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2.997 Decision­Making in Large­Scale Systems April 21 

MIT, Spring 2004 Handout #24 

Lecture Note 20 

Policy Search Methods 

So far, we have focused on finding an optimal or good policy indirectly, by solving Bellman’s equation either 
exactly or approximately. In this lecture, we will consider algorithms that search for a good policy directly. 

We will focus on average­cost problems. Recall that one approach to finding an average­cost optimal 
policy is to solve Bellman’s equation 

λe + h = Th. 

Under certain technical conditions, ensuring that the optimal average cost is the same regardless of the initial 
state in the system, it can be shown that Bellman’s equation has a solution (λ∗, h∗), corresponding to the 

optimal average cost, and h∗ is the differential cost function, from which an optimal policy can be derived. 
An alternative to solving Bellman’s equation is to consider searching over the space of policies directly, i.e., 
solving the problem 

min λ(u), (1) 
u∈U 

where λ(u) is the average cost associated with policy u and U is the set of all admissible policies. In the 

past, we have been most focused on policies that are stationary and deterministic; in other words, if S is 
the state space and A is the action space (consider a common action space across states, for simplicity), we 

have considered the set of policies u : S �→ A, which prescribe an action u(x) for each state x. Note that, if 
U is the set of all deterministic and stationary policies, we have |U = |, so that problem (1) involves | |A||S

optimization over a finite and exponentially large set (in fact, |U grows exponentially in the size of the state |
space, or double­exponentially in the dimension of the state space!). 

In order to make searching directly in the policy space tractable, we are going to consider restricting the 

set of policies U in (1). Specifically, we are going to let U be a set of parameterized policies: 

U = {uθ : θ ∈ �K }, 

where each policy uθ corresponds to a randomized and stationary policy, i.e., uθ (x, a) gives the probability 

of taking action a given that the state is x. We let gθ , Pθ and λ(θ) denote the stage costs and transition 

probability matrix associated with policy uθ : 

gθ (x) = ga(x)uθ (x, a) 
a 

Pθ (x, y) = Pa(x, y)uθ (x, a) 
a 

Example 1 (Threshold Policies) Admission Control 
Suppose that we have a total amount R of a certain resource and requests from various types i for amounts 

ri, i = 1, . . . , n. Once a request is accepted, it occupies the amount ri of resource for a certain length of 
time, before freeing it again. The admission control problem is to decide, upon arrival of a new request, 
whether to accept it or not. Let Rt the current amount of available resources. A possible threshold policy 
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for this problem could compare Rt with a certain threshold θi and only accept a new request of type i if 
Rt ≥ θi. 

American Options 

Consider the problem of when to exercise the option to buy a certain stock at a prespecified price K. A 

possible threshold policy is to exercise the option (i.e., buy the stock) if the market price at time t, Pt, is 

larger that a threshold θt. 

Once we restrict attention to the class of policies parameterized by a real vector, problem (1) becomes a 

standard nonlinear optimization problem: 
min λ(θ). (2) 
θ∈�k 

With appropriate smoothness conditions, we can find a local optimum of (2) by doing gradient descent: 

θk+1 = θk − γk�λ(θk ). (3) 

In the next few lectures, we will show that biased and unbiased estimates of the gradient �λ(θ) can be 

computed from system trajectories, giving rise to simulation­based gradient descent methods. 

1.1 A Convenient Expression for �λ(θ) 

We first introduce assumptions that ensure the existence and differentiability of λ(θ). 

Assumption 1 Let ρ = {Pθ } and ρ̄ be the closure of ρ. The Markov Chain associated with P is|θ ∈ �k 

irreducible and there exists x∗ that is recurrent for every P . 

Assumption 2 Pθ (x, y) and gθ (x) are bounded, twice differentiable, with bounded first and second deriva­
tives. 

Lemma 1 Under Assumption 1 and 2, for every policy θ there is a unique stationary distribution πθ satis­

θ e = 1, and λ(θ) = πTfying πT = πT Pθ , πT
θ gθ . Moreover, λ(θ) and πθ are differentiable. θ θ 

In order to develop a simulation­based method for generating estimates of the gradient, we will show 

that �λ(θ) can be written as the expected value of certain functions of pairs of states (x, y), where (x, y) is 
distributed according to the stationary distribution πθ (x)Pθ (x, y) of pairs of consecutive states. 

First observe that 
�λ(θ) = �πT 

θ gθ + πT gθ (4)θ �

It is clear that the secibd term πT 
θ �gθ can be estimated via simulation; in particular, we know that 

1 
T −1

πT 
θ �gθ = lim 

T 
�gθ (xt). 

