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2.997 Decision­Making in Large­Scale Systems February 18 

MIT, Spring 2004 Handout #7 

Lecture Note 5 

Relationship between Discounted and Average­Cost Problems 

In this lecture, we will show that optimal policies for discounted­cost problems with large enough discount 
factor are also optimal for average­cost problems. The analysis will also show that, if the optimal average 

cost is the same for all initial states, then the average­cost Bellman’s equation has a solution. 
Note that the optimal average cost λ∗ is independent of the initial state. Recall that 

1 
N −1

Ju(x) = lim sup E gu(xt)|x0 = x 
N →∞ N 

t=0 

or, equivalently, 
1 

N −1

Ju = lim Pu
t gu. 

NN →∞ 
t=0 

We also let Ju,α denote the discounted cost­to­go function associated with policy u when the discount factor 
is α, i.e., 

∞

αtP tJu,α = ugu = (I − αPu)−1 gu. 
t=0 

The following theorem formalizes the relationship between the discounted cost­to­go function and average 

cost. 

Theorem 1 For every stationary policy u, there is hu such that 

1 
Ju,α = 1 − α

Ju + hu + O( 1 − α ). (1)| |

Theorem 1 follows easily from the following proposition. 

Proposition 1 For all stationary policies u, we have 

1
(I − αPu)−1 = 

1 − α 
P ∗ 

u + Hu + O(|1 − α|)1 , (2) 

where 

P ∗ 
u = lim 

N →∞ 

1 
N 

N −1� 

t=0 

P t 
u, (3) 

Hu = (I − Pu + P ∗ 
u )
−1 − P ∗ 

u , (4) 

PuP ∗ 
u = P ∗ 

u Pu = P ∗ 
u P ∗ 

u = P ∗ 
u , (5) 

P ∗ 
u Hu = 0, (6) 

P ∗ 
u + Hu = I + PuHu. (7) 

1O(|1 − α|) is a function satisfying limα→1 O(|1 − α|) = 0. 
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Proof: Let Mα = (1 − α)(I − αPu)−1 . Then, since 

αtP t 
u(x, y) ≤ (1 − α) αt 1· = 1,Mα(x, y) = (1 − α)| | 

∞ ∞

t=0 t=0 

Mα(x, y) is in the form of 

Mα(x, y) = 
p(α) 
q(α) 

, 

where p(·) and q(·) are polynomials such that q(1) = 1. We conclude that the limit lim� α 1 Mα exists. Let →

P ∗ = limα 1 Mα. We can do Taylor’s expansion of Mα around α = 1, so that u →

Mα = P ∗ + (1 − α)Hu + O((1 − α)2)u 

dMαwhere Hu = − dα . Therefore 

1(I − αPu)−1 = 1−α P ∗ + Hu + O( 1 − α )u | |

for some P ∗ and Hu.u 

Next, observe that

(1 − α)(I − αPu)(I − αPu)−1 = (1 − α)I


for all α. Taking the limit as α → 1 yields 

(I − Pu)P ∗ = 0,u 

so that P ∗ = PuP ∗. We can use the same reasoning to conclude that P ∗ = P ∗Pu. We also have u u u u 

(I − αPu)P ∗ = (1 − α)Pu 
∗,u 

hence for every α we have 

P ∗ = (1 − α)(I − αPu)−1P ∗ 
u u , 

and taking the limit as α → 1 yields P ∗P ∗ = P ∗.u u u


We now show that, for every t ≥ 1, P t

u − P ∗ = (Pu − Pu 

∗)t . For t = 1, it is trivial. Suppose that the u 

result holds up to n − 1, i.e., P n−1 − Pu 
∗ = (Pu − P ∗ 

u )
n−1 = (Pu − P ∗ 

u )
n−1 . Then (Pu − Pu 

∗)(Pu − P ∗ 
u )(P n−1 −u u 

u ) = P n − PuP ∗ 
u P n−1 + P ∗P ∗ = P n P n−2 + P ∗ = Pu

n − Pu 
∗. By induction, we have u uP ∗ 

u u − P ∗ 
u u u u − P ∗ − P ∗ 

u u 

u − P ∗ = (Pu − P ∗P t u )
t .u 

Now note that 

uHu = lim 
Mα − P ∗ 

1 − αα 1→

P ∗ 
u= lim (I − αPu)−1 − 

1 − αα 1→

∞

= lim αt(P t u )u − P ∗ 

α 1→
t=0 

∞

u )
t= lim I − P ∗ + αt(Pu − P ∗ 

u
α 1→

t=1 

∞

= lim αt(Pu − P ∗ 
uu )

