2.997 Decision-Making in Large-Scale Systems April 26
MIT, Spring 2004 Handout #25

Lecture Note 21

1 Policy Search Methods

1.1 Off-Line “Unbiased” Gradient Descent Algorithm

Recall that we are interested in finding # € R¥ such that VA(0) = 0, i,e, the policy parameterized policy ug
corresponds to a local average cost minimum among the class of parameterized policies under consideration.
In the previous lecture, we proposed an algorithm for performing gradient descent based on system trajec-
tories. We assume that there is a state x* that is recurrent under all policies ug. The algorithm generates a
series of policies 61,65, ..., which are updated whenever the system visits state *. The algorithm is given
as follows:

1. Let 6y be the initial policy. Assume (for simplicity) that the initial state is g = z*. Let m = 0,

tm =0.
2. Generate a trajectory x¢,, 41, ¢, 42, .., ¢, , according to policy ug,,, where
tme1 = Inf{t >t : 2y = 2°}.
3. Let
tmy1—1
h@(xn) = Z {QQ(It)fAm} 7n:tm+1a---atm+1*1
t=n
tm+1—1
FG()\m) = Z [he(ﬁﬁn)he(ﬂﬁn—h xn) + Vge(ﬂ?n)}
n=tm,
Omir = Om—vmFo, (M)
tmp1—1
Am+1 = Am +10Tm Z |:ggm (Tn) — /\m}
n=t,

4. Let m =m+ 1, and go back to step 2.

It can be shown that this algorithm leads to a local average cost minimum, asymptotically:

Assumption 1 Let p = {Py|0 € R*} and p be the closure of p. The Markov Chain associated with P is
irreducible and there exists x* that is recurrent for every P.

Assumption 2 Py(xz,y) and go(x) are bounded, twice differentiable, with bounded first and second deriva-

tives.

Assumption 3 There is B < 0o such that Lo(z,y) < B for all §.

Assumption 4 Y v, =00 and > 7, 7% < .

Theorem 1 Under Assumptions 1, 2, 8 and 4, we have
lim VA(6,,) =0 w.p.1.

Some points about the algorithm are worth notice:

e If we had Ay, = A(@m), Fm(Am) would be an unbiased estimate of the gradient VA(6,,). However,
that is not the case; we only have an estimate of A(#,,). One way of getting around this difficulty
would be to update the policy 6,, at a much slower rate than A, SO as to give enough time for A tO
converge to A(6,,) and generate an unbiased gradient estimate before updating the policy. However,
in the algorithm described above, both 6,, and Am are updated at the same rate, except for a constant

factor 7, and convergence is still guaranteed.

e The policy 6, is updated only at visits to state z*. This means that the algorithm can become slow
when the system is large, and cycles between visits to z* are long. In the sequel, we will look at

algorithms that updated the policy at every time step.

Intuition for the proof: In order to develop some intuition for the proof of Theorem 1, we will look
at the associated deterministic ODE. We have

Q

(64)
o[

0, = —VA@O) - (A(0r) — Ar)

=

A= n(A(B) — M)

We will first argue that \; converges, which implies that A\; — lambda(6;) converges to zero. It follows that,

asymptotically, 0; is updated in the direction of —VA(6;), and we conclude that
tlim V(A(6:)) = 0.

The proof for the stochastic algorithm follows a similar argument. It turns out that neither the ODE or
Lyapunov function approaches apply directly, and a customized, lengthy argument must be developed. The
full proof can be found in [1].

For the convergence of A\;, we discuss two cases:

(1) Ao = A(bo)
In this case, we first argue that A\; > A(0;). Indeed, suppose A\g = A(fy,) for some ty. Then either

VA(6;,) = 0, and the ODE reaches an equilibrium, or A(6;,) < 0 and \;, = 0. We conclude that
At > A(0y), V.
From the above discussion, we conclude that \; is nonincreasing and bounded. Therefore, \; converges.

(2) Ao < A(0o)

We have two possible situations:
(1) A < A(By), Vt
In this case, = A; is nondecreasing and bounded, therefore it converges.
(ii) Ay, = A(0y,) for some to In this case, we are back to case (1).

We conclude that \; converges, and thus (A(6;) — \;) — 0. Therefore, 8, — —VA(6;) asymptotically, and

1.2 Online “Unbiased” Gradient Descent Algorithm

We now develop a version of gradient descent where the policy is updated in every time step, rather than
only at visits to state z*. The algorithm has the advantage of being simpler and potentially faster.

