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HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE 

APPROXIMATE LINEAR PROGRAM? 

YANN LE TALLEC AND THEOPHANE WEBER 

Abstract. The linear programming approach to approximate dynamic pro-
gramming was introduced in [1]. Whereas the state relevance weight (i.e. the 
cost vector) of the linear program does not matter for exact dynamic program-
ming, it is not the case for approximate dynamic programming. In this paper, 
we address the issue of selecting an appropriate state relevant weight in the 
case of approximate dynamic programming. In particular, we want to choose 
c so that there is a practical control of the approximate policy performance by 
the capability of the approximation architecture. We present here some the-
oretical results and more practical guidelines to select a good state relevance 
vector. 

1. Introduction 

The linear programming approach to approximate dynamic programming was 
introduced in [1], and it is reviewed quickly in Section 2. Whereas the state rele-
vance weight (i.e. the cost vector) of the linear program does not matter for exact 
dynamic programming, it is not the case for approximate dynamic programming. 
There are no guidelines in the literature to select an appropriate state relevant 
weight in the case of approximate dynamic programming. In Section 3, we propose 
to use available performance bounds on the suboptimal policy based on the approx-
imate linear program to build a criterion for choosing the state relevance weight c. 
We characterize appropriate state relevance weights as solutions of an optimization 
problem (P). However, (P) cannot be solved easily so that we look for suboptimal 
solutions in Section 4, in particular we prove in Section 5 that under some techni-
cal assumptions we can choose c as a probability distribution. Finally, we establish 
some practical necessary conditions to choose c; one of them suggesting to reinforce 
the linear program for approximate dynamic programming. 

1.1. Finite Markov decision process framework. In this paper, we consider 
finite Markov decision process (MDP): they have a finite state space S and a finite 
control space U (x) for each state x in S. Let  gu(x) be the expected immediate 
cost of applying control u in state x. Pu(x, y) denotes the transition probability 
from state x to state y under control u ∈ U (x). The objective of the controller is 
to minimize the α-discounted cost E t≥0 α

tgu(t)(xt)|x0 . 
First, observe that it is possible to transform any finite Markov decision process 

with finitely many controls in another one where the immediate cost of an action is 
the same for all actions. Indeed, consider the MDP comprising the original MDP 
states plus one state for each state-action pair. In this MDP, the controller first 
chooses a control and the system moves in the corresponding state-action pair. 

Date: May 15, 2004. 
1 



∑ 

2 YANN LE TALLEC AND THEOPHANE WEBER 

From there, the system incurs the cost corresponding to the state-action pair and 
follows the original dynamics to the next state. Figure 1 provides a simple example 
of the transformation of an MDP into another one with same immediate cost at 
each state. 
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Figure 1. A simple example of an MDP transformation. The 
original MDP starts from state x and moves to state y1 and incurs 
a cost  ga if a is chosen, or moves to y2 and incurs gb if the other 
action, b, is chosen. 

As a result, we can make without loss of generality the following assumption. 

Assumption 1.1. For all x in S, gu(x) =  g(x) is independent of the control 
u ∈ U(x). Furthermore, we can assume g(x) ≥ 0, ∀x ∈ S. 

2. The linear programming approach for dynamic programming 

Let T be the usual dynamic programming operator for discounted problem: 
TJ(x) := minu∈U (x){g(x)+α Pu(x, y)J(y)}. It is well-known that T is mono-y∈S 

tonic (J ≤ J ′ ⇒ TJ  ≤ TJ ′) and that for all J, 
∗lim T kJ = J , 

k→+∞


∗ ∗
where J is the optimal cost-to-go vector. Moreover, J is the unique solution to 
∗ ∗ ∗Bellman equations J = TJ . As a result, if J ≤ TJ,  then J ≤ TJ  ≤ T k J ≤ J . 

