
[∑]

HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE

APPROXIMATE LINEAR PROGRAM?

YANN LE TALLEC AND THEOPHANE WEBER

Abstract. The linear programming approach to approximate dynamic pro-
gramming was introduced in [1]. Whereas the state relevance weight (i.e. the
cost vector) of the linear program does not matter for exact dynamic program-
ming, it is not the case for approximate dynamic programming. In this paper,
we address the issue of selecting an appropriate state relevant weight in the
case of approximate dynamic programming. In particular, we want to choose
c so that there is a practical control of the approximate policy performance by
the capability of the approximation architecture. We present here some the-
oretical results and more practical guidelines to select a good state relevance
vector.

1. Introduction

The linear programming approach to approximate dynamic programming was
introduced in [1], and it is reviewed quickly in Section 2. Whereas the state rele-
vance weight (i.e. the cost vector) of the linear program does not matter for exact
dynamic programming, it is not the case for approximate dynamic programming.
There are no guidelines in the literature to select an appropriate state relevant
weight in the case of approximate dynamic programming. In Section 3, we propose
to use available performance bounds on the suboptimal policy based on the approx-
imate linear program to build a criterion for choosing the state relevance weight c.
We characterize appropriate state relevance weights as solutions of an optimization
problem (P). However, (P) cannot be solved easily so that we look for suboptimal
solutions in Section 4, in particular we prove in Section 5 that under some techni-
cal assumptions we can choose c as a probability distribution. Finally, we establish
some practical necessary conditions to choose c; one of them suggesting to reinforce
the linear program for approximate dynamic programming.

1.1. Finite Markov decision process framework. In this paper, we consider
finite Markov decision process (MDP): they have a finite state space S and a finite
control space U (x) for each state x in S. Let gu(x) be the expected immediate
cost of applying control u in state x. Pu(x, y) denotes the transition probability
from state x to state y under control u ∈ U (x). The objective of the controller is
to minimize the α-discounted cost E t≥0 α

tgu(t)(xt)|x0 .
First, observe that it is possible to transform any finite Markov decision process

with finitely many controls in another one where the immediate cost of an action is
the same for all actions. Indeed, consider the MDP comprising the original MDP
states plus one state for each state-action pair. In this MDP, the controller first
chooses a control and the system moves in the corresponding state-action pair.

Date: May 15, 2004.
1

∑

2 YANN LE TALLEC AND THEOPHANE WEBER

From there, the system incurs the cost corresponding to the state-action pair and
follows the original dynamics to the next state. Figure 1 provides a simple example
of the transformation of an MDP into another one with same immediate cost at
each state.

gb

gb

b

x

y2

ga

0

a

b

x

0
a

ga

y1
y1

y2

x, a

x, b

Figure 1. A simple example of an MDP transformation. The
original MDP starts from state x and moves to state y1 and incurs
a cost ga if a is chosen, or moves to y2 and incurs gb if the other
action, b, is chosen.

As a result, we can make without loss of generality the following assumption.

Assumption 1.1. For all x in S, gu(x) = g(x) is independent of the control
u ∈ U(x). Furthermore, we can assume g(x) ≥ 0, ∀x ∈ S.

2. The linear programming approach for dynamic programming

Let T be the usual dynamic programming operator for discounted problem:
TJ(x) := minu∈U (x){g(x)+α Pu(x, y)J(y)}. It is well-known that T is mono-y∈S

tonic (J ≤ J ′ ⇒ TJ ≤ TJ ′) and that for all J,
∗lim T kJ = J ,

k→+∞

∗ ∗
where J is the optimal cost-to-go vector. Moreover, J is the unique solution to
∗ ∗ ∗Bellman equations J = TJ . As a result, if J ≤ TJ, then J ≤ TJ ≤ T k J ≤ J .