t − P ∗ 

α 1→
t=0 

= (I − Pu + Pu 
∗)−1 − Pu 

∗. 
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Hence Hu = (I − Pu + P ∗ .u )
−1 − Pu 

∗


We now show P ∗Hu = 0. Observe
u 

u )
−1 − P ∗P ∗Hu = P ∗ (I − Pu + P ∗ 

u u u 
∞

= Pu 
∗(Pu − P ∗ 

uu )
t − P ∗ 

t=0 

= P ∗ 
u − P ∗ = 0.u 

Therefore, P ∗Hu = 0.u 

Observe (I−Pu+P ∗ 
u )P

∗ = I−P ∗. Since P ∗Hu = 0, we have u )Hu = I−(I−Pu+P ∗ 
u u u


By multiplying P k to P ∗ + Hu = I + PuHu, we have
u u 

+ P k+1P k = P k 
u Pu 

∗ + P k Hu u u Hu, ∀ ku 

Summing from k = 0 to k = N − 1, we have � � NN −1 N −1 � 
NP ∗ + P k Hu = Pu

k + P kHu,u u u 
k=0 k=0 k=1 

or, equivalently, 
N −1

NP ∗ = P k + (PN − I)Hu.u u u 
k=0 

Dividing both sides by N and letting N →∞, then we have 

P ∗ + Hu = I + PuHu.u 

limN →∞ 
1 �N −1 

P k = P ∗.N k=0 u u 

Since P ∗ = P ∗Pu and Pu itself is a stochastic matrix, the rows of P ∗ are of special meanings. Let u u � u 

πu denote a row of Pu. Then πu = πuPu and πu(x) = y πu(y)Pu(y, x). Then Pu(x1 = x x0 ∼ πu) = 

πu(y)Pu(y, x). We can conclude that any row in matrix P ∗ is a stationary distribution for the Markov y u 

chain under the policy u. However, does this observation mean that all rows in P ∗ are identical? u 

Theorem 2 
Ju

Ju,α = 1 − α 
+ hu + O( 1 − α )| |

Proof: 

Ju,α = (I − αPu)−1 gu 

P ∗ 
u=

1 − α 
+ Hu + O( 1 − α ) gu| |

P ∗ 
u gu =

1 − α 
+ Hugu + O( 1 − α )| |

1 1 
N −1

P t= lim ugu + hu +O( 1 − α )
1 − α N →∞ N 

t=0 
���� 

| |
=Hu gu 

Ju =
1 − α 

+ hu +O( 1 − α ). 
=Hu gu 
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2 Blackwell Optimality 

In this section, we will show that policies that are optimal for the discounted­cost criterion with large enough 

discount factors are also optimal for the average­cost criterion. Indeed, we can actually strengthen the notion 

of average­cost optimality and establish the existence of policies that are optimal for all large enough discount 
factors. 

Definition 1 (Blackwell Optimality) A stationary policy u∗ is called Blackwell optimal if ∃ ̄α ∈ (0, 1) 
such that u∗ is optimal ∀ α ∈ [α, 1).¯

Theorem 3 There exists a stationary Blackwell optimal policy and it is also optimal for the average­cost 
problem among all stationary policies. 

Proof: Since there are only finitely many policies, we must have for each state x a policy µx such that 
Jux ,α(x) ≤ Ju,α(x) for all large enough α. If we take the policy µ∗ to be given by µ∗(x) = µx(x), then µ∗ 

must satisfy Bellman’s equation 

Ju∗ ,α = min {gu + αPuJu∗ ,α}
u 

for all large enough α, and we conclude that µ∗ is Blackwell optimal. 
Now let u∗ be Blackwell optimal. Also suppose that ū is optimal for the average­cost problem. Then 

Ju∗ J
+ hu∗ + O( 1 − α| |) ≤ ū + hū + O( 1 − α ), ∀α ≥ ᾱ. | |

1 − α 1 − α 

Taking the limit as α → 1, we conclude that 

Ju∗ ≤ J ,ū

and u∗ must be optimal for the average­cost problem. 

