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1 Policy Search Methods 

1.1 Off­Line “Unbiased” Gradient Descent Algorithm 

Recall that we are interested in finding θ ∈ �K such that �λ(θ) = 0, i,e, the policy parameterized policy uθ 

corresponds to a local average cost minimum among the class of parameterized policies under consideration. 
In the previous lecture, we proposed an algorithm for performing gradient descent based on system trajec­
tories. We assume that there is a state x∗ that is recurrent under all policies uθ . The algorithm generates a 

series of policies θ1, θ2, . . . , which are updated whenever the system visits state x∗. The algorithm is given 

as follows: 

1. Let θ0 be the initial policy. Assume (for simplicity) that the initial state is x0 = x∗. Let m = 0, 
tm = 0. 

2. Generate a trajectory xtm +1, xtm +2, . . . , xtm+1 according to policy uθm , where 

tm+1 = inf{t > tm : xt = x∗ .}

3. Let 

tm�+1 −1 � � 
˜ĥθ (xn) = gθ (xt) − λm , n = tm + 1, . . . , tm+1 − 1 

t=n 

tm�+1 −1 � � 
Fθ (˜ ˆλm) = hθ (xn)hθ (xn−1, xn) + �gθ(xn) 

n=tm 

= θm − γmFθm (˜θm+1 λm) 
tm�+1 −1 � � 

˜ ˜ ˜λm+1 = λm + ηγm g
θm 

(xn) − λm 

n=tm 

4. Let m = m + 1, and go back to step 2. 

It can be shown that this algorithm leads to a local average cost minimum, asymptotically: 

Assumption 1 Let ρ = {Pθ } and ρ̄ be the closure of ρ. The Markov Chain associated with P is|θ ∈ �k 

irreducible and there exists x∗ that is recurrent for every P . 

Assumption 2 Pθ (x, y) and gθ (x) are bounded, twice differentiable, with bounded first and second deriva­
tives. 

Assumption 3 There is B < ∞ such that Lθ (x, y) ≤ B for all θ. 
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Assumption 4 ∞ 

γm = ∞ and ∞ 
γ2 

m=1 m=1 m < ∞. 

Theorem 1 Under Assumptions 1, 2, 3 and 4, we have 

lim 
m→∞ 

�λ(θm) = 0 w.p. 1. 

Some points about the algorithm are worth notice: 

If we had ˜	 λm) would be an unbiased estimate of the gradient �λ(θm). However, λm	 = λ(θm), F̃m(˜• 

that is not the case; we only have an estimate of λ(θm). One way of getting around this difficulty 

λm, so as to give enough time for ˜would be to update the policy θm at a much slower rate than ˜ λm to 

converge to λ(θm) and generate an unbiased gradient estimate before updating the policy. However, 
in the algorithm described above, both θm and λ̃m are updated at the same rate, except for a constant 
factor η, and convergence is still guaranteed. 

•	 The policy θm is updated only at visits to state x∗. This means that the algorithm can become slow 

when the system is large, and cycles between visits to x∗ are long. In the sequel, we will look at 
algorithms that updated the policy at every time step. 

Intuition for the proof: In order to develop some intuition for the proof of Theorem 1, we will look 

at the associated deterministic ODE. We have 

G(θt) (λ(θt) − λt)θ̇t = −�λ(θt) − 
Eθ [T ] 

λ̇t = η(λ(θt) − λt) 

We will first argue that λt converges, which implies that λt − lambda(θt) converges to zero. It follows that, 
asymptotically, θt is updated in the direction of −�λ(θt), and we conclude that 

lim 
t→∞ 

�(λ(θt)) = 0. 

The proof for the stochastic algorithm follows a similar argument. It turns out that neither the ODE or 
Lyapunov function approaches apply directly, and a customized, lengthy argument must be developed. The 

full proof can be found in [1]. 
For the convergence of λt, we discuss two cases: 

(1)	 λ0 ≥ λ(θ0) 
In this case, we first argue that λt ≥ λ(θt). Indeed, suppose λ0 = λ(θt0 ) for some t0. Then either 
�λ(θt0 ) = 0, and the ODE reaches an equilibrium, or λ̇(θt0 ) < 0 and λ̇t0 = 0. We conclude that 
λt ≥ λ(θt), ∀t. 
From the above discussion, we conclude that λt is nonincreasing and bounded. Therefore, λt converges. 

(2)	 λ0 < λ(θ0) 
We have two possible situations: 

(i)	 λt < λ(θt), ∀t

In this case, ⇒ λt is nondecreasing and bounded, therefore it converges.


(ii)	 λt0 = λ(θt0 ) for some t0 In this case, we are back to case (1). 

We conclude that λt converges, and thus (λ(θt) − λt) → 0. Therefore, θ̇t → −�λ(θt) asymptotically, and 

�λ(θt) → 0. 
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1.2 Online “Unbiased” Gradient Descent Algorithm 

We now develop a version of gradient descent where the policy is updated in every time step, rather than 

only at visits to state x∗. The algorithm has the advantage of being simpler and potentially faster. 
First note that Fm can be computed incrementally between visits to state x∗: 

tm�+1 −1 � � 
Fm(θ, ̃ ˆλ) = hθ (xn)Lθ (xn−1, xn) + �gθ (xn) 

n=tm 

tm�+1 −1 � � 
ˆ= �gθ (x∗) + hθ (xn)Lθ (xn−1, xn) + �gθ (xn) 

n=tm +1 

tm�+1 −1 tn�+1 −1 � � 
˜= �gθ (x∗) + gθ (xk ) − λ Lθ(xk−1, xk) + �gθ (xn) 

n=tm +1 k=n 

tm�+1 −1 n

˜= �gθ (x∗) + �gθ (xn) + Lθ (xk−1, xk )(gθ (xn) − λ) 
n=tm +1 tm +1 

tm�+1 −1 � � � � 
= �gθ (x∗) + �gθ (xn) + gθ (xn) − λ̃ zn 

n=tm +1 

where 
n

zn = Lθ (xk−1, xk ) ⇒ zn = zn−1 + Lθ (xn−1, xn) 
k=tm +1 

. This suggests the following Online Algorithm: 