∗ |In other words, J is the biggest vector of R|S verifying J ≤ TJ. The following
∗proposition, which states that J can be computed by a linear program, is an

immediate consequence of this remark

∗Proposition 2.1. For all c > 0, J is the unique optimal solution to the following
linear program

(LP) : min
J∈R|S|

c T J ∑
J(x) ≤ g(x) + α Pu(x, y)J(y), ∀x ∈ S, ∀u ∈ U(x)

y∈S

Unfortunately, the linear program (LP) is often enormous with as many variables
as the cardinality of the state space S and as many constraints as there are state-
action pairs. Hence, (LP) is often intractable. Moreover, even storing a cost-to-go
vector J as a lookup table might not be amenable for large state space.

∗One approach to deal with this curse of dimensionality is to approximate J (x) ≈
Φ(x)r, where r ∈ R

m (usually m � |S|) and Φ(x) = (φ1(x), . . . , φm(x)) are given
feature vectors.

∑

∑

∑

3 HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM?

Inspired by the form of (LP), it is natural to consider the approximation of
J∗ ≈ Φ˜ r(c) is an optimal solution of the approximate linear program: r(c), where ˜

(ALP) : min c T Φr

r∈Rm

Φ(x)r ≤ g(x) + α Pu(x, y)Φ(y)r, ∀x ∈ S, u ∈ U(x)
y∈S

Notice that (ALP) has only m variables, but still as many constraints as (LP).
Hence, some large scale optimization technics are needed to solve (ALP), or al-
ternatively [3] showed that constraints sampling is a viable approach to solve this
problem.

On the contrary to the case of the ”exact” linear program (LP), there is no
guarantee that the optimal solution r̃(c) is independent of the choice of c > 0. The
objective of this paper is to provide a methodology to choose c, but to motivate
our criterion to select c, we first need to introduce two performance bounds.

3. Two performance bounds

3.1. A general performance bound.
∗First, let us relate J to the cost-to-go of the policy, which is greedy with respect

∗to J, where J is any approximation of J .
|Let J ∈ R

|S and uJ be the greedy policy with respect to J, i.e. ⎫⎬
⎧⎨

uJ (x) = argminu∈U (x) gu(x) + α Pu(x, y)J(y) . ⎩ ⎭
y∈S

In the case of equality between controls {u1, . . . , uq }, then uJ chooses randomly
one of them with equal probability 1/q.

J ∈ R
|S|Theorem 3.1 (Theorem 3.1 in [1]). For all such that TJ ≥ J,

1 ∗(3.1)	 ‖JuJ − J ∗ ‖1,ν ≤
1 − α

‖J − J ‖1,µν,uJ
,

where µν,uJ := (1 − α)νT (I − αPuJ)
−1 and PuJ (x, y) denotes the probability of the

system going to state y under the policy uJ given it is in state x.

Notice that µν,u is well-defined even for some randomized policy u.
∗Hence, if J is a good approximation of J in the sense of a certain weighted

l1-norm, a policy greedy with respect to J will perform closely to optimal.

3.2.	 Approximate linear program approximation bound.
Here we reproduce a bound from [1], which says that solutions to (ALP) produce

∗approximations to the optimal cost-to-go function J that are close to the best
possible approximation within the architecture that is linear in Φ.

Theorem 3.2 (Theorem 4.2 in [1]). Let r̃(c) be an optimal solution of the approx-
imate linear program with the state relevance weight c. Then for any v ∈ R

m

that Φ(x)v > 0 and α maxu∈U (x) Pu(x, y)Φ(y)v < Φ(x)v for all x ∈ S,y∈S

(3.2)
2cT Φv ‖J − Φ˜∗ r(c)‖1,c ≤ min ‖J ∗ − Φr‖∞,1/Φv =

2cT Φv ‖J ∗ − Φr ∗ ‖∞,1/Φv ,1 − βΦv 1 − βΦvr∈Rm

∗	 ∗where r be the projection of J on the surface {Φr|r ∈ Rm} with respect to the
norm ‖.‖∞,1/Φv .

such

4 YANN LE TALLEC AND THEOPHANE WEBER

The greedy policy with respect to Φ˜ r(c), is called the ALP policy associ-r(c), uΦ˜

ated with the state relevance weight c.