∗ |In other words, J is the biggest vector of R|S verifying J ≤ TJ.  The following 
∗proposition, which states that J can be computed by a linear program, is an 

immediate consequence of this remark 

∗Proposition 2.1. For all c >  0, J is the unique optimal solution to the following 
linear program 

(LP ) : min 
J∈R|S| 

c T J ∑ 
J(x) ≤ g(x) +  α Pu(x, y)J(y), ∀x ∈ S, ∀u ∈ U(x) 

y∈S 

Unfortunately, the linear program (LP) is often enormous with as many variables 
as the cardinality of the state space S and as many constraints as there are state-
action pairs. Hence, (LP) is often intractable. Moreover, even storing a cost-to-go 
vector J as a lookup table might not be amenable for large state space. 

∗One approach to deal with this curse of dimensionality is to approximate J (x) ≈ 
Φ(x)r, where r ∈ R

m (usually m � |S|) and Φ(x) = (φ1(x), . . . , φm(x)) are given 
feature vectors. 
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Inspired by the form of (LP), it is natural to consider the approximation of 
J∗ ≈ Φ˜ r(c) is an optimal solution of the approximate linear program: r(c), where ˜


(ALP ) : min c T Φr

r∈Rm 

Φ(x)r ≤ g(x) +  α Pu(x, y)Φ(y)r, ∀x ∈ S, u  ∈ U(x) 
y∈S 

Notice that (ALP) has only m variables, but still as many constraints as (LP). 
Hence, some large scale optimization technics are needed to solve (ALP), or al-
ternatively [3] showed that constraints sampling is a viable approach to solve this 
problem. 

On the contrary to the case of the ”exact” linear program (LP), there is no 
guarantee that the optimal solution r̃(c) is independent of the choice of c >  0. The 
objective of this paper is to provide a methodology to choose c, but to motivate 
our criterion to select c, we first need to introduce two performance bounds. 

3. Two performance bounds 

3.1. A general performance bound. 
∗First, let us relate J to the cost-to-go of the policy, which is greedy with respect 

∗to J, where J is any approximation of J . 
|Let J ∈ R

|S and uJ be the greedy policy with respect to J, i.e. ⎫⎬ 
⎧⎨ 

uJ (x) =  argminu∈U (x) gu(x) +  α Pu(x, y)J(y) . ⎩ ⎭ 
y∈S 

In the case of equality between controls {u1, . . . , uq }, then uJ chooses randomly 
one of them with equal probability 1/q. 

J ∈ R
|S|Theorem 3.1 (Theorem 3.1 in [1]). For all such that TJ  ≥ J, 

1 ∗(3.1)	 ‖JuJ − J ∗ ‖1,ν ≤ 
1 − α 

‖J − J ‖1,µν,uJ 
, 

where µν,uJ := (1 − α)νT (I − αPuJ )
−1 and PuJ (x, y) denotes the probability of the 

system going to state y under the policy uJ given it is in state x. 

Notice that µν,u is well-defined even for some randomized policy u. 
∗Hence, if J is a good approximation of J in the sense of a certain weighted 

l1-norm, a policy greedy with respect to J will perform closely to optimal. 

3.2.	 Approximate linear program approximation bound. 
Here we reproduce a bound from [1], which says that solutions to (ALP) produce 

∗approximations to the optimal cost-to-go function J that are close to the best 
possible approximation within the architecture that is linear in Φ. 

Theorem 3.2 (Theorem 4.2 in [1]). Let r̃(c) be an optimal solution of the approx-
imate linear program with the state relevance weight c. Then for any v ∈ R

m 

that Φ(x)v >  0 and α maxu∈U (x) Pu(x, y)Φ(y)v <  Φ(x)v for all x ∈ S,y∈S 

(3.2) 
2cT Φv ‖J − Φ˜∗ r(c)‖1,c ≤ min ‖J ∗ − Φr‖∞,1/Φv =

2cT Φv ‖J ∗ − Φr ∗ ‖∞,1/Φv ,1 − βΦv 1 − βΦvr∈Rm 

∗	 ∗where r be the projection of J on the surface {Φr|r ∈ Rm} with respect to the 
norm ‖.‖∞,1/Φv . 

such 
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The greedy policy with respect to Φ˜ r(c), is called the ALP policy associ-r(c), uΦ˜

ated with the state relevance weight c. 

