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2.997 Decision­Making in Large­Scale Systems March 1 

MIT, Spring 2004 Handout #11 

Lecture Note 8 

Lyapunov Function Analysis 

In this lecture, we want to study the convergence of 

rt+1 = rt + γtS(rt, wt) 

to some γ∗ with E [S(r∗, wt)] = 0. Recall the Lyapunov function analysis in deterministic case that we pick 

a function V (r) such that 

• V (r) ≥ 0, ∀ r, 

• �V (r)T S(r) < 0, if r = r∗, 

• �V (r∗) = 0. 

The argument for convergence is that we observe V (rt) decreasing over time and lower bounded; therefore, 
V (rt) converges to some limit. With technical conditions on V and S, we can show that rt → r∗. 

We now proceed to the stochastic case. Let Ft denote the history of the process up to stage t. Explicitly, 
we can have Ft as 

= {rl, l ≤ t, wl, l < t, γt, l ≤ t} .Ft 

Note that the step size γt can depend on the history which is stochastic, but not on the disturbance wt. 

1 
2 .We define the Euclidean norm �V �2 = (V T V ) 

Theorem 1 Suppose that ∃V such that 

(a) V (r) ≥ 0, ∀r, 

(b) ∃L such that ��V (r) − �V (r̄)�2 ≤ L�r − r̄�2 (Lipschitz continuity), 

(c) ∃K1,K2 such that E �S(rt, wt)�2 Ft ≤ K1 + K2��V (rt)�2 
2,2 

(d) ∃c such that �V (rt)T E S(rt, wt) Ft ≤ −c��V (rt)�2 
2. 

∞
t=0 γt = ∞

γ2 
t=0 t < ∞, we have Then, if γt satisfies ∞ and 

• V (rt) converges, 

• limt→∞ �V (rt) = 0. 

• every limit point r̄ of rt satisfies �V (r̄) = 0. 

We will prove the convergence for a special case where V (r) = 1 
2 �r − r∗�2 for some r∗.2 
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Theorem 2 Suppose V (r) = 1 2 satisfies22 �r − r∗�

2(a)	 ∃K1,K2 such that E �S(rt, wt)�2 �� Ft ≤ K1 + K2V (rt), 

(b)	 ∃c such that �V (rt)T E S(rt, wt) �� Ft ≤ −cV (rt). 

Then, if γt > 0 with ∞
γt = ∞ and ∞ ,t=0 t=0 γt 

2 < ∞

rt → r∗, w.p. 1. 

We use the following Supermartingale convergence theorem to prove Theorem 2. 

Theorem 3 (Supermartingale Convergence Theorem) Suppose that Xt, Yt and Zt are nonnegative 

random variables and ∞
Yt < ∞ with probability 1. Suppose also that t=1 

E Xt+1�� Ft ≤ Xt + Yt − Zt, w.p. 1. 

Then 

1. Xt converges to a limit with probability 1, 

2. ∞ .t=1 Zt < ∞

The key idea for the proof of Theorem 2 is to show that V (rt) is a supermartingale, so that V (rt) converges 
and then show that it converges to zero w.p. 1. 
Proof: [Theorem 2] 

2�E 
� 
V (rt+1)�� Ft = E 

�
1 

rt+1 − r∗ 2�Ft2 
� �

1 
=	 E

2
(rt + γtSt − r∗)T (rt + γtSt − r∗)�� Ft (St � S(rt, wt)) 

1 � � � � � 
t �= 

2
(rt − r∗)T (rt − r∗) + γt(rt − r∗)T E St��Ft + 

γ2 

E 
� 
St

T St�Ft2 

2Since V (rt) = 1 2, �V (rt) = (rt − r∗). Then 2 �rt − r∗�� � �	 � � � � � 
t 2�E V (rt+1)��Ft = V (rt) + γt(rt − r∗)T E St��Ft + 

γ2 

E 
� 
�St�2�Ft2 � � � � � 

t 2�= V (rt) + γt�V (rt)T E St��Ft + 
γ2 

E 
� 
�St�2�Ft2 

γ2 
tV (rt) − γtcV (rt) + 
2

(K1 + K2V (rt))≤ 

γ2 
t≤ � �� �− γtc− t 

2 
K2 

V (rt) + 
γ2 

K1V (rt) 2 � �� � � �� � 
Xt 

Zt 
Yt 

Since γt > 0 and ∞
t=0 γt 

2 < ∞, γt must converge to zero, and Zt ≥ 0 for all large enough t. Moreover, 

� K1 
� 

Yt = γt 
2 < ∞. 

∞ ∞

2 
t=0 t=0 
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Therefore, by Supermartingale convergence theorem,


V (rt) converges w. p. 1, and

∞

t=0 

γtc− 
γ2 

t K2 

2 
V (rt) < ∞, w. p. 1. 

Suppose that V (rt) → � > 0. Then, by hypothesis that ∞
t=0 γt = ∞ and ∞

γ2 
t=0 t < ∞, we must have 

∞

t=0 

which is a contradiction. Therefore 

2lim rt − r∗ 2 = 0 w.p. 1 ⇒ rt → r∗ w.p. 1. 
t→∞ 

�

Example 1 (Stochastic Gauss­Seidel) Consider1 

rt+1(it) = rt(it) + γt ((Frt)(it) − rt(it)) , 

rt+1(i) = rt(it), ∀ i = it. 