3.3. Proposed criterion to choose the state relevance weight c.
∗We would like to link the two bounds (3.1) and (3.2) by controlling ‖J −

r(c)‖1,µν,uΦ˜
with ‖J ∗ − Φ˜Φ˜ r(c)‖1,c in order to bound the performance loss of

r(c) ∗the ALP policy by the architecture capability to approximate J . Hence, we would
like to find a state relevance weight c > 0 that makes this guarantee as sharp as
possible.

In other words, the state relevance weight should be chosen so that

(P) : min c T Φv
c>0

T T µν,uΦ˜
:= (1 − α)νT (I − αPuΦr̃(c)

)−1 ≤ c ,
r(c)

where uΦr̃(c) depends on c.

Then, for any feasible c of (P), we can write

∗(3.3) ‖JuΦ˜ − J ‖1,ν ≤
2cT Φv ‖J ∗ − Φr ∗ ‖∞,1/Φv ,r(c) 1 − βΦv

by combining the bounds (3.1) and (3.2), and (P) tries to make the factor of the
right-hand side as small as possible.

Recall that r̃(c) depends on c so that we have a circular dependence between c
and r̃(c).

c → r̃(c)
↑ ↓

µν,uΦ˜ r(c)r(c)
← uΦ˜

(P) is a difficult problem because of the complex constraint (1 − α)νT (I −
αPuΦr̃(c)

)−1 ≤ cT . In this paper, we try only to obtain feasible points of (P). Still,
there is a special case of ν where (P) can be solved exactly.

Proposition 3.3. If ν ≥ 0 happens to be chosen as the steady-state probability
distribution of PuΦ˜ (when it exists), i.e. νT

r(c)
, (??) yields

r(c)
= νT PuΦ˜

T c ≥ νT .

Proof. Indeed, let x
= 0 be a left eigenvector of an invertible matrix A associated
with the eigenvalue λ (λ
= 0).

x T A = λxT

T ⇔ x T A−1 = λ−1 x

r(c)
, then νT = νT (I − αPuΦ˜If νT = νT PuΦ˜

1
r(c)

). Hence, νT = (1 − α)νT (I −1−α

αPuΦr̃(c)
)−1 ≤ cT , and the optimal solution of (P) is c = ν. �

In the following section, we give derive some simple feasible points but their
performance with respect to the objective of (P) can be very poor. Then in Section
5, we try to obtain better feasible points of (P), namely probability distributions.

∑

∑

HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM?5

4.	 Two simple choices for c

4.1. A trivial bound.
It is well-known [1] that µν,u is a probability distribution over S for all initial

distributions ν and all policies u in the sense that 0 ≤ µν,u(x) ≤ 1, ∀x ∈ S and
Tµν,u1 = 1. Moreover, by definition of weighted l1-norms, c ≥ µν,u ≥ 0 ⇒ ‖ • ‖1,c ≥

‖ • ‖1,µν,u so that we have the following proposition.

Proposition 4.1. By choosing cT = (1, . . . , 1) = 1 in (ALP), we get the bound

∗ ‖JuΦ˜ − J ‖1,ν ≤
21T Φv ‖J ∗ − Φr ∗ ‖∞,1/Φvr(c) 1 − βΦv

This bound is poor. c does not depend on the problem characteristics. Further
-
more, there is a factor x∈S Φ(x)v on the right-hand side, which becomes very
large in large scale system or in system where some states have a high value for the
Lyapunov function.

4.2. A simple algorithm.
Notice that if c > 0 is scaled by a positive factor γ > 0 the optimal solutions of

(ALP) are unchanged. This remark allows us to devise the following scheme.
(1) Pick any c > 0 and find an optimal solution r̃(c) of (ALP)
(2) Given ν, compute µν,uΦr̃(c)

.
(3) Let γ > 0 be the smallest scalar such that 0 ≤ µν,uΦ˜ ≤ γc.

r(c)

If γ < +∞,

∗ ‖JuΦ˜ − J ‖1,ν ≤
2γcT Φv ‖J ∗ − Φr ∗ ‖∞,1/Φv . r(c) 1 − βΦv

Unfortunately, there is no guarantee that γ will be small, even when it is finite, so
that the bound is practical.