3.3. Proposed criterion to choose the state relevance weight c. 
∗We would like to link the two bounds (3.1) and (3.2) by controlling ‖J − 

r(c)‖1,µν,uΦ˜
with ‖J ∗ − Φ˜Φ˜ r(c)‖1,c in order to bound the performance loss of 

r(c) ∗the ALP policy by the architecture capability to approximate J . Hence, we would 
like to find a state relevance weight c >  0 that makes this guarantee as sharp as 
possible. 

In other words, the state relevance weight should be chosen so that 

(P ) : min c T Φv 
c>0 

T T µν,uΦ˜
:= (1 − α)νT (I − αPuΦr̃(c) 

)−1 ≤ c , 
r(c) 

where uΦr̃(c) depends on c.

Then, for any feasible c of (P), we can write


∗(3.3) ‖JuΦ˜ − J ‖1,ν ≤ 
2cT Φv ‖J ∗ − Φr ∗ ‖∞,1/Φv ,r(c) 1 − βΦv 

by combining the bounds (3.1) and (3.2), and (P) tries to make the factor of the 
right-hand side as small as possible. 

Recall that r̃(c) depends on c so that we have a circular dependence between c 
and r̃(c). 

c → r̃(c) 
↑ ↓ 

µν,uΦ˜ r(c)r(c) 
← uΦ˜

(P) is a difficult problem because of the complex constraint (1 − α)νT (I − 
αPuΦr̃(c) 

)−1 ≤ cT . In this paper, we try only to obtain feasible points of (P). Still, 
there is a special case of ν where (P) can be solved exactly. 

Proposition 3.3. If ν ≥ 0 happens to be chosen as the steady-state probability 
distribution of PuΦ˜ (when it exists), i.e. νT 

r(c) 
, (??) yields 

r(c) 
= νT PuΦ˜

T c ≥ νT . 

Proof. Indeed, let x 
= 0 be a left eigenvector of an invertible matrix A associated 
with the eigenvalue λ (λ 
= 0). 

x T A = λxT 

T ⇔ x T A−1 = λ−1 x 

r(c) 
, then νT = νT (I − αPuΦ˜If νT = νT PuΦ˜

1 
r(c) 

). Hence, νT = (1  − α)νT (I −1−α 

αPuΦr̃(c) 
)−1 ≤ cT , and the optimal solution of (P) is c = ν. � 

In the following section, we give derive some simple feasible points but their 
performance with respect to the objective of (P) can be very poor. Then in Section 
5, we try to obtain better feasible points of (P), namely probability distributions. 
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4.	 Two simple choices for c 

4.1. A trivial bound. 
It is well-known [1] that µν,u is a probability distribution over S for all initial 

distributions ν and all policies u in the sense that 0 ≤ µν,u(x) ≤ 1, ∀x ∈ S  and 
Tµν,u1 = 1. Moreover, by definition of weighted l1-norms, c ≥ µν,u ≥ 0 ⇒ ‖ • ‖1,c ≥ 

‖ • ‖1,µν,u so that we have the following proposition. 

Proposition 4.1. By choosing cT = (1, . . . , 1) = 1 in (ALP), we get the bound 

∗ ‖JuΦ˜ − J ‖1,ν ≤ 
21T Φv ‖J ∗ − Φr ∗ ‖∞,1/Φvr(c) 1 − βΦv


This bound is poor. c does not depend on the problem characteristics. Further
-
more, there is a factor x∈S Φ(x)v on the right-hand side, which becomes very 
large in large scale system or in system where some states have a high value for the 
Lyapunov function. 

4.2. A simple algorithm. 
Notice that if c >  0 is scaled by a positive factor γ >  0 the optimal solutions of 

(ALP) are unchanged. This remark allows us to devise the following scheme. 
(1) Pick any c >  0 and find an optimal solution r̃(c) of (ALP)  
(2) Given ν, compute µν,uΦr̃(c) 

. 
(3) Let γ >  0 be the smallest scalar such that 0 ≤ µν,uΦ˜ ≤ γc. 

r(c) 

If γ <  +∞, 

∗ ‖JuΦ˜ − J ‖1,ν ≤ 
2γcT Φv ‖J ∗ − Φr ∗ ‖∞,1/Φv . r(c) 1 − βΦv 

Unfortunately, there is no guarantee that γ will be small, even when it is finite, so 
that the bound is practical. 

