
MIT OpenCourseWare
http://ocw.mit.edu

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology
Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

phase

!

7cos
"
8
n + "

3()

!

7cos
"
8
n()

phase is always relative

here, compare peaks of

!

ˆ " =
#

8
=

2#

16
= 2#f $ f =

1

16

T =
1

f
=16 samples /cycle

!

2.667 samples "
2# rad /cycle

16 samples /cycle
=
#

3
rad

2.667 sample shift	 shifted and unshifted cosines

peak occurs between samples, so interpolate

shifted peak occurs before unshifted peak,
so lead, so +φ

phase
phase just from plot
(unshifted not plotted)

16 samples/cycle

!

7cos
"
8
n + "

3()

13.33 sample shift
2.67

!

2.667 samples "
2# rad /cycle

16 samples /cycle
=
#

3
rad

!

16 "13.33() samples #
2$ rad /cycle

16 samples /cycle
=
$

3
rad

here, look at “missing” sample shift to
peak of cosine

shifted peak occurs before unshifted peak,
so lead, so +φ

relative phase
phase between two shifted cosines

!

7cos
"
8
n + "

3()

10 sample shift 6 sample shift
!

7cos
"
8
n + 3"

4()

!

7cos
"
8
n()

estimate phase of x2

!

6 samples "
2# rad /cycle

16 samples /cycle
=
3#

4
rad

!

16 "10() samples #
2$ rad /cycle

16 samples /cycle
=
3$

4
rad

here, look at “missing” sample shift to
peak of cosine

shifted peak occurs before unshifted peak,
so lead, so +φ

relative phase
phase between two shifted cosines

!

7cos
"
8
n + "

3()

!

3"

4
#
"

3
=
5"

12
rad

6 sample shift
!

7cos
"
8
n + 3"

4()

!

7cos
"
8
n()

Subtract phases, φx2 - φx2.67

compare

!

6 " 2.67()samples #
2$

16

rad /cycle

samples /cycle
=
5$

12
rad

!

3.33()samples "
2#

16

rad /cycle

samples /cycle
=
5#

12
rad

!

10

3

"

$

%

&
' samples (

2)

16

rad /cycle

samples /cycle
=
5)

12
rad

relative phase
phase between two shifted cosines

look at shift between zero-crossings

!

7cos
"
8
n + "

3()

3.33 sample shift
!

7cos
"
8
n + 3"

4()

!

7cos
"
8
n()

zero-crossing occurs between samples,
so interpolate.

easier to interpolate zero-crossing, than peak.

!

3.33()samples "
2#

16

rad /cycle

samples /cycle
=
5#

12
rad

Systems

represent the system

solve system response to arbitrary input

Equivalent ways to represent the system

!

y n[] = a
l
y n " l[]

l=1

N

+ b
k
x n " k[]

k=0

M

#

!

"

1	 2
x[n]

unit delay

!

b
0

!

b
1

+ +
!

a
1

difference equation

!

c

!

c inspection block diagram y[n]

x[n]=δ[n]

!

c

!

z = e
j"

4 system function pole-zero
polynomial locations

!

h[n]= y[n]
x[n]="[n]

H z() =
b
k
z
$k

k=0

M

%

1$ a
k
z
$k

k=1

N

%
=
&
i=0

M

z $ z
zi()

&
i=0

N

z $ z
pi()impulse response

sequence

z3

5

The region of convergence must

!

H "()Contain the unit circle for
to converge and the system

!

H "() = H e
j"() = H z()

z=e j"

6

frequency response	 to be stable. (general)
(FIR filter always stable)

Equivalent ways to solve for response to arbitrary input

!

y n[] = a
l
y n " l[]

l=1

N

+ b
k
x n " k[]

k=0

M

#1

!

h[n] = y[n]
x[n]=" [n]

impulse response

frequency response

!

H "() = H e
j"() = H z()

z=e j"

2

3

4

!

H z() =
Y (z)

X(z)
=

b
k
z
"k

k= 0

M

#

1" a
k
z
"k

k=1

N

#

convolve input with impulse response

!

y[n] = h[n]* x[n]

use frequency response

!

y[n]
x[n]= e j ˆ " n = H ˆ " ()e j ˆ " n

!

Y (z) = H(z) " X(z)

!

y[n]

!

" IZT

iteration of difference equation

use z-transforms z-transform of diff.eqn.

