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1 Overview 

In the previous lecture, we studied constraint sampling as a generic approach to dealing with the large 

number of constraints in the approximate LP, and showed that, by sampling a number of constraints that 
is polynomial on the number of variables in the LP, it is possible to ensure that almost all constraints will 
be satisfied, with high probability. The hope that an LP with a large number of constraints and a small 
number of variables may be solved efficiently — either exactly or approximately — stems from the fact that 
many of the constraints should be redundant; in particular, it is known that only a number of constraints 
equal to the number of variables is binding at the optimal solution. This gives hope that, at least in certain 

problem-specific situations, other approaches besides constraint sampling may be used for dealing with the 

large number of constraints. In particular, the following approaches may be possible: 

We may be able to replace the original constraints TΦr ≥ Φr with an equivalent set of constraints • 

Air ≥ bi, i = 1, . . . , N where N is “small;” 

Constraint Generation We may be able to solve the LP exactly without including all constraints by • 

solving it incrementally, as follows: 

– start with small subset of constraints 

– solve smaller LP 

– add one or more violated constraints 

– repeat until no violated constraints can be found. 

Both approaches can be found in the literature; e.g., Morrison and Kumar [2] replace the exponentially many 

constraints in the approximate LP with a manageable number of constraints in problems involving queueing 

networks, and Grötschel and Holland [1] solve travelling salesman problems involving up to 260 constraints 
by doing constraint generation. In today’s lecture, we will study factored MDPs, a reasonably general class 
of MDPs that lends itself well to both approaches. 

2 Factored MDPs 

The underlying idea in factored MDPs is that many high-dimensional MDPs are actually generated by 

systems with many parts that are weakly interconnected. Each part i has an associated state variable Xi, 
so that the full state of the system is described by a vector (X1, . . . , Xn). We assume that costs are factored, 
i.e., 

g(x) = 
� 

gj (XZj ), (1) 
j 
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where Zj ⊂ {1, . . . , n} and XZj indicates a (hopefully small) subset of the state variables. Moreover, we also 

assume that transition probabilities are factored, i.e., 

Pa(Xi(t + 1) X(t)) = Pa(Xi(t + 1) XZi (t)) ∀i,| |

where once again Zi ⊂ {1, . . . , n} and XZi indicates a (hopefully small) subset of the state variables. In 

words, one way of viewing this assumptions is that costs are mostly local to the various parts of the system, 
and dynamics are also mostly local, with each state variable being affected only the subset of state variables 
it interacts with. Note that, in the long run, if all state variables are directly or indirectly interconnected, 
the evolution of a particular state variable may still be affected by all others. 

A common way of representing factored MDPs is through a dynamic Bayesian network, as shown in 

Figure 1. The nodes at the left and right represent the state variables in subsequent time steps, and arcs 
indicate the dependencies between state variables across time steps. This figure may be generalized to include 

dependencies within the same time step. 

g1(x1(t)) g1(x1(t + 1)) 
x1(t) x1(t + 1) 

x2(t) x2(t + 1) 

x3(t) x3(t + 1) 

xn(t) xn(t + 1) 

Figure 1: Each state is influenced by a small subset of states in every time stage 

Example 1 Consider the queueing network represented in Figure 2. With our usual choice of costs ga(x) = �
i xi, corresponding to the total number of jobs in the system, it is clear that stage costs are factored. 

Moreover, transition probabilities are also factored; for instance, we have 

Pa(x2(t + 1) x(t)) = Pa1 ,a2 (x2(t + 1) x1(t), x2(t)),| |

since the number of jobs in queue 2 in the next time step is determined exclusively by potential departures 

from queue 1 — which depend only on x1(t) and a1(t) — and potential departures from queue 2 — which 

depend only on x2(t) and a2(t). 
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Figure 2: An queueing network 

We consider approximating J∗ with a factored representation: 

J∗(x) ≈
� 

φi(xwi )ri � J̃(x), Wi ⊂ {1, . . . , n}. 