5. Finding probability distribution feasible for (P)


If the state relevance weight c of the ALP could be chosen such that

T(5.1) c = µν,uΦr̃(c) 

:= (1 − α)νT (I − αP
r(c) 

)−1 ,uΦ˜

(3.3) would hold. Indeed, c verifies (5.1) if and only if c is a probability distribution 
that is feasible for (P). We hope that in this case, the bound (3.3) is practical. 

5.1. A theoretical algorithm. 

5.1.1.	 A naive algorithm. 
A naive algorithm is as follows. 
Algorithm A 

(1) Start with k = 0 and any vector c0 ≥ 0 such that x∈S c(x) = 1.  
(2) Solve (ALP) for ck and let r̃(ck ) be any optimal solution. 
(3) Compute µk := µν,uk , where uk := uΦ˜	 r(ck ).r(ck ) is greedy with respect to Φ˜
(4) Set ck+1 = µk , do  k = k + 1 and go back to 2


Equivalently, the algorithm may be represented by

r̃ F U M	 M 

c → r(c) → Φr(c) → uΦr(c) → µν,uΦr(c) 
, or, in a more compact fashion: c → 

µν,uΦr(c) 
. 
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Definition 5.1. Define P = {p ∈ R
|S|| p(x) ≥ 0, x∈S p(x) = 1} as the space of 

probabilities distributions. It is a compact, convex set. 

Notice that µ is a mapping from P in itself, where P is the set of probability 
distribution over S, i.e. 

Lemma 5.2. c is a fixed point of µ ⇐⇒ c verifies (5.1) 

However, it is not clear that the algorithm A has a fixed point, and whether ck 

converges. If the mapping µ was continuous from P to P , Brouwer’s theorem would 
guarantee the existence of a fixed point. 

r̃ F U MHowever, in the chain c → r(c) → Φr(c) → uΦr(c) → µν,uΦr(c) 
, some of the 

functions may not be continuous so that M needs not be continuous. 
•	 The function F is just a matrix multiplication. Therefore it is continuous. 
•	 The function M : (Pu, gu) → µ(u) = (1  − α)ν�(I − αPu)−1 = (1  − 

α)ν� αtP t is also continuous. u 
t 

•	 However, it is well-known that the functions r̃ and U are not necessarily 
continuous. 

In the following part, we define a randomized version of A making ˜ and Ur 
continuous so that Brouwer’s theorem will guarantee the existence of a fixed point 
to the randomized algorithm. 

5.1.2.	 A randomized algorithm. 
Defining and smoothing r̃
First, we show that (ALP) has an optimal solution thanks to the following lemma. 

Lemma 5.3. The feasible set  of  (ALP),  {r ∈ Rm| Φr ≤ T Φr} is nonempty and 
bounded. 

Proof. Since we assumed g(x) ≥ 0, the feasible set contains r = 0, and is thus 
nonempty. 

The matrix Φ is full rank, hence Φ′Φ is invertible (because it is symmetric 
definite positive). 

Therefore, (Φ′Φ)−1 has a maximum norm which is denoted M1 = ‖(Φ′Φ)−1‖∞ 

For all r, ‖(Φ′Φ)−1r‖∞ ≤ ‖(Φ′Φ)−1‖∞‖r‖∞, and using this property with r = 
(Φ′Φ)r, we get ‖r‖∞ ≤ M1.‖(Φ′Φ)r‖∞ 

Now, the matrix Φ′ also has some maximum norm M2, and using sub-multiplicative 
property, we get ‖r‖∞ ≤ M1.M2‖Φr‖∞ 

∗If we consider r feasible for the ALP, we have Φr ≤ T Φr ≤ T 2Φr ≤ .. ≤ J 
∗which gives : ‖Φr‖∞ ≤ ‖J ‖∞. 

