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Lecture Note 15 

Optimal Stopping Problems 

In the last lecture, we have analyzed the behavior of TD(λ) for approximating the cost­to­go function in 

autonomous systems. Recall that much of the analysis was based on the idea of sampling states according to 

their stationary distribution. This was done either explicitly, as was assumed in approximate value iteration, 
or implicitly through the simulation or observation of system trajectories. It is unclear how this line of 
analysis can be extended to general controlled systems. In the presence of multiple policies, in general 
there are multiple stationary state distributions to be considered, and it is not clear which one should be 

used. Moreover, the dynamic programming operator T may not be a contraction with respect to any such 

distribution, which invalidates the argument used in the autonomous case. However, there is a special 
class of control problems for which analysis of TD(λ) along the same lines used in the case of autonomous 
systems is successful. These problems are called optimal stopping problems, and are characterized by a tuple 

: S �→ �, g1 : S �→ �), with the following interpretation. The problem involves a (S, P : S × S �→ [0, 1], g0 

Markov decision process with state space S. In each state, there are two actions available: to stop (action 

0) or to continue (action 1). Once action 0 (stop) is selected, the system is halted and a final cost g0(x) is 
incurred, based on the final state x. At each previous time stage, action 1 (continue) is selected and a cost 
g1(x) is incurred. In this case, the system transitions from state x to state y with probability P (x, y). Each 

policy corresponds to a (random) stopping time τu, which is given by 

τu = min{k : u(xk) = 0}. 

Example 1 (American Options) An American call option is an option to buy stock at a price K, called 

the stock price, on or before an expiration date — the last time period the option can be exercised. The state 

of a such a problem is the stock price Pk. Exercising the option corresponds to the “stop” action and leads 

to a reward max(0, Pk − K); not exercising the option corresponds to the “continue” action and incurs no 

costs or rewards. 

Example 2 (The Secretary Problem) In the secretary problem, a manager needs to hire a secretary. 
He interviews secretaries sequentially and must make a decision about hiring each one of them immediately 

after the interview. Each interview incurs a certain cost for the hours spent meeting with the candidate, and 

hiring a certain person incurs a reward that is a function of the person’s abilities. 

In the infinite­horizon, discounted­cost case, each policy is associated with a discounted cost­to­go 

τu

Ju(x) = E αt g1(t) + ατu g0(xτu )|x0 = x . 
t=0 

We are interested in finding the policy u with optimal cost­to­go 

J∗ = min Ju. 
u 
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Bellman’s equation for the optimal stopping problem is given by 

J = min(g0, g1 + αPJ) � TJ. 

As usual, T is a maximum­norm contraction, and Bellman’s equation has a unique solution corresponding 

to the optimal cost­to­go function J∗. Moreover, T is also a weighted­Euclidean­norm contraction. 

Lemma 1 Let π be a stationary distribution associated with P , i.e., πT P = πT , and let D = diag(π) be a 

diagonal matrix whose diagonal entries correspond to the elements in vector π. Then, for all J and J̄  , we 

have 
¯ ¯ �TJ − TJ�2,D ≤ α�J − 2,DJ�

Proof: Note that, for any scalars c1, c2 and c3, we have 

min(c1, c3) −min(c2, c3) c1 − c2 . (1)| | ≤ | |

It is straightforward to show Eq.(1). Assume without loss of generality that c1 ≥ c2. If c1 ≥ c2 ≥ c3 or 
c3 ≥ c1 ≥ c2, Eq(1) holds trivially. The only remaining case is c1 ≥ c3 ≥ c2, and we have 

min(c1, c3) −min(c2, c3) = c3 − c2 c1 − c2 .| | | | ≤ | |

Applying (1), we have 

¯ |TJ − TJ = |min(g0, g1 + αPJ) −min(g0, g1 + αP J̄)| | 

≤ |αP (J − J̄) .|

It follows that 

¯ �TJ − TJ�2,D α�P (J − J̄)�2,D≤ 

¯ 
2,D ,α�J − J�≤ 

where the last inequality follows from �PJ� 2,D by Jensen’s inequality and stationarity of π.2,D ≤ �J�

1.1 TD(λ) 

Recall the Q function � 
Q(x, a) = ga(x) + α Pa(x, y)J∗(y). 

y 

In general control problems, storing Q may require substantially more space than storing J∗, since Q is 
a function of state­action pairs. However, in the case of optimal stopping problems, storing Q requires 
essentially the same space as J∗, since the Q value of stopping is trivially equal to g0(x). Hence in the case 

of optimal stopping problems, we can set TD(λ) to learn 

Q∗ = g1 + αPJ∗, 

the cost of choosing to continue and behaving optimally afterwards. Note that, assuming that one­stage 

costs g0 and g1 are known, we can derive an optimal policy from Q∗ by comparing the cost of continuing 

with the cost of stopping, which is simply g0. We can express J∗ in terms of Q∗ as 

J∗ = min(g0, Q
∗), 
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so that Q∗ also satisfies the recursive relation 

Q∗ = g1 + αP min(g0, Q
∗). 

This leads to the following version of TD(λ): 

rk+1 = rk + γk zk [g1(x) + α min (g0(xk+1), φ(xk+1)rk ) − φ(xk)rk ] 

zk = αγzk−1 + φ(xk) 

Let 
HQ = g1 + αP min(g0, Q), (2) 

and 
∞

λtHt+1HλQ = (1 − λ) Q. 
t=0 

We can rewrite TD(λ) in terms of operator Q as 

rk+1 = rk + γk zk (HλΦrk − Φrk + wk ). (3) 

The following property of H implies that an analysis of TD(λ) for optimal stopping problems along the same 

lines of the analysis for autonomous systems suffices for establishing convergence of the algorithm. 

Lemma 2 
¯ ¯ �HQ − HQ�2,D ≤ α�Q − Q�2,D . 

Theorem 1 [Analogous to autonomous systems] Let rk be given by (3) and suppose that P is irreducible 

and aperiodic. Then rk → r∗ w.p.1, where r∗ satisfies 

Φr∗ = ΠHλΦr∗ 

and 
1 �Φr∗ − Q∗�2,D ≤ √

1 − k2 
�ΠQ∗ − Q∗�2,D , (4) 

α(1−λ)where k = 1−αλ ≤ α. 

We can also place a bound on the loss in the performance incurred by using a policy that is greedy with 

respect to Q∗, rather than the optimal policy. Specifically, consider the following stopping role based on 

Φr∗. � 

˜
if g0(x) ≤ Φr∗(x) 

u(x) = 
stop, 
continue, otherwise 

ũ specifies a (random) stopping time τ̃ , which is given by 

τ̃ = min{k : φ(xk)r∗ ≥ g0(xk)}, 

and the cost­to­go associated with ũ is given by 

τ̃ −1
τJ̃(x) = E αt g1(xt) + α˜g0(xτ̃ ) . 

t=0 

The following theorem establishes a bound on the expected difference between J̃ and the optimal cost­to­go 

J∗. 
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Theorem 2 
2

E[J̃(x) x ∼ π] − E[J∗(x) x ∼ π] ≤ 
(1 − α)

√
1 −K2 

�ΠQ∗ −Q∗ 2,D 

Proof: Let ˜ u:Q be the cost of choosing to continue in the current time stage, followed by using policy ˜

˜ J. Q = g1 + αP ˜

Then we have 

E[J̃(x0) − J(x0) x0 ∼ π] = E[J̃(x1) − J(x1) x0 ∼ π]| |

= πT P (J̃ − J) 
≥0 

= π(x) P (J̃ − J∗)(x)| |
x∈S 

= �P J̃ − PJ∗ 1,π 

J − PJ∗ 2,π (5)≤ �P ˜ �
1 

= 
α
�g1 + αP J̃ − g1 + αPJ∗ 2,π 

1 
= 

α
�Q̃ −Q∗ 2,π (6) 

The inequality (5) follows from the fact that, for all J , we have 

�J�2 2 
1,π = E[|J(x)| : x ∼ π]

≤ E[J(x)2 : x ∼ π] 

�J�2= 2,π , 

where the inequality is due to Jensen’s inequality. Now define the operators H̃ and K, given by 

H̃Q = g1 + αPKQ, where 

g0(x), if Φr∗(x) ≥ g0(x)
KQ = 

Q, otherwise. 