Equivalent ways to solve for response to arbitrary input

Initial rest conditions

!

y n[] = a
l
y n " l[]

l=1

N

+ b
k
x n " k[]

k=0

M

#1

2

3

4

iteration of difference equation
i) numerical

a) convolution sumLTI b) synthetic polynomial
ii) graphical

i)	 numerical

!

y[n] = h[n]* x[n]
convolve input with impulse response multiplication

FIR h[n]=bn
ii) graphical

IIR h[n] solved iteratively (see 1)

a) FIR

!

y[n]
x[n]= e j ˆ " n = H ˆ " ()e j ˆ " n

use frequency response
b) FIR/IIR

!

H z() =
Y (z)

X(z)
=

b
k
z
"k

k= 0

M

#

1" a
k
z
"k

k=1

N

#

!

H ˆ " () = h[k]e
j ˆ " k

k= 0

M

= bke
j ˆ " k

k= 0

M

#

!

H "() = H e
j"() = H z()

z=e j"

!

H "() = H e
j"() exists?

look at poles / roc. Inverse z-transform roc must contain unit circle

a)	 long division
b)	 lookup table

!

z > a

!

1

1" az
"1
a

n
u[n]

right sided sequence (causal) roc

c)	 partial fraction
i) match coeff
ii) powers of z

!

z < a

!

1

1" az
"1
#"a

n
u["n"1]

left sided sequence

!

Y (z) = H(z) " X(z)

!

y[n]

!

" IZT

!

y[n] = h[n]* x[n]

!

" ZT

use z-transforms iii) powers of z-1

Equivalent ways to solve for response to arbitrary input

!

y n[] = a
l
y n " l[]

l=1

N

+ b
k
x n " k[]

k=0

M

#1

iteration of difference equation

2

!

y[n] = h[n]* x[n]

convolve input with impulse response

3

!

y[n]
x[n]= e j ˆ " n = H ˆ " ()e j ˆ " n

use frequency response

4

!

Y (z) = H(z) " X(z)

!

y[n]

!

" IZT

one sample at a time

(possibly in sequence order)

Do you have eqn?

one sample at a time

(possibly in sequence order)

Do you have impulse response?

one frequency component

at a time.

Do you know freq content of x[n]?

General

Can you do inverse z-transform?

use z-transforms

Fourier Transforms
Compute spectrum of signals

Fourier

!

Xk =
2

T
0

x(t)e
" j 2#kt

T0dt
0

T0

$ Periodic in (cont.) time
Series Discrete freq

!

X[k] = x[n]e
" j 2#k / N()n

n=0

N"1

$

!

H ˆ " () = h[k]e
j ˆ " k

k=0

#

$ Discrete time
Periodic in (cont.) freq

Discrete & periodic time

DTFT

DFT
Discrete & periodic freq

Discrete Fourier Transform (DFT)

Compute spectrum of discrete-time periodic signals

N samples in time domain N complex numbers in frequency domain
IDFT

!

"
DFT

!

"

DFT

!

X[k] = x[n]e
" j 2#k / N()n

n=0

N"1

$ analysis

!

x[n] =
1

N
X[k]e

j 2"k / N()n

k=0

N#1

$ synthesisIDFT

DFT: sample continuous H(ω) (DTFT) at N evenly spaced frequencies

Pad to get more samples / “bins”.
Window data. (DFT assumes periodicity).

FFT is an efficient algorithm to compute DFT

1

z

DFT Convolution

DTFT

!

y[n]* x[n]" Z(ˆ #) =Y (ˆ #)X(ˆ #)" z[n]
IDTFT

sample frequency sample

domain domain domain

sampled version of

Use DFT to compute Y[k] and X[k]

!

Y[k]

!

Y (ˆ ")

!

y[n]" x[n]# Z[k] =Y[k]X[k]# z[n]

DFT IDFT

circular

convolution

To avoid temporal aliasing:

if len(x)=N, len(y)=M, then pad so lengths are N+M-1

Filter Design

!

x n[]

!

y n[]Ideal filter

lowpass highpass bandpass

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

!

H
1

ˆ " ()

!

ˆ "

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

!

H
2

ˆ " ()

!

H
3

ˆ " ()

!

ˆ "

!

ˆ "

real filters

passband ripple

stopband ripple

passband stopband
transition band

Filter Design

FIR vs. IIR Filters (Matlab Help)

FIR filters advantages:

They can have exactly linear phase.