∗Combining the two inequalities yield ‖r‖∞ ≤ M1.M2‖J ‖∞	 � 

Hence, from the theory of Linear Programming, there is always a solution of 
the LP that is an extreme point of the feasible set. Usually, there is a unique 
optimal solution to a linear program with a cost vector c, and it is an extreme 
point of the feasible polyhedron. In this case, r̃(c) is clearly defined. When there 
are multiple optimal solutions, we can define r̃ arbitrarily because we will see that 
it happens with probability 0 in our algorithm. Furthermore, it can be showed that 
the function r̃ defined above is piecewise constant [5].


The following lemma is well-known.
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Lemma 5.4. Let f be a bounded piecewise constant mapping from some vector space 
E to F. Let g be a continuous function from F to R that has finite integral. 

Then, the function f ′ : x → f(x + y).g(y)dy is a well defined, continuous 
F 

function from E to F. 

f ′ is a smoothed version of the initial piecewise constant mapping f. 
This lemma suggests to randomize the cost vector c with some noise in order to 

smooth r̃ . 

c cProposition 5.5. Let 
∼ 

be a random vector defined by 
∼ 

= c + δc, where δc is 
a Gaussian vector, which covariance matrix C is equal to v.I. Then, the function 

r[c ]] is continuous in c. c → E[˜
∼ 

rProof. c → E[˜
∼ ∫ 

r is a piecewise r[c ]] can also be written c → r̃(c+ c0).g(c0)dc0 and ˜
RN 

constant, bounded function. Using the previous lemma gets the result. � 

Smoothing U 
The function U is also discontinuous, in the same fashion as the function r. We 

therefore use the same ”trick”, but in a slightly different way. Instead of using 
deterministic greedy policies, we use randomized, δ-greedy policies 

Definition 5.6. Let δ >  0. The δ -greedy policy with respect to J is a randomized 
policy uδ for which the action a is chosen in state x with probability 

exp[−(gu(x) +  αPu(x)J)/δ]δ uJ (u, x) =  ∑ 
a∈U (x) exp[−(ga(x) +  αPa(x)J)/δ] 

. 

[4] provides various continuity results for the δ − greedy policies, which we will 
use. 

Proposition 5.7. limsup|Tδ J(x) − TJ(x)| = 0  
δ↓0 J,x 

This proposition states the fact that Tδ approaches uniformly T as δ ↓ 0. 

Proposition 5.8. Tδ and uδ are continuous in J. 

Randomized algorithm A(v, δ)

We now define the randomized version of the algorithm A.


Definition 5.9. The randomized function µ(v, δ) is defined by the following chain 
of functions: ˜ F µ(v,δ)r 

c → r̃(c) → Φr̃(c) → uδ (Φr̃(c)) → µν,uδ (Φr̃(c)) , or, in a compact fashion: 
µ(v,δ) 

c → µν,uδ (Φr̃(c)) 

Proposition 5.10. µ(v, δ) is continuous from P to P. 

Definition 5.11. Let v and δ be some positive numbers. The algorithm A(v, δ) is:  
1) Start from some c0 in P, and set k = 0. 
2) Do ck+1 = µ(v, δ) (ck) 
3) Set k = k + 1  and  go  to  2.  

Theorem 5.12. µ(v, δ) has at least one fixed point c(v, δ) ∈ P 

Proof. µ(v, δ) is a continuous function on a compact, convex set. By application of 
Brouwer’s theorem, it has a fixed point. � 
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Remark 5.13. Saying that µ(v, δ) has at least one fixed point is equivalent to saying 
that A(v, δ) has at least one fixed point 

However, the ck produced by the algorithm may still fail to converge so that 
A(v, δ) does not provide the value of a fixed point. 

5.1.3. Existence of fixed point for the original algorithm A.. In this part, we will 
use the previous theorem asserting the existence of a fixed point to the algorithm 
that holds for all variance v >  0 and all δ >  0 to show that there exists a fixed 
point to the original algorithm A. 