˜θk+1 = θk − γk �gθ (xk) + (gθk (xk ) − λk )zk 

0 if xk+1 = x∗ 

zk+1 = 
zk + Lθ (xk , xk+1) otherwise 

Assumption 5 Let P = Pθ
k} and P̄ be the closure of P. Then there exists N0 such that, { : θ ∈ �

(P1, P2, . . . , PN0 ), Pi ∈ ¯ , ∀x,∀ P
N0 n

Pl(x, x∗) > 0. 
n=1 l=1 

Assumption 6 γk = ∞, γ2 
k < ∞, γk ≤ γk−1, and 

�n+t (γn − γk ) ≤ AtP γP for some A and P .k=n n 

Theorem 2 Under Assumptions 1­6, we have 

λ(θk) → 0, w.p.1. 

The idea behind the proof of Theorem 2 is that, due to the assumptions on the step sizes γk (Assumption 

6, eventually changes in the policy θm made between two consecutive visits to state x∗ are negligible, and 

the algorithm behaves very similarly to the offline version. Assumption 5 is required in order to guarantee 

that the time between visits to state x∗ remains small, even as the policy is not stationary. 
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1.3 Biased Gradient Estimation 

In both the offline and online “unbiased” gradient descent algorithms, the variance of the estimates depends 
on the variance of the times between visits to state x∗, which can be very large depending on the system. 
We now look at a different algorithm, which is aimed at developing estimates �̃λ(θ) with smaller variance. 
The decrease in variance is traded against a potential bias in the estimate, i.e., we have E ̃ ��λ(θ) = �λ(θ). 
Note that a small amount of bias may still be acceptable since it should suffice to have estimates that have 

positive inner product with the true gradient, in order for the algorithm to converge: 

�λ(θ), �λ(θ)� > 0.�E˜

We generate one such biased estimate �̃λ(θ) based on a discounted­cost approximation. Let 

∞

Jθ,α(x) = Eθ αt g(xt)|x0 = x 
t=0 

Then we have 

Theorem 3 

�λ(θ) = (1 − α)�πT
θ �Pθ Jθ,α θ Jθ,α + απT 

�α λ(θ) 

Proof: We have Jθ,α = g + αPθ Jθ,α. Then 

�λ(θ) = �πT 
θ g = �πT [Jθ,α − αPθ Jθ,α].θ 

Since πT = πT 
θ P, we have θ


�πT = �πT
θ �Pθ .
θ Pθ + πT 

θ 

Hence, 

�λ(θ) = �πT
θ Pθ Jθ,α θ Jθ,α − α�πT 

= �πT
θ Jθ,α + απT 

θ Jθ,α − α�πT
θ �Pθ Jθ,α 

= (1 − α)�πT
θ �Pθ Jθ,α θ Jθ,α + απT 

2 

The following theorem shows that �αλ(θ) can be used as an approximation to �λ(θ), if α is reasonably 

close to one. 

Theorem 4 Let �αλ(θ) = απT 
θ �Pθ Jθ,α. Then 

lim 
1 
�αλ(θ) = �λ(θ)

α→

Proof: We have 
λ(θ)

Jθ,α = 1 − α
e + hθ + O( 1 − α ).| |
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Therefore, 

(1 − α)�πT	 λ(θ) 
θ Jθ,α = (1 − α)�πT 

1 − α
e + hθ + O( 1 − α )θ	 | |

λ(θ)
= (1 − α)�πT 

1 − α
e + (1 − α)�πT 

θ (hθ + O( 1 − α ))θ 

0 as α 1→ →

=	 λ(θ)�πT 
θ e + O( 1 − α )| |

But πT	
θ e = 0. Therefore, θ e = 1, we have �πT 

(1 − α)�πT 
θ Jθ,α = 0 + O( 1 − α 0 as α 1.| |) → →

If we want to use �αλ(θ) instead of �λ(θ), a simulation­based algorithm will compute Ĵθ,α instead of ĥθ . 

We have	 � � � 
1 

� 

V ar(ĥθ ) ≈ O(E[T 2]) and V ar Ĵθ,α = O 
(1 − α)2 

However, using �αλ(θ), we have a bias O(E[T ](1 − α)). 
Based on the previous discussion, we can generate an algorithm for estimating �αλ(θ) using the same 

ideas from the offline unbiased gradient descent algorithm. Indeed, consider the following algorithm, where 

the policy is held fixed: 

1 
k+1 = k )� �k + 

k + 1
(g(xk )zk+1 −�

zk+1 = αzk + Lθ (xk , xk+1) 

Then it can be shown that � αλ(θ), if the policy is held fixed. The gradient estimate �k can be used k → �
for updating the policy in an offline or online fashion, just as with the unbiased gradient descent algorithms. 

Assumption 7 1. unique πθ for each θ 

2.	 g(xk ) ≤ B, ∀x| |

3.	 Lθ (x, y) ≤ B, ∀x, y | |

Theorem 5 Under Assumption 7, we have 

lim k → �αλ(θ), w.p.1. 
k→∞ 

�
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