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Lecture Note 6 

1 Application to Queueing Networks 

In the first part of this lecture, we will discuss the application of dynamic programming to the queueing 

network introduced in [1], which illustrates several issues encountered in the application of dynamic pro­

gramming in practical problems. In particular, we consider the issues that arise when value iteration is 

applied to problems with a large or infinite state space. 

The main points in [1], which we overview today, are the following: 

•	 Naive implementation of value iteration may lead to slow convergence and, in the case of infinite 

state spaces, policies with infinite average cost in every iteration step, even though the iterates Jk (x) 

converge pointwise to J �(x) for every state x; 

•	 Under certain conditions, with proper initialization J0, we can have a faster convergence and stability 

guarantees; 

•	 In queueing networks, proper J0 can be found from well-known heuristics such as fluid model solutions. 

We will illustrate these issues with examples involving queueing networks. For the generic results, in­

cluding a proof of convergence of average-cost value iteration for MDPs with infinite state spaces, refer to 

[1]. 

1.1 Multiclass queueing networks 

Consider a queueing network as illustrated in Fig. 1. 
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Figure 1: A queueing system 
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We introduce some notation: 

N the number of queues in the system 

�i probability of exogenous arrival at queue i 

µi probability that a job at queue i is completed if the job is being served 

xi state, length of queue i 
N � 

g(x) = xi cost function, in which state x = (x1, . . . , xN ) 
i=1 

a → {0, 1}N ai = 1 if a job from queue i is being served, and ai = 0 otherwise. 

The interpretation is as follows. At each time stage, at most one of the following events can happen: a new 

job arrives at queue i with probability �i, a job from queue i that is currently being served has its service 

completed, with probability µi, and either moves to another queue or leaves the system, depending on the 

structure of the network. Note that, at each time stage, a server may choose to process a job from any of the 

queues associated with it. Therefore the decision a encodes which queue is being processed at each server. 

We refer to such a queueing network as multiclass because jobs at different queues has different service rates 

and trajectories through the system. 

As seen before, an optimal policy could be derived from the differential cost function h�, which is the 

solution of Bellman’s equation: 

�� + h� = Th� . 

Consider using value iteration for estimating h� . This requires some initial guess h0. A common choice 

is h0 = 0; however, we will show that this can lead to slow convergence of h� . Indeed, we know that h� is 

equivalent to a quadratic, in the sense that there is a constant � and a solution to Bellman’s equation such 
2 21 . Now let h0 = 0. Then that �−1 � 

i xi � h�(x) � �
� 

i xi 

�
k−1 � N � 

xi(t) x0 = x .T k h0(x) = min E 
u 

t=0 i=1 

Since 

E [xi(t)] = E [xi(t − 1)] + E [Ai(t)] −E [Di(t)] , 
⎬ ⎫� ⎬⎭ ⎫� ⎭ 

=�i (arrival) �0 (departure) 

we have 

E [xi(t) − xi(t − 1)] � �i (1) 

By (1), we have 

E [xi(1)] � E [xi(0)] + �i 

E [xi(2)] � E [xi(1)] + �i � E [xi(0)] + 2�i 

. . . 

E [xi(t)] � E [xi(0)] + t�i 

1You will show this for the special case of a single queue with controlled service rate in problem set 2. 
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Thus, 

T k h0 � 
N � k−1 � 

(xi(0) + t�i) 
t=0 i=1 

N � k(k − 1)
kxi(0) + �i = 

2 
i=1 

This implies that hk (x) is upper bounded by a linear function of the state x. In order for it to approach a 

quadratic function of x, the iteration number k must have the same magnitude as x. It follows that, if the 

state space is very large, convergence is slow. Moreover, if the state space is infinite, which is the case if 

queues do not have finite buffers, only pointwise convergence of hk(x) to h�(x) can be ensured, but for every 

k, there is some state x such that hk (x) is a poor approximation to h�(x). 

Example 1 (Single queue length with controlled service rate) Consider a single queue with 

State x defined as the queue length 

Pa(x, x + 1) = �, (arrival rate) 

Pa(x, x − 1) = µ1 + aµ2, where action a → {0, 1} 

Pa(x, x) = 1 − � − µ1 − aµ2. 

Let the cost function be defined as ga(x) = (1 + a)x. 

The interpretation is as follows. At each time stage, there is a choice between processing jobs at a lower 

service rate µ1 or at a higher service rate µ2. Processing at a higher service rate helps to decrease future 

queue lengths but an extra cost must be paid for the extra effort. 

Suppose that � > µ1. Then if policy u(x) = 0 for all x ∀ x0, whenever the queue length is at least x0, 

there are on average more job arrivals than departures, and it can be shown that eventually the queue length 

converges to infinity, leading to infinite average cost. 

Suppose that h0(x) = 0, �x. Then in every iteration k, there exists an xk such that hk = T kh0(x) = cx+d 

for all x ∀ xk . Moreover, when hk = cx + d in a neighborhood of ¯ x) = 0, which is x, the greedy action is uk(¯

the case that the average cost goes to infinity. 
2 

As shown in [1], using the initial value h0(x) = µ1 +
x
µ2 −� leads to stable policies for every iterate hk, 

and ensures convergence to the optimal policy. The choice of h0 as a quadratic arises from problem-specific 

knowledge. Moreover, appropriate choices in the case of queueing networks can be derived from well-known 

heuristics and analysis specific to the field. 