5. Finding probability distribution feasible for (P)

If the state relevance weight c of the ALP could be chosen such that

T(5.1) c = µν,uΦr̃(c)

:= (1 − α)νT (I − αP
r(c)

)−1 ,uΦ˜

(3.3) would hold. Indeed, c verifies (5.1) if and only if c is a probability distribution
that is feasible for (P). We hope that in this case, the bound (3.3) is practical.

5.1. A theoretical algorithm.

5.1.1.	 A naive algorithm.
A naive algorithm is as follows.
Algorithm A

(1) Start with k = 0 and any vector c0 ≥ 0 such that x∈S c(x) = 1.
(2) Solve (ALP) for ck and let r̃(ck) be any optimal solution.
(3) Compute µk := µν,uk , where uk := uΦ˜	 r(ck).r(ck) is greedy with respect to Φ˜
(4) Set ck+1 = µk , do k = k + 1 and go back to 2

Equivalently, the algorithm may be represented by

r̃ F U M	 M

c → r(c) → Φr(c) → uΦr(c) → µν,uΦr(c)
, or, in a more compact fashion: c →

µν,uΦr(c)
.

∑

∑

′

6 YANN LE TALLEC AND THEOPHANE WEBER

Definition 5.1. Define P = {p ∈ R
|S|| p(x) ≥ 0, x∈S p(x) = 1} as the space of

probabilities distributions. It is a compact, convex set.

Notice that µ is a mapping from P in itself, where P is the set of probability
distribution over S, i.e.

Lemma 5.2. c is a fixed point of µ ⇐⇒ c verifies (5.1)

However, it is not clear that the algorithm A has a fixed point, and whether ck

converges. If the mapping µ was continuous from P to P , Brouwer’s theorem would
guarantee the existence of a fixed point.

r̃ F U MHowever, in the chain c → r(c) → Φr(c) → uΦr(c) → µν,uΦr(c)
, some of the

functions may not be continuous so that M needs not be continuous.
•	 The function F is just a matrix multiplication. Therefore it is continuous.
•	 The function M : (Pu, gu) → µ(u) = (1 − α)ν�(I − αPu)−1 = (1 −

α)ν� αtP t is also continuous. u
t

•	 However, it is well-known that the functions r̃ and U are not necessarily
continuous.

In the following part, we define a randomized version of A making ˜ and Ur
continuous so that Brouwer’s theorem will guarantee the existence of a fixed point
to the randomized algorithm.

5.1.2.	 A randomized algorithm.
Defining and smoothing r̃
First, we show that (ALP) has an optimal solution thanks to the following lemma.

Lemma 5.3. The feasible set of (ALP), {r ∈ Rm| Φr ≤ T Φr} is nonempty and
bounded.

Proof. Since we assumed g(x) ≥ 0, the feasible set contains r = 0, and is thus
nonempty.

The matrix Φ is full rank, hence Φ′Φ is invertible (because it is symmetric
definite positive).

Therefore, (Φ′Φ)−1 has a maximum norm which is denoted M1 = ‖(Φ′Φ)−1‖∞

For all r, ‖(Φ′Φ)−1r‖∞ ≤ ‖(Φ′Φ)−1‖∞‖r‖∞, and using this property with r =
(Φ′Φ)r, we get ‖r‖∞ ≤ M1.‖(Φ′Φ)r‖∞

Now, the matrix Φ′ also has some maximum norm M2, and using sub-multiplicative
property, we get ‖r‖∞ ≤ M1.M2‖Φr‖∞

∗If we consider r feasible for the ALP, we have Φr ≤ T Φr ≤ T 2Φr ≤ .. ≤ J
∗which gives : ‖Φr‖∞ ≤ ‖J ‖∞.

∗Combining the two inequalities yield ‖r‖∞ ≤ M1.M2‖J ‖∞	 �

Hence, from the theory of Linear Programming, there is always a solution of
the LP that is an extreme point of the feasible set. Usually, there is a unique
optimal solution to a linear program with a cost vector c, and it is an extreme
point of the feasible polyhedron. In this case, r̃(c) is clearly defined. When there
are multiple optimal solutions, we can define r̃ arbitrarily because we will see that
it happens with probability 0 in our algorithm. Furthermore, it can be showed that
the function r̃ defined above is piecewise constant [5].