Suppose that F is a � · �2 contraction. Suppose also that it, t = 1, 2, . . . , are chosen i.i.d. with P (it = i) = 

πi > 0. Then 

γ2 
t K2 

V (rt) = ∞γtc− 
2 

rt+1(i) = rt(i) + γtπi ((Frt)(i) − rt(i)) + γt [1(it = i) − πi] [(Frt)(i) − rt(i)] 

wt (i) 

Define ⎤⎡ ⎢⎢⎢⎢⎣ 

π1 0 0 . . . 0 

0 π2 0 . . . 0 
.

0 0 . . . . . 0 

0 0 0 . . . πn 

⎥⎥⎥⎥⎦ 
Π = 

then 

= rt + γt Π(Frt − rt) 

E[St |Ft ] 

+γtwt.rt+1 

Let V (r) = 1 
2 (r − r∗)T Π−1(r − r∗) ≥ 0. Then we have 

�V (r) = Π−1(r − r∗) (Lipschitz continuity holds). 

We also have 

�V (rt)T E St (rt − r∗)T Π−1Π(Frt − rt) = (rt − r∗)T (Frt − r∗ + r∗ − rt)t =F

= −(rt − r∗)T (rt − r∗) + (rt − r∗)T (Frt − r∗) 
2 rt − t∗ 2 + �rt − r∗ 2�Frt − r∗ 2≤ −� � � �
2 2 rt − t∗ 2 + α�rt − t∗ 2≤ −� � �

2≤ −(1 − α) min π2
2. 

i
i ��V (rt)�

1Recall the AVI: rt+1(it) = (Frt)(it) 
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We finally have 

(Frt)(it) − rt(it))22 
2|FtE �St� E= |Ft 

2E �Frt − rt�≤ 2|Ft 

= �Frt − rt�2 
2 

2 2�Frt − r∗ 2 + �rt − r∗ 2≤ � �
2(1 + α)�rt − r∗ 2≤ �

2≤ (1 + α) max πi 
2��V (rt)�2. 

i 

We conclude by Theorem 1 that stochastic Gauss­Seidel converges. 

Q­learning 

Recall that the Q­learning algorithm updates the Q factor according to 

Qt+1(xt, at) = Qt(xt, at) + γt(g (xt) + α min Qt(xt+1, a
�) − Qt(xt, at)).at 

a� 

This update can be rewritten as ⎤⎡ ⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
Qt+1(x, a) = Qt(x, a) + γt(x, a) a(x) + α Pa(x, y) min Qt(y, a�) −Qt(x, a) 

a�
g

y 

(HQ)(x,a)⎡ ⎤ ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
min Qt(xt+1, a

�) − Pa(x, y) min Qt(y, a�) 
a� a� 

αγt(x, a)+ 
y 

wt 

where 

γt(x, a) = 0, if (x, a) = (� xt, at) 

γt(xt, at) = γt 

E = 0 γtwt Ft 

wt| | ≤ �Qt�∞. 

Then, we have 

Qt+1 = Qt + γt(HQt − Qt) + αγtwt. 

We can use the following theorem to show that Q­learning converges, as long as every state and action 

pair are visited infinitely many times. 

Theorem 4 Let rt+1(i) = rt(i) + γt(i) (Hrt)(i) − rt(i) + wt(i) . Then, if 

• E wt Ft = 0 
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E wt (i)�� Ft ≤ A + B�rt�2 for some norm � · � • 

∞
γt(i) = ∞, ∞

γt(i)2 < ∞, ∀ it=0 t=0• 

• H is a maximum­norm contraction, 

then rt → r∗ w.p. 1 (Hr∗ = r∗). 

Comparing Theorems 2 and 4, note that, if H is a maximum­norm contraction, convergence occurs under 
weaker conditions than if it is an Euclidean norm contraction. 

Corollary 1 If ∞
γt(x, a) = ∞ with probability 1 for all (x, a), we have t=0 

Qt → Q∗ w.p. 1. 

ODE Approach 

Often times, the behavior of rt+1 = rt + γtS(rt, wt) may be understood by analyzing the following ODE 

instead: 
ṙt = E [S(rt, wt)] . 

The main idea for the ODE approach is as follows. Look at intervals [tm, tm+1) such that 

tm�+1 −1 

γt = γ, where γ is small. 
t=tm 

Set rm ≡ rtm . Then 

rt ≈ rtm + O(γ), ∀ t ∈ [tm, tm+1). (1) 

Then 

tm�+1 −1 

rm+1 = rtm+1 = rm + γtS(rt, wt) 
t=tm 

tm�+1 −1 � � 
≈ rtm + γt S(rt, wt) + O(γ) (2) 

t=tm 

tm�+1 −1 
γt = rtm + γ S(rt, wt) + O(γ2)
γ 

t=tm 

= rm + γE [S(rm, w)] + O(γ2) (3)∼

Therefore we can think of the stochastic scheme as a discrete version of the ODE 

rm+1 = rm + γE [S(rm, w)] ⇒ ṙ = E [S(r, w)] . 

To make the argument rigorous, steps (1), (2) and (3) have to be justified. 
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