Recall the definition of operator H. Then it is easy to verify the following identities: 

˜HΦr∗ = HΦr∗


HQ∗ = Q∗


H ˜ ˜
˜Q = Q. 

Moreover, it is also easy to show that H̃ is a contraction with respect to � · �2,π . Now we have 

� ˜ Q − ˜Q −Q∗ 2,π −HΦr∗�2,π + � ˜ HΦr∗ 2,π� ≤ �Q∗ �

= �HQ∗ −HΦr∗�2,π + � ˜Q − ˜H ˜ HΦr∗ 2,π 

Q − Φr∗ 2,π≤ α�Q∗ − Φr∗�2,π + α�� 
˜ �

Q −Q∗ 2,π + �Q∗ − Φr∗ 2,π≤ α�Q∗ − Φr∗�2,π + α � ˜ � �
� 

Q − Φr∗ 2,π≤ 2α�Q∗ − Φr∗�2,π + α� ˜ �
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Thus, 

� ˜ 2α 
(7)Q−Q∗�2,π ≤ 

1 − α
�Q∗ − Φr∗�2,π . 

The theorem follows from Theorem 1 and equations (6) and (7). 2 

1.2 Discounted Cost Problems with Control 

Our analysis of TD(λ) is based on comparisons with approximate value iteration: 

Φrk+1 = ΠTλΦrk, 

where the projection represented by Π is defined with respect to the weighted Euclidean norm � · �2,π 

(or, equivalently, � · �2,D ) and π is the stationary distribution associated with the transition matrix P . In 

controlled problems, there is not a single stationary distribution to be taken into account; rather, for every 

policy u, there is a stationary distribution πu associated with transition probabilities Tu. A natural way of 
extending AVI to the controlled case is to consider a scheme of the form 

Φrk+1 = Πuk Tuk Φrk, (8) 

where Πu represents the projection based on � · �2,πu and uk is the greedy policy with respect to Φrk. Such 

a scheme is a plausible approximation, for instance, for an approximate policy iteration based on TD(λ) 
trained with system trajectories: 

1. Select a policy u0. Let k = 0. 

2. Fit Juk ≈ Φrk (e.g., via TD(λ) for autonomous systems); 

3. Choose uk+1 to be greedy with respect to Φrk. Let k = k + 1. Go back to step 2. 

Note that step 2 in the approximate policy iteration presented above involves training over an infinitely long 

trajectory, with a single policy, in order to perform policy evaluation. Drawing inspiration from asynchronous 
policy iteration, one may consider performing policy updates before the policy evaluation step is considered. 
As it turns out, none of these algorithms is guaranteed to converge. In particular, approximate value iteration 

(8) is not even guaranteed to have a fixed point. For an analysis of approximate value iteration, see [1]. 
A special situation where AVI and TD(λ) are guaranteed to converge occurs when the basis functions 

are constant over partitions of the state space. 

Theorem 3 Suppose that φi(x) = 1{x ∈ Ai}, where Ai ∩Aj = ,∀i, j, i = j. Then ∅ �

Φrk+1 = ΠTΦrk 

converges for any Euclidean projections Π. 

Proof: We will show that, if Π is a Euclidean projection and φi satisfy the assumption of the theorem, then 

Π is a maximum­norm nonexpansion: 

¯ �ΠJ −Π ¯ J�∞.J�∞ ≤ �J − 
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Let 

(ΠJ )(x) = Ki, if x ∈ Ai, where � � �2 
Ki = arg min w(x) J (x) − r 

r 
x∈Ai 

Thus 
w(x)

Ki = E[J (x)|x ∼ wi], where wi = � 
w(x) 

. 
x∈Ai 

Therefore 

(ΠJ )(x) − (ΠJ ̄)(x) = E 
� 
J (x) − J ̄(x) wi|x ∼

¯ ≤ �J − J �∞ 

It follows that ΠT is a maximum­norm contraction, which ensures convergence of approximate value iteration. 
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