First note that F;, can be computed incrementally between visits to state z*:

a1 —1
Fn(63) = 3 [ho(an)Lown 1, 20) + Vool
n=tm
tm+171
— Vge(x*) + Z {hg(xn)Lg(a?n,l,xn) + Vge(.’[?n)}
n=tm,+1
tm4+1—1 [tny1—1
= Vgg(z*) + Z Z (ge(xk) - A) Lo(zp—1,1) + Vgg(mn)l
n=t,+1 L k=n
tmy1—1 [n
= Vgo(e)+ D [Vaslwa)+ D Lo(we-1,21)(g0(xn) —A)l
n=tm+1 L o +1
tmt1—1 B
= Vgp(z*) + Z Vgo(z,) + (ge(ffn) -)\) Zn}
n=tm,+1

where
n

Zn= Y Lo(wk—1,2k) = 2n = 2n_1 + Lo(Tn_1,)
k=tm;,+1

. This suggests the following Online Algorithm:

Ort1 = Ok —m [Vga(mk) + ((gek (zk) — Xk)zk)}
0 if xpy1 = a*
z =
ket zi + Lo(zk,xp+1) otherwise

Assumption 5 Let P = {Py : 0 € R*} and P be the closure of P. Then there exists Ny such that,
V(Py,Ps,...,PN,), P, € P, Va,

Assumption 6 >y, =00, Y72 < 00, 1k < V-1, and ZZIZ(%L —) < AtPAP for some A and P.

Theorem 2 Under Assumptions 1-6, we have
VAOr) — 0, w.p.l

The idea behind the proof of Theorem 2 is that, due to the assumptions on the step sizes 7, (Assumption
6, eventually changes in the policy 6, made between two consecutive visits to state x* are negligible, and
the algorithm behaves very similarly to the offline version. Assumption 5 is required in order to guarantee

that the time between visits to state * remains small, even as the policy is not stationary.

1.3 Biased Gradient Estimation

In both the offline and online “unbiased” gradient descent algorithms, the variance of the estimates depends
on the variance of the times between visits to state x*, which can be very large depending on the system.
We now look at a different algorithm, which is aimed at developing estimates @)\(9) with smaller variance.
The decrease in variance is traded against a potential bias in the estimate, i.e., we have EVA(0) # VA(6).
Note that a small amount of bias may still be acceptable since it should suffice to have estimates that have

positive inner product with the true gradient, in order for the algorithm to converge:
(EVA(0), VA(0)) > 0.

We generate one such biased estimate @)\(6) based on a discounted-cost approximation. Let

Z alg(zy)|zo = x]

t=0

J97a (Z‘) = E@

Then we have

Theorem 3
VAO) = (1 —a)V7g Jo.o + anl VPsJg o
N—————
VaA(0)

Proof: We have Jp o = g + aFyJg . Then

V@) = Vi g =Vl [Joo— aPyJoal

S C 6 0 ?
VNQT — V7 GTPQ + 7(9TCP9

Hence,
VAO) = V7t Joa—aVri Podoa

Vg Jo.o — aVTE Jo.o + amg VPyJg.a
(1 —a)Vrg Jo,o +amy VPsJg

The following theorem shows that V,A(#) can be used as an approximation to VA(6), if « is reasonably

close to one.

Theorem 4 Let V A(0) = arfVPyJy . Then
lim Vo A(8) = VA(9)

Proof: We have
A9)
Jo,0 = ot he + O(|1 — af).

Therefore,

(O
(1-a)V7i Jow = (1—a)Vr} 1()e+h9+0(|1—a|)

—

= (1- a)vwg{%e + (1 —a)Vrg (he +O(]1 — al))

—0 as a—1

= MO)Vrle+O(1—al)
But Wge =1, we have nge = 0. Therefore,
(1—-a)Vri Jpa =04+0(1 —al) = 0asa— 1.

a
If we want to use V,A(6) instead of VA(6), a simulation-based algorithm will compute Jp o instead of he.

We have

Var(hg) ~ O(E[T?]) and Var (je,a) =0 ((1—104)2)

However, using V,A(6), we have a bias O(E[T](1 —)).
Based on the previous discussion, we can generate an algorithm for estimating V,A(#) using the same

ideas from the offline unbiased gradient descent algorithm. Indeed, consider the following algorithm, where
the policy is held fixed:

1
D1 = D+ il (9(zr) 2641 — Dk)
Zht1 = ozp + Lo(ek, Trg1)

Then it can be shown that Ay — V,A(0), if the policy is held fixed. The gradient estimate Ay can be used

for updating the policy in an offline or online fashion, just as with the unbiased gradient descent algorithms.

Assumption 7 1. unique my for each 0
2. lg(zx)| < B,Vz
3. |Lo(z,y)| < B,Vz,y

Theorem 5 Under Assumption 7, we have

klim A — VaA(0), wpl.

References

[1] P. Marbach and J.N. Tsitsiklis. Simulation-based optimization of Markov reward processes. IEEE
Transactions on Automatic Control, 46(2):191-209, 2001.