Remark 1 It is actually possible to establish average­cost optimality of Blackwell optimal policies among 

the set of all policies, not only stationary ones. 

Remark 2 An algorithm for computing Blackwell optimal policies involves lexicographic optimization of Ju, 
hu and higher­order terms in the Taylor expansion of Ju,α. 

Theorem 3 implies that if the optimal average cost is the same regardless of the initial state, then the 

average­cost Bellman’s equation has a solution. Combined with Theorem 1 of the previous lecture, it follows 
that this is a necessary and sufficient condition for existence of Bellman’s equation solution. 

Corollary 1 If Ju∗ = λ∗e, then λe + h = T h has a solution (λ∗, hu∗ ) with u∗ which is Blackwell optimal. 
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Proof: We have, for all large enough α, 

Ju∗ ,α = min gu + αPuJu∗ ,α}
u 
{

Ju∗ 

1 − α 
+ hu∗ + O((1 − α)2) = min gu + αPu 

Ju∗ 

+ hu∗ + O((1 − α)2) 
u 1 − α 

λ∗e λ∗e 
1 − α 

+ hu∗ + O((1 − α)2) = min gu + αPu 1 − α 
+ hu∗ + O((1 − α)2) 

u 

λ∗ + hu∗ + O((1 − α)2) = min gu + αPu hu∗ + O((1 − α)2) . 
u 

Taking the limit as α → 1, we get 

λ∗e + hu∗ = min gu + Puhu∗ } = T hu∗ . 
u 
{

2 

In the average­cost setting, existence of a solution to Bellman’s equation actually depends on the structure 

of transition probabilities in the system. Some sufficient conditions for the optimal average cost to be the 

same regardless of the initial state are given below. 

Definition 2 We say that two states x, y communicate under policy u if there are k, ̄ 1, 2, . . . } suchk ∈ {
k̄that Pu

k(x, y) > 0, Pu (y, x) > 0. 

Definition 3 We say that a state x is recurrent under policy u if, conditioned on the fact that it is visited


at least once, it is visited infinitely many times.


Definition 4 We say that a state x is transient under policy u if it is only visited finitely many times,

regardless of the initial condition of the system. 

Definition 5 We say that a policy u is unichain if all of its recurrent states communicate. 

We state without proof the following theorem. 

Theorem 4 Either of the following conditions is sufficient for the optimal average cost to be the same 

regardless of the initial state: 

1. There exists a unichain optimal policy. 

2. For every pair of states x and y, there is a policy u such that x and y communicate. 

3 Value Iteration 

We want to compute 

1 
N −1

P t 

u N 
min lim ugu 

N →∞ 
t=0 
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One way to obtain this value is to calculate a finite but very large N to approximate the limit and speculate 

that such an limit is accurate. Hence we consider 

k−1

T k J = min E gu(xt) + J0(xk) 
u 

t=0 

Recall J∗(x, T ) ∼ x, we have = λ∗T + h∗(x). Choose some state x and ¯

J∗(x, T ) − J∗(¯ x)x, T ) = h∗(x) − h∗(¯

Then 

hk(x) = J∗(x, k) − δk , for some δ1, δ2 , . . . 

Note that, since (λ∗, h∗ + ke) is a solution to Bellman’s equation for all k whenever (λ∗, h∗) is a solution, we 

can choose the value of a single state arbitrarily. Letting h∗(x̄) = 0, we have the following commonly used 

version of value iteration; 
hk+1(x) = (Thk )(x) − (Thk)(x̄) (8) 

¯ ¯Theorem 5 Let hk be given by (8). Then if hk → h, we have λ∗ = (Th)(¯ ¯ x) and h∗ = h, λ∗e + h∗ = Th∗. 

Note that there must exist a solution to the average­cost Bellman’s equation for value iteration to con­
verge. However, it can be shown that existence of a solution is not a sufficient condition. 
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