They are always stable.

The design methods are generally linear.

They can be realized efficiently in hardware.

The filter startup transients have finite duration.

FIR filter disadvantage

Much higher filter order than IIR filters to achieve a given level of performance.

Delay is greater than for an equal performance IIR filter.

Filter Design

FIR Filters Design Methods

Description
Windowing
Apply window to truncated inverse
Fourier transform of desired "brick wall" filter

Multiband with Transition Bands
Equiripple or least squares approach over
sub-bands of the frequency range

Constrained Least Squares
Minimize squared integral error over entire frequency
range subject to maximum error constraints

Arbitrary Response
Arbitrary responses, including nonlinear phase and
complex filters

Raised Cosine
Lowpass response with smooth, sinusoidal transition
(used for data transmission pulse shaping)

Matlab functions

fir1, fir2, kaiserord

firls, firpm, firpmord

fircls, fircls1

cfirpm

firrcos

 FIR1 FIR filter design using the window method.
 B = FIR1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter coefficients in length N+1 vector B.
 The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.

B = FIR1(N,Wn,'high') highpass filter.
B = FIR1(N,Wn,'low') lowpass filter.

B = FIR1(N,Wn,'bandpass') if Wn = [W1 W2] with bandpass filter with passband W1 < W < W2.
B = FIR1(N,Wn,'stop') if Wn = [W1 W2] will design a bandstop filter.

Ex. We have a sound recording (sampled at 44000Hz) and we want to isolate the speech range (200-8000Hz).

(Note: we assume the sound recording was properly analog filtered BEFORE sampling to avoid aliasing. You can’t remove

the aliasing after you sample.)

Design a bandpass filter to isolate speech range.

We are sampling at 44kHz, so the maximum frequency in the recording is 22kHz (Nyquist).

!

f
max

= 22000Hz" w
max

=1

!

f
1

= 200Hz" w
1

=
200

22000
= 0.0091

!

f
2

= 8000Hz" w
2

=
8000

22000
=
4

11
= 0.3636

>>b=fir1(10,[0.0091 0.3636],’bandpass’)

b =

-0.0040 -0.0169 -0.0177 0.0869 0.2930 0.4061 0.2930 0.0869 -0.0177 -0.0169

>>[h,w]=freqz(b,1);plot(w/pi,abs(h))

-0.0040

>> pzmap(tf(b,1))

Realtime?

An optimized 20MHz MAXQ2000 uC can run a 100 tap FIR filter at close to 60kHz sampling rate.

http://www.maxim-ic.com/appnotes.cfm/an_pk/3483

http://www.maxim-ic.com/appnotes.cfm/an_pk/3483

LOW PASS

>>b=fir1(50,[0.0091 0.3636],’low’) >>b=fir1(100,[0.0091 0.3636],’low’)
>>[h,w]=freqz(b,1);plot(w/pi,abs(h)) >>[h,w]=freqz(b,1);plot(w/pi,abs(h))

b = firpm(n,f,a)

order n FIR filter (n+1 coefficients)

linear-phase FIR filter

Uses Remez exchange algorithm

Maximum error between the desired and the actual frequency response is minimized.

Equiripple filters -- exhibit an equiripple behavior in their frequency responses

f and a specify the frequency-magnitude characteristics of the filter:

f is a vector of pairs of normalized frequency points, specified in the range between 0 and 1,

frequencies must be in increasing order.

a is a vector containing the desired amplitudes at the points specified in f. (Between pairs, ‘don’t care’))

f and a must be the same length. The length must be an even number.

!

f
max

= 22000Hz" w
max

=1

!

f
1

= 200Hz" w
1

=
200

22000
= 0.0091

!

f
2

= 8000Hz" w
2

=
8000

22000
=
4

11
= 0.3636

>>b=firpm(10,[0 0.005 0.0091 0.3636 0.39 1],[0 0 1 1 0 0]);
b = -0.2149 -0.0145 -0.0986 0.0353 0.3131 0.4559 0.3131

0.0353 -0.0986 -0.0145 -0.2149

>>[h,w]=freqz(b,1);plot(w/pi,abs(h))

>>b=firpm(100,[0 0.005 0.0091 0.3636 0.39 1],[0 0 1 1 0 0]);
>>pzmap(tf(b,a))

n=50 n=250

Lowpass

one zero @ z=-13

>>b=firpm(100,[0 0.3636 0.39 1],[1 1 0 0]);

n=50 n=250

To choose, you need to decide/trade off max allowable width of transition band,
ripple in pass and stop bands, and how much computational power you have.

