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Lecture Note 8

1 Lyapunov Function Analysis

In this lecture, we want to study the convergence of
Tt+1 = Tt + ’YtS(Tt, ’LUt)

to some v* with E[S(r*,w;)] = 0. Recall the Lyapunov function analysis in deterministic case that we pick
a function V(r) such that

o VV(r)TS(r) <o, if r #r*,
o VV(r*) =0.

The argument for convergence is that we observe V(r;) decreasing over time and lower bounded; therefore,
V(r¢) converges to some limit. With technical conditions on V and S, we can show that r; — 7*.
We now proceed to the stochastic case. Let F; denote the history of the process up to stage t. Explicitly,
we can have F; as
Fe={r, 1 <t,w,l <t,vy,1<t}.

Note that the step size v, can depend on the history which is stochastic, but not on the disturbance w;.

We define the Euclidean norm ||V ||, = (VTV)z.

Theorem 1 Suppose that 3V such that
(a) V(r) 20, vr,
(b) 3L such that |[VV (r) — VV(7)||2 < L|r — 7|l2 (Lipschitz continuity),

(¢) 3K, Kz such that B [[IS(re, w))|3| ] < Ky + K2l VV (I3,

(4) 3c such that TV (r) B [S(r, w) | F.] < ~e| WV (r0) 3.
Then, if v satisfies Y ooyt = 00 and Y oo Vi < 00, we have
e V(ry) converges,
o limy_.o VV(r;) = 0.
o cvery limit point T of ry satisfies VV () = 0.
1

We will prove the convergence for a special case where V(1) = &|r — r*||3 for some r*.



Theorem 2 Suppose V (r) = §|r — r*|3 satisfies

(a) 3K, Kz such that B [|S(r, we) 3| ] < Ky + KoV (o),
(b) 3c such that VV (r,)TE [S(rt, wy) ’ft} < —cV (ry).
Then, if v > 0 with Yooyt = 00 and Y00 VF < 00,
re — 1, wp. 1
We use the following Supermartingale convergence theorem to prove Theorem 2.

Theorem 3 (Supermartingale Convergence Theorem) Suppose that X:,Y: and Z; are nonnegative
random variables and Zfil Y; < oo with probability 1. Suppose also that

E [Xtﬂ‘]-"t] <X+ Yi—Zi  wp L
Then
1. X; converges to a limit with probability 1,
2. 32 Zy < 0.

The key idea for the proof of Theorem 2 is to show that V' (r;) is a supermartingale, so that V(r;) converges
and then show that it converges to zero w.p. 1.
Proof: [Theorem 2]

1
E |:V(Tt+1)“7:t:| = E {27"t+1 - ”H%‘ft}
1
= E {2(7} + Sy =) (ry + 1S — T*)’ft] (Sp £ S(re, wy))
1 2
= 5(7} — T*)T(Tt — ’I"*) +’)/t(’l"t — T*)TE |:St‘~7:t:| + %E {S?St’ft}
Since V(ry) = %Hn —7r*||3, VV(r¢) = (ry — r*). Then
2
E [V(Tt+1)’ft:| = V(’I“t) + ’}/t(’/‘t — ’/‘*)TE |:St‘]:t:| + ?tE |:|‘St||§‘]:t:|

= V) 4TV B[S F] + L s8]

2

< V(re) — eV (re) + ’%t (K1 + KV ()
2K 2
< Vi) — <%C— ’Yt2 2) Vi(r) + %Kl
Xt
Z, i

Since ¢ > 0 and Zfio 72 < 00, ¢ must converge to zero, and Z; > 0 for all large enough t. Moreover,



Therefore, by Supermartingale convergence theorem,

V(r) converges w. p. 1, and

o0 2
K
Z (’ytc _ 2) Viry) <oo, w.p. 1.

