
MIT OpenCourseWare 
http://ocw.mit.edu 

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology 
Fall 2007 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


MAS 160/510 Additional Notes: Error-Correcting Codes 

The fundamental idea behind coders for noisy discrete channels is redundancy. We’re going to 
make individual messages somehow “more unique” so that noise won’t corrupt enough of the symbols 
in a message to destroy its uniqueness, and we’re going to try to do it in a more organized way than 
just repeating the same message over and over again. 

Another key ingredient in coders for noisy channels is often called noise averaging, and we can 
see what this means by a simple example. Suppose on average 1% of the received bits have been 
corrupted by the channel. Looking at a bit, can we tell if it’s a “good” bit or a “bad” bit? No. If 
we look at a block of ten bits, can we identify the bad ones? No, but we can make some statistical 
observations about how likely it is that some number of bits is incorrect: 

p(10 good) = .9910 ≈ 9 × 10−1 

10! 
p(1 bad) = .999 × .01 × (number of combinations : 

1!(10 − 1)!
) ≈ 9 × 10−2 

10! 
p(2 bad) = .998 × .012 × 

2!(10 − 2)! 
≈ 4 × 10−3 

10! 
p(3 bad) = .997 × .013 × 

3!(10 − 3)! 
≈ 1 × 10−4 

Summing these and subtracting from 1, we find that the probability that more than three bits in 
a block have been corrupted is about 2 × 10−6 . So on average only two blocks in a million will 
have more than three bad bits. If we had some way of correcting no more than three bad bits out 
of a block of ten, 999,998 times out of a million we’d be alright, which might be good enough for 
many applications. Were we to make the blocks still bigger than 10 bits, we’d find that the average 
number of bad bits per block would converge to the 1% figure. 

The redundancy requirement clearly suggests that if we have n-bit blocks we can’t allow all 
2n possible sequences to be valid codes, or else we wouldn’t know when a received block is bad. 
Going further, it seems as if correcting all possible errors of t bits/block will require us to make 
every legitimate message block differ from every other legitimate message block in at least 2t + 1 
bit positions (the number of bit positions in which two code blocks differ is called the Hamming 
distance). 

An error-correcting code, then, is an orderly way of mapping some number of symbols into a 
greater number so as to increase the Hamming distance between any two valid sequences. They can 
be divided into two basic types: 

•	 Block codes map a k-symbol input sequence into an n-symbol output sequence, where each n-
symbol output depends upon only the k symbols input and no others. Block codes are usually 
specified as (n, k) codes, where k is in the range of 3 to a few hundred, and k/n is between 
roughly 1/4 and 7/8. Block codes are also sometimes called group codes. 

•	 Tree codes are more like state machines – each set of output symbols depends on the current 
set of inputs as well as some number of earlier inputs. These codes are said to have memory, 
and are also called convolutional codes, since the encoding operation can be considered as 
convolving a sequence of inputs with an “impulse response”. 

In this handout, we’ll look at block codes, which can be modeled using binary linear algebra. 
The simplest block code is a parity-check code. We can write the (4,3) example as taking three 
bits (a0, a1, a2) and producing a 4-vector �a. As this is usually written as a column vector, for 
typographical convenience we’ll show it transposed: 

�a T = (a0, a1, a2, a0 + a1 + a2), 

1 



where the addition is modulo-2, so 1 + 1 = 0 and subtraction is equivalent to addition. While this 
won’t correct errors (not enough distance between valid sequences to identify which bit is bad if the 
fourth entry isn’t the modulo-2 sum of the other three) it will identify blocks with a single bit error. 
A better code might be the (6, 3) code given by: 

�a T = (a0, a1, a2, a0 + a1, a1 + a2, a0 + a1 + a2). 

This can be written as a system of linear equations: 

a3 = a0 + a1 

a4 = a1 + a2 

a5 = a0 + a1 + a2 

Since in modulo-2, −a = a we can say 

a0 + a1 + a3 = 0 

a1 + a2 + a4 = 0 

a0 + a1 + a2 + a5 = 0 

and this can also be written as a “parity-check matrix”: ⎤⎡ 
110100 

H = ⎣ 011010 ⎦ . 
111001 

Now we can say that a valid code word is one that satisfies the equation 

H�a = �0. 

To test this idea, we can encode a particular sequence, say (100), which comes out as �aT = (100101), 
and indeed we find that ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

1 
0 
0 
1 
0 
1 

⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 
110100 

⎤⎡ 
0 ⎣ 011010 ⎦ ⎣ 0 ⎦= . 

111001 0 

There is a particular set of (2m − 1, 2m − m − 1) codes called Hamming codes, in which the 
columns of the parity-check matrix are the nonzero binary numbers up to 2m . Thus the matrix for 
the (7, 4) Hamming code is ⎤⎡ ⎣ 

0001111 
0110011 ⎦H = , 
1010101 

and �a is valid if 
a3 + a4 + a5 + a6 = 0 

a1 + a2 + a5 + a6 = 0 

a0 + a2 + a4 + a6 = 0. 

Since a0, a1, and a3 appear only once here, it’ll be mathematically easier if we let a2, a4, a5, and a6 

be our 4-bit input block and compute the other three bits from the above equations. For example: 

(1010) (a0a11a3010) = (1011010).⇒ 

2 



Now, how do we correct an error? Consider that we have sent some good sequence �g, but an error 
pattern �e has been added by the channel, so what is received is 

�r = �g + �e. 

Upon receiving �r, we multiply it by H and get a vector �s, called the “syndrome” (Webster: “A 
group of signs that occur together characterizing a particular abnormality.”). Thus 

�s = H�r = H�g + H�e. 

But recall that by definition 
H�g = �0, 

so 
�s = H�e. 

In other words, the syndrome depends upon only the error, no matter what the message is. Let’s 
take our valid code (1011010) above, and add an error in the last position: (1011011). Multiplying 
it by H (try it yourself!) we get the answer 

�s T = (111), 

and therefore 
�e T = (0000001). 

In general, in Hamming codes, the syndrome resulting from an error in the n-th position is the 
n-th column of the H array. But the n-th column is also the number of the bit position with the 
error, making correction easy. More complicated methods exist for constructing codes that correct 
multiple-bit errors, and for shuffling data to optimize for partcular kinds of errors (predominantly 
impulsive noise versus drop-outs of several bits in sequence, for instance). For more information see 
Peterson and Weldon, Error-Correcting Codes (Barker TK5101.P485), or Clark and Cain, Error-
Correction Coding for Digital Communications (Barker TK5102.5.C52). 

3 