The following lemma is well-known.

∫

˜

HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM?7

Lemma 5.4. Let f be a bounded piecewise constant mapping from some vector space
E to F. Let g be a continuous function from F to R that has finite integral.

Then, the function f ′ : x → f(x + y).g(y)dy is a well defined, continuous
F

function from E to F.

f ′ is a smoothed version of the initial piecewise constant mapping f.
This lemma suggests to randomize the cost vector c with some noise in order to

smooth r̃ .

c cProposition 5.5. Let
∼

be a random vector defined by
∼

= c + δc, where δc is
a Gaussian vector, which covariance matrix C is equal to v.I. Then, the function

r[c]] is continuous in c. c → E[˜
∼

rProof. c → E[˜
∼ ∫

r is a piecewise r[c]] can also be written c → r̃(c+ c0).g(c0)dc0 and ˜
RN

constant, bounded function. Using the previous lemma gets the result. �

Smoothing U
The function U is also discontinuous, in the same fashion as the function r. We

therefore use the same ”trick”, but in a slightly different way. Instead of using
deterministic greedy policies, we use randomized, δ-greedy policies

Definition 5.6. Let δ > 0. The δ -greedy policy with respect to J is a randomized
policy uδ for which the action a is chosen in state x with probability

exp[−(gu(x) + αPu(x)J)/δ]δ uJ (u, x) = ∑
a∈U (x) exp[−(ga(x) + αPa(x)J)/δ]

.

[4] provides various continuity results for the δ − greedy policies, which we will
use.

Proposition 5.7. limsup|Tδ J(x) − TJ(x)| = 0
δ↓0 J,x

This proposition states the fact that Tδ approaches uniformly T as δ ↓ 0.

Proposition 5.8. Tδ and uδ are continuous in J.

Randomized algorithm A(v, δ)

We now define the randomized version of the algorithm A.

Definition 5.9. The randomized function µ(v, δ) is defined by the following chain
of functions: ˜ F µ(v,δ)r

c → r̃(c) → Φr̃(c) → uδ (Φr̃(c)) → µν,uδ (Φr̃(c)) , or, in a compact fashion:
µ(v,δ)

c → µν,uδ (Φr̃(c))

Proposition 5.10. µ(v, δ) is continuous from P to P.

Definition 5.11. Let v and δ be some positive numbers. The algorithm A(v, δ) is:
1) Start from some c0 in P, and set k = 0.
2) Do ck+1 = µ(v, δ) (ck)
3) Set k = k + 1 and go to 2.

Theorem 5.12. µ(v, δ) has at least one fixed point c(v, δ) ∈ P

Proof. µ(v, δ) is a continuous function on a compact, convex set. By application of
Brouwer’s theorem, it has a fixed point. �

{

�

8 YANN LE TALLEC AND THEOPHANE WEBER

Remark 5.13. Saying that µ(v, δ) has at least one fixed point is equivalent to saying
that A(v, δ) has at least one fixed point

However, the ck produced by the algorithm may still fail to converge so that
A(v, δ) does not provide the value of a fixed point.

5.1.3. Existence of fixed point for the original algorithm A.. In this part, we will
use the previous theorem asserting the existence of a fixed point to the algorithm
that holds for all variance v > 0 and all δ > 0 to show that there exists a fixed
point to the original algorithm A.

Theorem 5.14. For any pair (vk , δk) in R2 with (vk, δk) > 0, denote Ck the set of
fixed points of the algorithm A(vk, δk), which is not empty by Theorem 5.12.