t=0 2

Suppose that V(r;) — € > 0. Then, by hypothesis that Y ,~ v = oo and > ;o 77 < co, we must have

i (%c— %22&) V() = oo

t=0

which is a contradiction. Therefore

tlim |re —7* I3 =0 w.p. 1= r; =" wp. L
— 00

O
Example 1 (Stochastic Gauss-Seidel) Consider'
rep1(ie) = re(ie) + e (Fre)(ie) —relie)),
’I”t+1(i) = Tt(it), V’L 7& it.
Suppose that F is a || - ||2 contraction. Suppose also that iz, t = 1,2,..., are chosen i.i.d. with P(i; = i) =
w; > 0. Then
e (8) = re(d) + ey (Fre) (0) — re(0)) 4 e [1(6e = 1) — m] [(F're) (4) — re(4)]
wy (1)
Define
m 0 0 0
0 m O 0
I = ]
0 O " 0
0O 0 O T
then

Ti41] = T¢ + Yt H(F’I"t — Tt) +'tht-
—_
E[S¢|Ft]
Let V(r) = L(r —r*)TII"Y(r — r*) > 0. Then we have

VV(r)=10"'r—r" (Lipschitz continuity holds).
We also have
VV(r)'E {St‘]:t} = (re—r)IT(Fry —ry) = (re =) (Fro —r* 1% — 1)

—(ry — r*)T(rt — )+ (re — T*)T(FTt %)

< e =13+ llre = [l Fre — 1|2
< e =13 +allre = 7113
< —(1—a)mina?|[VV(r)|3.

K2

IRecall the AVI: 1441 (i) = (Fre)(it)



We finally have

E[|S31F] = BE[(Fro)(i) —re(ir))?| F]
< E[|IFri — 517
= ||Fre =3
< N Ere=r* 53+ llre =73
< (1 +a)lre =3
<

(1+a) mlaxwl?”VV(rt)H%

We conclude by Theorem 1 that stochastic Gauss-Seidel converges.

2 Q-learning
Recall that the Q-learning algorithm updates the Q factor according to
Qrr1(zt, a) = Qu(we, ar) + Ve(ga, (1) + amin Qe(w11,0") — Qulas, ar)).

This update can be rewritten as

Qt+l($7a) = Qt(xa a) + Vt(xaa) ga(z) + azpa(zvy) H(lli/n Qt(y,a/) 7Qt(xv a)

Y

(HQ)(z;a)

+ om(e,a) |minQ(res,a’) = Y Palw,y) minQy(y, o)
Yy

Wt J
where
Y(x,a) =0, if (z,a) # (x4, a¢)
’Yt(l“t,at) ="t
E [’Vtwt‘]:t} =0

[we] <[|Qtlloo-

Then, we have
Qi1 = Qr + 7 (HQt — Q¢) + ayywy.

We can use the following theorem to show that Q-learning converges, as long as every state and action

pair are visited infinitely many times.
Theorem 4 Let ry41(i) = r¢(i) + v (i) ((Hrt)(z) — (i) + wt(z)> Then, if

e E [wt‘ft] —0



¢ E [w;%(z')

ft] < A+ B||r||? for some norm | - ||
o« T2 pmli) = 00, Y% w(i)? < oo, Vi
e H is a mazximum-norm contraction,

then ry — r* w.p. 1 (Hr* =1r*).

Comparing Theorems 2 and 4, note that, if H is a maximum-norm contraction, convergence occurs under

weaker conditions than if it is an Euclidean norm contraction.

Corollary 1 If Y2 vi(z,a) = co with probability 1 for all (z,a), we have

Qi — QF  wp. I

3 ODE Approach

Often times, the behavior of r;11 = r; + v.S(r, ws) may be understood by analyzing the following ODE

instead:
7:t = E [S(Tt, wt)] .

The main idea for the ODE approach is as follows. Look at intervals [t,, t,;+1) such that

tmy1—1
Z Ve =", where ~ is small.
t=tm
Set 7, =7r¢,,. Then
re~ry, +0(), VEE [tm,tmy1) (1)
Then
tmy1—1
Tm+1 = rtm_H =Tm+ Z ’YtS(rtﬂ wt)
t=tm
tmg1—1

(S(ri,wi) + 0() (2)

X
3
3
+
-
2

= oty Y %Sm,wmow%

t=tm,

Tm + B [S(rm, w)] + O(v?) 3)

Therefore we can think of the stochastic scheme as a discrete version of the ODE

Tmt1 = Tm + YE[S(rm, w)] = ’r =E[S(r,w)] ‘

To make the argument rigorous, steps (1), (2) and (3) have to be justified.



