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Lecture Note 2

1 Summary: Markov Decision Processes

Markov decision processes can be characterized by (S, A.,g.(-),P.(+,-)), where
S denotes a finite set of states
A, denotes a finite set of actions for state z € S
ga(x) denotes the finite time-stage cost for action a € A, and state z € S

P,(z,y) denotes the transmission probability when the taken action is a € A,, current state is x, and

the next state is y

Let u(x,t) denote the policy for state z at time ¢t and, similarly, let u(z) denote the stationary policy for

state z. Taking the stationary policy u(x) into consideration, we introduce the following notation

Pu(l'vy) = Pu(m)(xay)

to represent the cost function and transition probabilities under policy u(x).

2 Cost-to-go Function and Bellman’s Equation

In the previous lecture, we defined the discounted-cost, infinite horizon cost-to-go function as

Zatgu(act)\mo = x} .

t=0

J*(z) =minE

We also conjectured that J* should satisfies the Bellman’s equation
S () = min ¢ ga(2) + @ > Palzy)J () ¢
yeS

or, using the operator notation introduced in the previous lecture,
Jr=TJ".

Finally, we conjectured that an optimal policy u* could be obtained by taking a greedy policy with respect
to J*.

In this and the following lecture, we will present and analyze algorithms for finding J*, and prove
optimality of policies that are greedy with respect to it.



3 Value Iteration

The value iteration algorithm goes as follows:
1. Jo, k=0
2. g1 =T, k=k+1

3. Go back to 2

Theorem 1
lim J, = J*
hoo O F

Proof Since Jy(-) and g.(-) are finite, there exists a real number M satisfying
|Jo(z)] < M and |gq(z)] < M for all a € A, and € S. Then we have, for every integer K > 1 and real
number « € (0,1),

Jr(z) = TXJo(x)
K-1
= minE Z ' gu(xy) + X To(xg) |z = x]
=0
K-1
< minE Z A gu(xy)|wo =a| + M
¢ t=0
From
K-1 0
= min { Z ' gy (1) + Z atgu(act)} ,
t=0 t=K
we have

(TKJo)(x) = J"(2)

K—1
= mlnE Zozgu zy) + B Jy(zg)|wo = = 7IHIHIE ZO&gu Ty +Za9u xt) ox]
t=0 t=K
K—1 -
< Z ga(xy) + X T(xg)|wg =2 —E lz alga(ry) + Z o' ga(ay)|o = 37]
t=0 t=0 t=K
oo
< E o [Jo(zr)] + Z a'ga(zi) |20 = a:‘|
t=K
< mz?XE |J0 ri)|+ Z |90 x¢)||xo :4
<

aKM(l—i—l),
l—«a

where 1 is the policy minimizing the second term in the first line. We can bound J*(z) — (T®Jp)(z) <
KM (1+41/(1—-a)) by using the same reasoning. It follows that T%.J, converges to J* as K goes to infinity.
O



Theorem 2 J* is the unique solution of the Bellman’s equation.
Proof We first show that J* = T'J*. By contraction principle,

T(T*Jo) — T" Dol = ||[TFTTo — T*Jo||o
ol |T* Jo — T 1o |o

< AMTJo — Jollee — 0 as K — 00

IN

Since for all k we have ||J* —TJ*| oo < |TJ* —T* 1 Jg|lco + |J* =T Jo||oo + | TF T2 Jo — T*T0 | 00, we conclude

that J* = T'J*. We next show that J* is the unique solution to J = T'J. Suppose that J; # J5. Then

0 <|[J7 = L3llee = ITJ7 = TJs5llec < allJ7 = J3][oo

which is a contradiction. ]
Alternative Proof =~ We prove the statement by showing that 7% J is a Cauchy sequence in R".! Observe

m—1

||Tk+mJ _ TkJHoo _ H Z (Tk-‘rn+1J N Tk-‘:-nJ)HOO

n=0
m—1
Z HTk:—i-n—i-lJ _ Tk+nJ||oo
n=0
m—1
Z FTT = J||lee = 0 as k,m — oo
n=0

IN

IN

|
From above, we know that |[T%J — J*||oc < @¥||J — J*||sc. Therefore, the value iteration algorithm
converges to J*. Furthermore, we notice that J* is the fixed point w.r.t. the operator T, i.e., J* = TJ*.

We next introduce another value iteration algorithm.

3.1 Gauss-Seidel Value Iteration
The Gauss-Seidel value iteration goes as follows:
Jrs1(z) = (TJg)(x) where

Jely) = Jr(x), if z <y, (not being updated yet)
A Jrt1(y), ifz>y.

We hence define the operator F' as follows

(FJ)(2) = min § ga(2) +a ) Pa(z,y)(FI)(y) +a ) Pa(z,y)J (1) (1)
y<z y>z
updated already not being updated yet

Does the operator F' satisfy the maximum contraction? We answer this question by the following lemma.

LA sequence z, in a metric space X is said to be a Cauchy sequence if for every ¢ > 0 there exists an integer N such that
[|lxn — zm|| < € if m,n > N. Furthermore, in R"™, every Cauchy sequence converges.



Lemma 1
|FT = FJllos < allJ = Jl|o
Proof By the definition of F', we consider the case x = 1,
(F)(1) = (FI Q)] = [(TT)(1) = (TT)(D)] < o[ ] = J[s
For the case x = 2, by the definition of F', we have

(F1)(2) = (FI)(2)] < amax {[(FJ)(1) — (FI)(D]|T(2) = J@2)l,.... [ T(S]) = T(ISDI}
< a||']_‘7”oo

Repeating the same reasoning for = 3,..., we can show by induction that |(FJ)(z) — (FJ)(x)|
a||J = J||eo, Vo € S. Hence, we conclude ||FJ — FJ||o < a||J — J||oo-

(VAN

Theorem 3 F has the unique fized point J*.

Proof By the definition of operator F' and the Bellman’s equation J* = TJ*, we have J* = FJ*.
The convergence result follows from the previous lemma. Therefore, F'J* = J*. By maximum contraction
property, the uniqueness of J* holds. ([l