Note that, in general, the optimal cost-to-go function J∗ does not have an exact factored representation. 
However, factored approximations are appealing both because, if the system is indeed only loosely intercon­
nected, we can expect J∗ to be roughly factored, and perhaps most importantly, factored approximations 
give rise to decentralized policies. Indeed, note that Q factors associated with a factored approximation J̃

are also factored: 

Q(x, a) = ga(x) + α
� 

Pa(x; y) J̃(y) 
y 

= ga(x) + α 
� 

Pa(x1, . . . , xn; y1, . . . , yn) 
� 

φ(yWi )ri 

y1 ,...,yn i 

= ga(x) + α
� � 

Pa(x1, . . . , xn; yWi )φ(yWi )ri 

i yWi 

= ga(x) + α
� � 

Pa(xZi ; yWi )φ(yWi )ri 

i yWi 

= ga(x) + f(xZi ; r) 

since yWi (t + 1) is only influenced by a subset XZi (t) of X(t). 

Efficient handling of constraints in factored MDPs 

We will now show that the approximate LP constraints 

ga(x) + α
� 

Pa(x, y)φ(y)r ≥ φ(x)r 
y 

3 
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can be dealt with efficiently when we consider factored MDPs with factored cost-to-go function approxima­
tions. For simplicity, let us denote each state-action pair (x, a) by a vector-valued variable t = (t1, t2, . . . , tm) = 

(x1, . . . , xn, a1, . . . , ap). Then we are interested in dealing with a set of constraints 
� 

fi(tWi , r) ≤ 0, ∀ t. (2) 
i 

The main difficulty is that t can take on an unmanageably large number of values — as many as the number of 
state-action pairs in the system. We will show that these constraints can be replaced by a smaller, equivalent 
subset. Moreover, we will show identifying a violated constraint can be done efficiently, which allows for 
using constraint generation schemes. 

The first step is to rewrite (2) as 
max 

� 
fi(tWi , r) ≤ 0. 

t 
i 

Consider solving the maximization problem above for a fixed value of r. The naive approach is to enumerate 

all possible values of t and take the one leading to maximum value of the objective. However, since each of 
the terms fi(tWi , r) depends only on a subset tWi of the components of t, the problem can be solved more 

efficiently via variable elimination. We illustrate the procedure through the following example. 

Example 2 Consider 

max f1(t1, t2) + f2(t2, t3) + f3(t2, t4) + f4(t3, t4). 
t1 ,t2 ,t3 ,t4 

For simplicity, assume that ti 0, 1}, for i = 1, 2, 3, 4. If we solve the optimization problem above by ∈ {
enumerating all possible solutions, there are on the order of O(24) operations. Consider optimizing over one 

variable at a time, as follows: 

1. Eliminate variable t2: For each possible value of t2,t3, we find 

e1(t2, t3) = max f3(t2, t4) + f4(t3, t4), 
t4 

and rewrite the problem as 

max f1(t1, t2) + f2(t2, t3) + e1(t2, t3). 
t1 ,t2 ,t3 

2. Eliminate variable t3: For each possible value of t2, we find 

e2(t2) = max f1(t2, t2) + e1(t2, t3), 
t3 

and rewrite the original problem as 

max f1(t1, t2) + e2(t2). 
t1 ,t2 

3. Eliminate variable t2: For each possible value of t1, we find 

e3(t1) = max f1(t1, t2) + e2(t2). 
t2 

4. Solve maxt1 e3(t1). 

Solving the problem via variable elimination requires on the order of O(23) operations. More generally, 
variable elimination leads to exponential reduction in computational complexity relative to the naive approach. 
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The previous example suggests variable elimination as an efficient approach to verifying whether a can­
didate solution r is feasible for all constraints, and identifying a violated constraint if that is not the case. 
Therefore constraint generation can be implemented efficiently when we consider factored MDPs with fac­
tored cost-to-go function approximations. Moreover, the procedure described in the example can also be 

used to generate a smaller set of constraints, if we introduce new variables in the LP. Indeed, let ei(tZi ) be 

each of the functions involved in the scheme (including the original functions f). Each function is given by 

ei(tZi ) = max 
� 

ek(tZi , tji ). 
tji k∈Ki 

tFor each function ei, we introduce a set of variables ue

i

i 
, where each ti corresponds to one possible assignment 

to variables tZi ; for instance, in the example above, we would have variables 

00 01 10 11 ue1 
, u e1 

, u e1 
, u e1 

, 

associated with function e1(t2, t3) and all possible assignments for variables t2 and t3. 
With this new definition, the original constraints can be replaced with 

it i u = fi(t , r), ∀ti,fi 

and 
it i i uei 
≥ 

� 
ek (t , tji ), ∀t , tji . 

k∈Ki 
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