Filter Design

IIR Filters Design Methods

Description
Analog Prototyping
Using the poles and zeros of a classical lowpass
prototype filter in the continuous (Laplace) domain,

obtain a digital filter through frequency transformation
 and filter discretization.

Direct Design
Design digital filter directly in the discrete time-domain
 by approximating a piecewise linear magnitude response

Matlab functions

butter,
cheby1,
cheby2,
ellip

yulewalk

fdatool

BUTTER Butterworth digital and analog filter design.
 [B,A] = BUTTER(N,Wn)
Nth order lowpass digital Butterworth filter
Cutoff frequency Wn 0.0 < Wn < 1.0, 1.0=half sampling rate

[B,A] = BUTTER(N,Wn,'high') designs a highpass filter.

 [B,A] = BUTTER(N,Wn,'low') designs a lowpass filter.

 [B,A] = BUTTER(N,Wn,’bandpass’) is a bandpass filter if Wn = [W1 W2].

 [B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].

[b,a]=butter(20,0.3636,'low');

no ripple in pass band or stop band
wide transition band

CHEBY1 Chebyshev Type I digital design.
 [B,A] = CHEBY1(N,R,Wp)
Nth order lowpass digital Chebyshev filter
R decibels of peak-to-peak ripple in the passband.
Wp passband-edge frequency 0.0 < Wp < 1.0,
Use R=0.5 as a starting point, if you are unsure about choosing R.

ripple in pass band
no ripple stop band
narrow transition band
max p-p ripple 0.1dB
0.1dB=20log10(X/1)
X=10(0.1/20)=1.01

-0.1dB=20log10(X/1)
[b,a]=cheby1(20,.1,0.3636); X=10(-0.1/20)=0.99

CHEBY2 Chebyshev Type II digital filter design.
 [B,A] = CHEBY2(N,R,Wst)
Nth order lowpass digital Chebyshev
 stopband ripple R decibels down
stopband-edge frequency Wst.

Use R = 20 as a starting point, if you are unsure about choosing R.

no ripple in pass band
ripple in stop band
narrow transition band

max ripple 40dB down
-40dB=20log10(X/1)
X=10(-40/20)=10-2

[b,a]=cheby2(20,40,0.3636); =0.01

ELLIP Elliptic or Cauer digital filter design.
[B,A] = ELLIP(N,Rp,Rs,Wp
Nth order lowpass digital elliptic filter
Rp decibels of peak-to-peak ripple
Rs decibels minimum stopband attenuation
Wp passband-edge frequency 0.0 < Wp < 1.0
Use Rp = 0.5 and Rs = 20 as starting points, if you are unsure about choosing them.

ripple in pass band
ripple in stop band
narrowest transition band

[b,a]=ellip(20,0.1,40,0.3636);

ELLIP Elliptic or Cauer digital filter design.
[B,A] = ELLIP(N,Rp,Rs,Wp
Nth order lowpass digital elliptic filter
Rp decibels of peak-to-peak ripple
Rs decibels minimum stopband attenuation
Wp passband-edge frequency 0.0 < Wp < 1.0
Use Rp = 0.5 and Rs = 20 as starting points, if you are unsure about choosing them.

IIR typically have
[b,a]=ellip(20,0.1,40,0.3636); nonlinear phase

yulewalk designs IIR digital filters using a least-squares fit to a specified frequency response.

[b,a] = yulewalk(n,f,m)

N order IIR filter whose frequency-magnitude characteristics approx. match those given in vectors f and m:

f is a vector of frequency points, specified in the range between 0 and 1

The first point of f must be 0 and the last point 1, with all intermediate points in increasing order.

Duplicate frequency points are allowed, corresponding to steps in the frequency response.

m is a vector containing the desired magnitude response at the points specified in f.

f and m must be the same length.

plot(f,m) displays the filter shape.

When specifying the frequency response, avoid excessively sharp transitions from passband to stopband.

You may need to experiment with the slope of the transition region to get the best filter design.