If there is a sequence (vk, δk)k≥0 of such pairs with (vk , δk) → (0, 0), such that
there is an accumulation point c of the set Ck that yields a unique optimum if used
as a state relevance vector in (ALP), then c ≥ 0 is a probability distribution that
verifies

T(5.2) c = µν,uΦ˜ 	 r(c)
)−1

r(c)
:= (1 − α)νT (I − αPuΦ˜

Proof. Without loss of generality, let ck ∈ Ck such that limk→+∞ck = c. By
definition,

(5.3) ck = µ
ν,uΦ˜

== (1 − α)νT (I − αP)−1 .δk	 δk
r(ck)	 uΦr̃(ck)

Note Π ∈ R
m	 the polyhedron that is the feasible set of (ALP). By assumption,

r(c) verifying ˜ r(c) > cT Φr forthere is a unique ˜ r(c) ∈ Π (ALP feasibility) and cT Φ˜
all r ∈ Π. Hence, r̃(c) stays the unique optimal solution of (ALP) for state relevance
weight close enough to c. Since ck → c, there is K such that k ≥ K ⇒ r̃(ck) = ̃r(c).

r(c) = uΦ˜In particular, uΦ˜ r(ck), ∀k ≥ K, and (5.3) becomes for k ≥ K

)−1(5.4)	 ck = (1 − α)νT (I − αP δkuΦr̃(c)

δ	 |Recall that a δ-greedy policy u with respect to J ∈ R
|S chooses control u in J

state x with probability

exp[−(gu(x) + αPu(x)J)/δ]δ(5.5) uJ (u, x) = ∑
a∈U (x) exp[−(ga(x) + αPa(x)J)/δ]

.

Lemma 5.15. Assume that U = {u1, . . . , uq } ⊂ U (x) is the set of minimizers of
gu(x) + αPu(x)J. Then,

δlim uJ (a, x) = uJ (a, x) =
1/q if a ∈ U

δ↓0	 0 otherwise

δkr(c), the lemma yields limk→+∞ uΦ˜ r(c).For J = Φ˜ r(c) = uΦ˜

Combining this results with (5.4), we have

(5.6) c = lim ck = lim (1−α)νT (I −αP)−1 = (1−α)νT (I −αPuΦr̃(c)
)−1 .δk

k→+∞ k→+∞ uΦr̃(c)

9 HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM?

5.2. Necessary conditions.
Although the theoretical algorithm presented above shows the existence of a

probability distribution in the feasible set of (P), it is not practical. Now, we would
like to obtain practical guidelines for the choice of c. In particular, we derive in
this section some necessary conditions on the state relevance weight. One of them
yields a reinforced approximate linear program.

5.2.1. A condition on c depending on the Lyapunov function and the initial distri-
bution.

Proposition 5.16. If c verifies (5.1), then

νT Φv ≤ (1 − α)−1 c T (I − αPuv)Φv

Proof. Assume (5.1) holds, or equivalently

(1 − α)νT = c T (I − αPuΦr̃(c)
).

Then multiplying by Φv on the right and noting uv the greedy policy with respect
to the Lyapunov function Φv (Puv Φv ≤ PuΦv, ∀u, as we modified the Markov
Chain so that all policies has the same cost vector), we have

νT Φv = (1 − α)−1 c T (I − αPuΦr̃(c)
)Φv

⇒ νT Φv ≤ (1 − α)−1 c T (I − αPuv)Φv

�

Notice that the spectrum of (1 − α)−1(I − αPuv) is of the form (1 − αλ)/(1 − α),
where λ is an eigenvalue of Puv .

5.2.2. Reinforced approximate linear program.
A possible approach to obtain (5.1) is to enforce this constraint in the ALP and

hope there is a solution for a given c. That is to try to solve the following non-linear
program:

(RAN LP) : max c T Φr
r∈Rm

T Φr ≥ Φr
T c = (1 − α)νT (I − αPuΦr̃(c)

)

The last constraints are hard to deal with, but we can derive more tractable neces-
sary conditions. In particular, the next proposition shows that they imply a system
of linear equations.