T →∞ 
t=0 

Hence if we run the system with policy θ, and generate a sufficiently long trajectory x1, x2, . . . , xT , we can 

set � 1 
T

πθ (x)�θ gθ (x) ≈
T 

�θ gθ (xt). 
x t=1 

The key insight is that the first term in (4), �πT 
θ gθ , can also also be estimated via simulation. In order to 

show that, we start with the following theorem. 
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Theorem 1 (Amazing Fact 1!) 

�πT
θ �Pθ hθ , (5)θ gθ = πT 

where hθ is the differential cost function associated with policy θ. 

Proof: We have 

λ(θ)e + hθ = gθ + Pθ hθ . 

Multiplying both sides by �πT 
θ , we get 

λ(θ)�πT
θ hθ = �πT

θ Pθ hθ .θ e + �πT
θ gθ + �πT 

Since πT
θ e = 0, and θ e = 1, �θ π
T 

θ hθ = �πT
θ Pθ hθ . (6)�πT

θ gθ + �πT 

Moreover, since πT Pθ = πT 
θ , we have θ 

θ Pθ + πT�πT
θ �Pθ = �πT 

θ 

and 

�πT
θ �Pθ hθ = �πT 

θ Pθ hθ + πT
θ hθ (7) 

The theorem follows from (6) and (7). 

It is still not clear how to easily compute (5) from the system trajectory. Note that 

1 
T −1

πT 
θ �Pθ hθ = lim ( �Pθ (xt, y)hθ (y)),

TT →∞ 
t=0 y 

which suggests averaging f(x) = y �Pθ (x, y)hθ (y) over a system trajectory x0, x1, . . . , xT , however this 
gives rise to two difficulties: first, we must perform a summation over y in each step, which may involve 

a large number of operations; second, we do not know hθ (y). We can get around the first difficulty by 

employing an artifact known as the likelihood ratio method. Indeed, let 

Lθ (x, y) = 
�Pθ (x, y) 
Pθ (x, y) 

. 

We make the following assumption about Lθ : 

Assumption 3 There is B < ∞ such that Lθ (x, y) ≤ B for all θ. 

Assumption 3 is true, e.g., if for each pair (x, y), we have Pθ (x, y) = 0, ∀ θ, or Pθ (x, y) ≥ �, ∀ θ. More 

concretely, a sufficient condition is uθ (x, a) ≥ �, ∀a ∈ Ax. 
Under this condition, we can rewrite (5) as 

πT 
θ �Pθ hθ = πθ (x) �Pθ (x, y)hθ (y) 

x y 

= πθ (x)Pθ (x, y)Lθ (x, y)hθ (y), 
x y 

3 

2 



� 

� � � 

� � 

� �

and assuming that we can compute or estimate hθ , we can estimate (5) from a trajectory x0, x1, xT by 

considering 

1 
T −1

πT 
θ �Pθ hθ ≈ Lθ(xt, xt+1)hθ (xt+1). 

T 
t=0 

Our last step will be to show that we can get unbiased estimates of hθ by looking at cycles in the system 

trajectory between visits to the recurrent state x∗. This follows from the following observation, which was 
proved in Problem Set 2: 

Theorem 2 Amazing Fact 2 

Let x∗ be a recurrent state under policy θ. Let 

T = min{t > 0 : xt = x∗} 

Then 
T −1

hθ (x) = E (gθ (xt) − λ(θ)) x0 = x|
t=0 

hθ (x∗) = 0 

is a differential cost function for policy θ. 

Putting together all of the pieces we have developed so far, we can consider the following algorithm. Let 
x0, x1, . . . be a system trajectory. Let tm be the time of the mth visit to the recurrent state x∗. Based on 

the trajectory xtm , xtm +1, . . . , xtm+1 , compute 

tm�+1 −1 � � 
˜ĥθ (xn) = gθ (xt) − λm , n = tm + 1, . . . , tm+1 − 1, 

t=n 

and 
tm�+1 −1 � � 

Fθ (˜ ˆλm) = hθ (xn)hθ (xn−1, xn) + �gθ (xn) . 
n=tm 

Then Fθ (˜ | ˜ |λm) gives a biased estimate of �λ(θ), where the bias is on the order of O( λ(θ) − λm ): 

Theorem 3 � � 
Eθ Fm(˜ ˜λ) = Eθ (T )�λ(θ) + G(θ) λ(θ) − λ 

where G(θ) is a bounded function. 

We can update the policy by letting 

= θm − γmFθm (˜θm+1 λm) 
tm�+1 −1 � � 

˜ ˜ ˜λm+1 = λm + ηγm g
θm 

(xn) − λm 

n=tm 

where η > 0. 

Assumption 4 ∞ 
γm = ∞ and ∞ 

γ2 
m=1 m=1 m < ∞. 

Theorem 4 Under Assumptions 1, 2, 3 and 4, we have 

lim m) = 0 w.p. 1. 
m→∞ 

�λ(θ
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