Theorem 5.14. For any pair (vk , δk) in R2 with (vk, δk ) > 0, denote Ck the set of 
fixed points of the algorithm A(vk, δk ), which is not empty by Theorem 5.12. 

If there is a sequence (vk, δk )k≥0 of such pairs with (vk , δk ) → (0, 0), such that 
there is an accumulation point c of the set Ck that yields a unique optimum if used 
as a state relevance vector in (ALP), then c ≥ 0 is a probability distribution that 
verifies 

T(5.2) c = µν,uΦ˜ 	 r(c) 
)−1 

r(c) 
:= (1 − α)νT (I − αPuΦ˜

Proof. Without loss of generality, let ck ∈ Ck such that limk→+∞ck = c. By 
definition, 

(5.3) ck = µ
ν,uΦ˜

== (1 − α)νT (I − αP )−1 .δk	 δk 
r(ck )	 uΦr̃(ck ) 

Note Π ∈ R
m	 the polyhedron that is the feasible set of (ALP). By assumption, 

r(c) verifying ˜ r(c) > cT Φr forthere is a unique ˜ r(c) ∈ Π (ALP feasibility) and cT Φ˜
all r ∈ Π. Hence, r̃(c) stays the unique optimal solution of (ALP) for state relevance 
weight close enough to c. Since ck → c, there is K such that k ≥ K ⇒ r̃(ck ) =  ̃r(c). 

r(c) = uΦ˜In particular, uΦ˜ r(ck ), ∀k ≥ K, and (5.3) becomes for k ≥ K 

)−1(5.4)	 ck = (1  − α)νT (I − αP δkuΦr̃(c) 

δ	 |Recall that a δ-greedy policy u with respect to J ∈ R
|S chooses control u in J 

state x with probability 

exp[−(gu(x) +  αPu(x)J )/δ]δ(5.5) uJ (u, x) =  ∑ 
a∈U (x) exp[−(ga(x) +  αPa(x)J )/δ] 

. 

Lemma 5.15. Assume that U = {u1, . . . , uq } ⊂ U (x) is the set of minimizers of 
gu(x) +  αPu(x)J. Then, 

δlim uJ (a, x) =  uJ (a, x) =  
1/q if a ∈ U 

δ↓0	 0 otherwise 

δkr(c), the lemma yields limk→+∞ uΦ˜ r(c).For J = Φ˜ r(c) = uΦ˜


Combining this results with (5.4), we have


(5.6) c = lim ck = lim (1−α)νT (I −αP )−1 = (1−α)νT (I −αPuΦr̃(c) 
)−1 .δk 

k→+∞ k→+∞ uΦr̃(c) 
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5.2. Necessary conditions. 
Although the theoretical algorithm presented above shows the existence of a 

probability distribution in the feasible set of (P), it is not practical. Now, we would 
like to obtain practical guidelines for the choice of c. In particular, we derive in 
this section some necessary conditions on the state relevance weight. One of them 
yields a reinforced approximate linear program. 

5.2.1. A condition on c depending on the Lyapunov function and the initial distri-
bution. 

Proposition 5.16. If c verifies (5.1), then 

νT Φv ≤ (1 − α)−1 c T (I − αPuv )Φv 

Proof. Assume (5.1) holds, or equivalently 

(1 − α)νT = c T (I − αPuΦr̃(c) 
). 

Then multiplying by Φv on the right and noting uv the greedy policy with respect 
to the Lyapunov function Φv (Puv Φv ≤ PuΦv, ∀u, as we modified the Markov 
Chain so that all policies has the same cost vector), we have 

νT Φv = (1  − α)−1 c T (I − αPuΦr̃(c) 
)Φv 

⇒ νT Φv ≤ (1 − α)−1 c T (I − αPuv )Φv 

� 

Notice that the spectrum of (1 − α)−1(I − αPuv ) is of the  form  (1  − αλ)/(1 − α), 
where λ is an eigenvalue of Puv . 