Proposition 5.17. If c verifies (5.1), then the following system of linear equations
holds

(5.7) (1 − α)νT Φr̃(c) ≥ c T (I − αPu)ΦR, ∀u ∈ U (x)

Proof. By definition of uΦr̃(c) given Assumption 1.1, we have

r(c) ≤ PuΦ˜(5.8)
r(c)

Φ˜ r(c), ∀u ∈ U (x)PuΦ˜

∑

︸ ︷︷ ︸

�

∑

10 YANN LE TALLEC AND THEOPHANE WEBER

Hence,

r(c) ≥ −αPuΦ˜−αPuΦ˜ Φ˜ r(c), ∀u ∈ U (x)
r(c)

⇔ (I − αPuΦ˜ r(c) ≥ (I − αPu)Φ˜
r(c)

)Φ˜	 r(c), ∀u ∈ U (x)

⇔ Φ˜
r(c)

)−1(I − αPu)Φ˜r(c) ≥ (I − αPuΦ˜ 	
r(c), ∀u ∈ U (x)

The last equivalence follows from (I −αPuΦr̃(c)
)−1 = αtP t ≥ 0. Multiply-t≥0 uΦr̃(c)

ing both sides of the last equation by (1 − α)νT ,

(1 − α)νT Φ˜	
r(c)

)−1(I − αPu)Φ˜r(c) ≥ (1 − α)νT (I − αPuΦ˜ 	
r(c), ∀u ∈ U (x)

µν,uΦr̃(c)

As a result, it is natural to consider a reinforced linear program (RALP) to
∗approximate J by a linear combination of Φ.

(RALP) : max c T Φr
r∈Rm

T Φr ≥ Φr

(1 − α)νT Φr ≥ c T (I − αPu)Φr, ∀u ∈ U (x)

Notice that the last constraint enforces the equality µν,uΦ˜ = c only on the
r(c)

subspace {(I − αPu)Φr̃(c), u ∈ U }, whereas we need this condition to hold for
∗	 ∗ r(c), r̃(c) being an optimal solution of (RALP) so that ‖J −Φ˜

r(c)J −Φ˜ r(c)‖1,µν,˜ =
‖J ∗ − Φr̃(c)‖1,c.

6. Conclusion

We presented some new results for the choice of the state relevance weight c in the
approximate linear program. The criterion to choose c hinges on two performance
bounds that control the suboptimality of the ALP policy. However, these results
remain preliminary, in particular how to tailor the state relevance weight to the
problem setting remains an open question.

7. appendix

7.1.	 Insights on µν,u.
By definition,

T(7.1) µν,u := (1 − α)νT (I − αPu)−1 = (1 − α) αtνT P t .u

t≥0

Hence, µν,u is a geometric average of the presence probability over the state space
after t transitions under policy u starting from the distribution ν. When Pu irre-
ducible, limt→+∞νT P t = πT

u , where πu is the steady-state distribution of Pu, i,e, u
πT = πT Pu. Thus we can wonder how far is πu from µν,u. We show now that in u u
general µν,u is further away from πu than ν.

Since πu is also a left eigenvalue of (1 − α)(I − αPu)−1, we have
T µν,u − πT = (ν − πu)T (1 − α)(I − αPu)−1 .u

11 HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM?

When Pu irreducible, the eigenvalue of Pu have a modulus smaller than one by
Perron-Frobenius theorem. Hence, the eigenvalues of (I − αPu)−1 have a modulus
greater than 1. As a result, the previous equation yields

‖µν,u − πu‖2 ≥ ‖(ν − πu)‖2

References

1. D. P. de Farias and B. Van Roy, The Linear Pro-
gramming Approach to Approximate Dynamic
Programming, Operations Research, Vol. 51, No.
6, 2003.

2. D. P.	 de Farias, The Linear Programming Ap-
proach to Approximate Dynamic Programming:
Theory and Application, Ph.D. Thesis, Stanford
University, June 2002.

3. D. P. de Farias and B. Van Roy, On Constraint
Sampling for the Linear Programming Approach
to Approximate Dynamic Programming, to ap-

pear in Mathematics of Operations Research,
submitted August, 2001.

4. D. P. de Farias and B. Van Roy, On the Existence
of Fixed Points for Approximate Value Itera-
tion and Temporal-Difference Learning, Journal
of Optimization Theory and Applications, Vol.
105, No. 3, June, 2000.

5. Dimitris Bertsimas and John N. Tsitsiklis, Intro-
duction to Linear Optimization, Athena Scien-
tific.

