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Lecture Note 4 

Average­cost Problems 

In the average cost problems, we aim at finding a policy u which minimizes 

Ju(x) = lim sup 
1

E 
T −1

gu(xt) �� x0 = 0 . (1) 
t=0T →∞ T 

Since the state space is finite, it can be shown that the lim sup can actually be replaced with lim for any 

stationary policy. In the previous lectures, we first find the cost­to­go functions J∗(x) (for discounted 

problems) or J∗(x, t) (for finite horizon problems) and then find the optimal policy through the cost­to­go 

functions. However, in the average­cost problem, Ju(x) does not offer enough information for an optimal 
policy to be found; in particular, in most cases of interest we will have Ju(x) = λu for some scalar λu, for 
all x, so that it does not allow us to distinguish the value of being in each state. 

We will start by deriving some intuition based on finite­horizon problems. Consider a set of states 
x1, x2, . . . , x

∗, . . . , xn}. The states are visited in a sequence with some initial state x, say S = {

x, . . . . . ., x∗, . . . . . ., x∗, . . . . . ., x∗, . . . . . . , � �� � � �� � � �� � 
h(x) λ1 λ2 

u u 

Let Ti(x), i = 1, 2, . . . be the stages corresponding to the ith visit to state x∗, starting at state x. Let ⎡ �Ti+1 (x)−1 
gu(xt) 

⎤ 

u(x) = E ⎣ t=Ti (x)
λi ⎦ 

Ti+1(x) − Ti(x) 

Intuitively, we must have λi
u(x) = λj 

u(x) is independent of initial state x and λi
u(x), since we have the same 

transition probabilities whenever we start a new trajectory in state x∗. Going back to observe the definition 

of the function � � 
T

J∗(x, T ) = minE gu(xt)�� xo = x , 
u 

t=0 

we conjecture that the function can be approximated as follows. 

J∗(x, T ) ≈ λ∗(x)T + h∗(x) + o(T ), as T →∞, (2) 

Note that, since λ∗(x) is independent of the initial state, we can rewrite the approximation as 

J∗(x, T ) ≈ λ∗T + h∗(x) + o(T ), as T →∞. (3) 

where term h∗(x) can be interpreted as a residual cost that depends on the initial state x and will be referred 

to as the differential cost function. It can be shown that ⎡ ⎤ 
T1�(x)−1 ⎦h∗(x) = E ⎣ (gu∗ (x) − λ∗) . 

t=0 

1 



� � � 

� � � 

� � � 

2 

We can now speculate about a version of Bellman’s equation for computing λ∗ and h∗. Approximating 

J∗(x, T ) as in (3, we have 

J∗(x, T + 1) = min ga(x) + Pa(x, y)J∗(y, T ) 
a 

y 

λ∗(T + 1) + h∗(x) + o(T ) = min ga(x) + Pa(x, y) [λ∗T + h∗(y) + o(T )] 
a 

y 

Therefore, we have 

λ∗ + h∗(x) = mina ga(x) + y Pa(x, y)h∗(y) (4) 

As we did in the cost­to­go context, we set 

Tuh = gu + Puh 

and 

Th = min Tuh. 
u 

Then,we have 

¯ ¯ ¯Lemma 1 (Monotonicity) Let h ≤ h be arbitrary. Then Th ≤ Th. (Tuh ≤ Tuh)


Lemma 2 (Offset) For all h and k ∈ �, we have T (h + ke) = Th + ke.


Notice that the contraction principle does not hold for Th = minu Tuh.


Bellman’s Equation 

From the discussion above, we can write the Bellman’s equation 

λe + h = Th. (5) 

Before examining the existence of solutions to Bellman’s equation, we show the fact that the solution of the 

Bellman’s equation renders the optimal policy by the following theorem. 

Theorem 1 Suppose that λ∗ and h∗ satisfy the Bellman’s equation. Let u∗ be greedy with respect to h∗, i.e., 
Th∗ ≡ Tu∗ h∗. Then, 

Ju∗ (x) = λ∗,∀x, 

and 

u∗ (x) ≤ Ju(x),∀u. 

Proof: Let u = (u1, u2, . . . ). Let N be arbitrary. Then 

TuN −1 h
∗ ≥ Th∗ = λ∗e + h∗ 

TuN −2 TuN −1 h
∗ TuN −2 (h

∗ + λ∗e) 

J∗ 

≥ 

= TuN −2 h
∗ + λ∗e 

≥ Th∗ + λ∗e 

= h∗ + 2λ∗e 
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Then 

TN −1h
∗ ≥ Nλ∗e + h∗T1T2 · · ·

Thus,we have � � 
N −1

E gu(xt) + h∗(xN ) ≥ (N − 1)λ∗e + h∗ 

t=0 

By dividing both sides by N and take the limit as N approaches to infinity, we have1 

Ju ≥ λ∗e 

Take u = (u∗, u∗, u∗, . . . ), then all the inequalities above become the equality. Thus 

λ∗e = Ju∗ . 

This theorem says that, if the Bellman’s equation has a solution, then we can get a optimal policy from it. 

Note that, if (λ∗, h∗) is a solution to the Bellman’s equation, then (λ∗, h∗ + ke) is also a solution, for all 
scalar k. Hence, if Bellman’s equation in (5) has a solution, then it has infinitely many solutions. However, 
unlike the case of discounted­cost and finite­horizon problems, the average­cost Bellman’s equation does not 
necessarily have a solution. In particular, the previous theorem implies that, if a solution exists, then the 

average cost Ju∗ (x) is the same for all initial states. It is easy to come up with examples where this is not 
the case. For instance, consider the case when the transition probability is an identity matrix, i.e., the state 

visits itself every time, and each state incurs different transition costs g(·). Then the average cost λ∗ depends 
on the initial state, which is not the property of the average cost. Hence, the Bellman’s equation does not 
always hold. 

gu(xt) x0 = x . 1 �N −1 
t=0 

1Recall that Ju(x) = lim supN →∞ E 
N 
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