5.2.2. Reinforced approximate linear program. 
A possible approach to obtain (5.1) is to enforce this constraint in the ALP and 

hope there is a solution for a given c. That is to try to solve the following non-linear 
program: 

(RAN LP ) : max c T Φr 
r∈Rm 

T Φr ≥ Φr 
T c = (1  − α)νT (I − αPuΦr̃(c) 

) 

The last constraints are hard to deal with, but we can derive more tractable neces-
sary conditions. In particular, the next proposition shows that they imply a system 
of linear equations. 

Proposition 5.17. If c verifies (5.1), then the following system of linear equations 
holds 

(5.7) (1 − α)νT Φr̃(c) ≥ c T (I − αPu)ΦR, ∀u ∈ U (x) 

Proof. By definition of uΦr̃(c) given Assumption 1.1, we have 

r(c) ≤ PuΦ˜(5.8) 
r(c) 

Φ˜ r(c), ∀u ∈ U (x)PuΦ˜
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Hence, 

r(c) ≥ −αPuΦ˜−αPuΦ˜ Φ˜ r(c), ∀u ∈ U (x)
r(c) 

⇔ (I − αPuΦ˜ r(c) ≥ (I − αPu)Φ˜
r(c) 

)Φ˜	 r(c), ∀u ∈ U (x) 

⇔ Φ˜
r(c) 

)−1(I − αPu)Φ˜r(c) ≥ (I − αPuΦ˜ 	
r(c), ∀u ∈ U (x) 

The last equivalence follows from (I −αPuΦr̃(c) 
)−1 = αtP t ≥ 0. Multiply-t≥0 uΦr̃(c) 

ing both sides of the last equation by (1 − α)νT , 

(1 − α)νT Φ˜	
r(c) 

)−1(I − αPu)Φ˜r(c) ≥ (1 − α)νT (I − αPuΦ˜ 	
r(c), ∀u ∈ U (x) 

µν,uΦr̃(c) 

As a result, it is natural to consider a reinforced linear program (RALP) to 
∗approximate J by a linear combination of Φ. 

(RALP ) : max c T Φr 
r∈Rm 

T Φr ≥ Φr 

(1 − α)νT Φr ≥ c T (I − αPu)Φr, ∀u ∈ U (x) 

Notice that the last constraint enforces the equality µν,uΦ˜ = c only on the 
r(c) 

subspace {(I − αPu)Φr̃(c), u  ∈ U }, whereas we need this condition to hold for 
∗	 ∗ r(c), r̃(c) being an optimal solution of (RALP) so that ‖J −Φ˜

r(c)J −Φ˜ r(c)‖1,µν,˜ = 
‖J ∗ − Φr̃(c)‖1,c. 

6. Conclusion 

We presented some new results for the choice of the state relevance weight c in the 
approximate linear program. The criterion to choose c hinges on two performance 
bounds that control the suboptimality of the ALP policy. However, these results 
remain preliminary, in particular how to tailor the state relevance weight to the 
problem setting remains an open question. 

7. appendix 

7.1.	 Insights on µν,u. 
By definition, 

T(7.1) µν,u := (1 − α)νT (I − αPu)−1 = (1  − α) αtνT P t .u

t≥0 

Hence, µν,u is a geometric average of the presence probability over the state space 
after t transitions under policy u starting from the distribution ν. When Pu irre-
ducible, limt→+∞νT P t = πT 

u , where πu is the steady-state distribution of Pu, i,e, u 
πT = πT Pu. Thus we can wonder how far is πu from µν,u. We show now that in u u 
general µν,u is further away from πu than ν. 

Since πu is also a left eigenvalue of (1 − α)(I − αPu)−1, we have  
T µν,u − πT = (ν − πu)T (1 − α)(I − αPu)−1 .u 
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When Pu irreducible, the eigenvalue of Pu have a modulus smaller than one by 
Perron-Frobenius theorem. Hence, the eigenvalues of (I − αPu)−1 have a modulus 
greater than 1. As a result, the previous equation yields 

‖µν,u − πu‖2 ≥ ‖(ν − πu)‖2 
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