ φ(xt)(αλ)k−tφ(xk)E+ x0 ∼ πx0 = x|
k k�+1 �+1t= t=2 2 

(αλ)k/2 + ρk/2 ,≤ M 

for some M < ∞. Moreover, 

−1

E φ(xt)(αλ)k−tφ(xk) x0 ∼ π ≤ M (αλ)k|
t=−∞ 

6 

⎦ 

2 