Simulation-based Methods 

The dynamic programming algorithms studied so far have the following characteristics: 

• infinitely many value/and or policy updates are required at every state, 

• perfect information about the problem is required, i.e., we must know ga(x) and Pa(x, y), 

• we must know how to compute greedy policies, and in particular compute expectations of the form 

Pa(x, y)J (y). (2) 
y 
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In realistic scenarios, each of these requirements may pose difficulties. When the state space is large, 

performing updates infinitely often in every state may be prohibitive, or even if it is feasible, a clever order 

of visitation may considerably speed up convergence. In many cases, the system parameters are not known, 

and instead one has only access to observations about the system. Finally, even if the transition probabilities 

are known, computing expectations of the form (2) may be costly. In the next few lectures, we will study 

simulation-based methods, which aim at alleviating these issues. 

2.1 Asynchronous value iteration 

We describe the asynchronous value iteration (AVI) as 

Jk+1(xk ) = (TJk )(xk ), �xk → Sk 

We have seen that, if every state has its value updated infinitely many times, then the AVI converges 

(see arguments in Problem set 1). The question remains as to whether convergence may be improved by 

selecting states in a particular order, and whether we can dispense with the requirement of visiting every 

state infinitely many times. 

We will consider a version of AVI where state updates are based on actual or simulated trajectories for 

the system. It seems reasonable to expect that, if the system is often encountered at certain states, more 

emphasis should be placed in obtaining accurate estimates and good actions for those states, motivating 

performing value updates more often at those states. In the limit, it is clear that if a state is never visited, 

under any policy, then the value of the cost-to-go function at such a state never comes into play in the 

decision-making process, and no updates need to be performed for such a state at all. Based on the notion 

that state trajectories contain information about which states are most relevant, we propose the following 

version of AVI. We call it real-time value iteration (RTVI). 

1. Take an arbitrary state x0. Let k = 0. 

2. Choose action uk in some fashion. 

3. Let	 xk+1 = f(xk, uk , wk ) (recall from lecture 1 that f gives an alternative representation for state 

transitions). 

4. Let Jk+1(xk+1) = (TJk )(xk+1). 

5. Let k = k + 1 and return to step 2. 

2.2 Exploration x Exploitation 

Note that there is still an element missing in the description of RTVI, namely, how to choose action uk. It 

is easy to see that, if for every state x and y there is a policy u such that there is a positive probability of 

reaching state y at some time stage, starting at state x, one way of choosing uk that ensures convergence of 

RTVI is to select it randomly among all possible actions. This ensures that all states are visited infinitely 

often, and the convergence result proved for AVI holds for RTVI. However, if we are actually applying RTVI 

as we run the system, we may not want to wait until RTVI converges before we start trying to use good 

policies; we would like to use good policies as early as possible. A reasonable choice in this direction is to 

take an action uk that is greedy with respect to the current estimate Jk of the optimal cost-to-go function. 
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In general, choosing uk greedily does not ensure convergence to the optimal policy. One possible failure 

scenario is illustrated in Figure 2. Suppose that there is a subset of states B which is recurrent under an 

optimal policy, and a disjoint subset of states A which is recurrent under another policy. If we start with a 

guess J0 which is high enough at states outside region A, and always choose actions greedily, then an action 

that never leads to states outside region A will be selected. Hence RTVI never has a chance of updating and 

correcting the initial guess J0 at states in subset B, and in particular, the optimal policy is never achieved. 

It turns out that, if we choose initial value J0 � J�, then the greedy policy selection performs well, as 

shown in Fig 2(b). We state this concept formally by the following theorem. 

The previous discussion highlights a tradeoff that is fundamental to learning algorithms: the conflict 

of exploitation versus exploration. In particular, there is usually tension between exploiting information 

accumulated by previous learning steps and exploring different options, possibly at a certain cost, in order 

to gather more information. 
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Figure 2: Initial Value Selection 

Theorem 1 If J0 � J� and all states are reachable from one another, then the real time value iteration 

algorithm (RTVI) with greedy policy ut satisfies the following 

(a) Jk � J� for some J�, 

(b) J� = J� for all states visited infinitely many times, 

(c) after some iterations, all decisions will be optimal. 

Proof: Since T is monotone, we have 

(TJ0)(x) � (TJ�)(x), �x ≤ J1(x1) � J�(x1) and J1(x) = J0(x) � J�(x),�x ≥= x1. 

We thus conclude that J0 � J� implies Jk � J� for all k. Let A be the set of states visited infinitely many 

times. Assume without loss of generality that only states in A are visited and they are visited infinitely 

many times. Define 
⎧

⎨ 
ga(x) + � Pa(x, y)J(y) + � Pa(x, y)J0(y) , � x → A.(TAJ)(x) = min 

a ⎩
y∗A y/∗A 
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Hence one could regard J as a function from the set A to ∈|A|. So T A is ”similar” to DP operator for the 

subset A of states and 
¯||T AJ − T AJ̄ ||� � �||J − J ||�. 

Therefore, RTVI is AVI over A, with every state visited infinitely many times. Thus, 

J�(x), if x → A,
Jk (x) � J�(x) = 

J0(x), if x /→ A. 

Since the states x /→ A are never visited, we must have


Pa(x, y) = 0, � x → A, y /
→ A, 

where a is greedy with respect to J�. Let u� be the greedy policy of J�. Then 

J�(x) = gu� (x) + � Pu� (x, y)J�(y) = gu� (x) + � Pu� (x, y)J�(y), � x → A. 
y∗A y∗S 

Therefore, we conclude 

J�(x) = Ju� (x) ∀ J �(x), � x → A. 

By hypothesis J0 � J �, we know that 

J�(x) = J �(x), � x → A. 

References 

[1] R-R Chen and S.P. Meyn, Value Iteration and Optimization of Multiclass Queueing Networks, Queueing 

Systems, 32, pp. 65–97, 1999. 

6 