[b,a]=yulewalk(10,[0 0.005 .01 0.3 0.3636 .38 .4 .5 1],[.01 0.5 1 1. 1 .5 0.1 .01 0.01]);

Screenshot of MATLAB FDAtool removed due to copyright restrictions.

+

iterative implementation

(FIR) direct form

x[n]
v3

% setup input

fs=8192;

t=0:1/fs:4;

x=cos(2*pi*(8192/2/4)/2*t.^2);

%%%%%%%

% filter coefficients (4 pt averager)

b0=0.25;b1=0.25;b2=0.25;b3=0.25;

%direct form

v3o=0; %setup storage for past inputs

v2o=0;

v1o=0;

for i=1:length(x); %this would be an infinite loop for uC
 v3=x(i); %take a sample (A/D) x[n]
 v2=v3o; % recall input 1 samples ago x[n-1]
 v1=v2o; % recall input 2 samples ago x[n-2]

% calculate output
 y1(i)=b0*v3+b1*v2+b2*v1+b3*v1o;

% store inputs

v1o=v1; % save input 2 sample ago x[n-3]=x[n-2]

v2o=v2; % save input 1 sample ago x[n-2]=x[n-1]

v3o=v3; % save current input x[n-1]=x[n]

end

y[n]

!

y n[] = b
0
x n[] + b

1
x n "1[] + b

2
x n " 2[] + b

3
x n " 3[]

unit delay
x[n-1]

unit delay
x[n-2]

!

b
0

!

b
1

!

b
2

+ +

+
+

!

b
0
x n[]

!

b
1
x n "1[]

!

b
2
x n " 2[]

unit delay
x[n-3]

!

b
3

+
!

b
3
x n " 3[]

v1o
v1 v2

Optimize
Use better structures
Add feedforward (IIR)
(store outputs and add to difference eqn)

+

iterative implementation

(FIR) transpose form

!

y n[] = b
0
x n[] + b

1
x n "1[] + b

2
x n " 2[] + b

3
x n " 3[]

x[n]

% setup input
fs=8192;

t=0:1/fs:4;

x=cos(2*pi*(8192/2/4)/2*t.^2);

+ v1 %%%%%%% v3
unit delay +% filter coefficients (4 pt averager) unit delay + +v2

unit delay
+

b0=0.25;b1=0.25;b2=0.25;b3=0.25;

%transpose form

v3=0; %setup storage for past combos

v2=0;

v1=0;

for i=1:length(x); %this would be an infinite loop for uC

% calculate output

xs=x(i); %take a sample (A/D)

y2(i)=b0*xs+v1; %b0*x[n]+(b1*x[n-1]+b2*x[n-2]+b3*x[n-3])

% store combos

 v1=b1*xs+v2; %b1*x[n]+(b2*x[n-1]+x3*x[n-2])

v2=b2*xs+v3; %b2*x[n]+x3*x[n-1]

v3=b3*xs; %b3*x[n]

end

Direct Form versus Transposed Form implementations; in the former, input samples are buffered (i.e. effectively move
 through a delay line) whereas in the Transpose version, partial sums are stored and propagated. Although the
theoretical number of computations is often nominally the same, these differences will often show up in word lengths
required, control logic, pipeline stages, etc. -http://syndicated.synplicity.com/Q207/dsp.html

y[n]
!

b
0

!

b
1

!

b
2

!

b
2
x n[]

!

b
1
x n[]

!

b
0
x n[]

!

b
3
x n " 2[] + b

2
x n "1[]

!

b
3
x n " 3[] + b

2
x n " 2[] + b

1
x n "1[]

!

b
3

!

b
3
x n[]

!

b
3
x n "1[]

+

-http://syndicated.synplicity.com/Q207/dsp.html

FFT Windows

Content removed due to copyright restrictions.
Text from LDS Application Note AN014, "Understanding FFT Windows." (2003)

Integer # of cycles

n=0:255
x=cos(2*pi/16*n)
y=fftshift(abs(fft(x))/256);

Non-integer # of cycles
n=0:255
x=cos(2*pi/14*n)
y=fftshift(abs(fft(x))/256);

Note: fft(x) for freq response
fft(x)/L for spectrum

Integer # of cycles

Continuous/periodic

Non-integer # of cycles
Discontinuity has lots of freq.
leakage

Sampled time frame Spectrum equivalent to convolving
equivalent to multiplying periodic signal’s spectrum (spikes)
signal by a rectangular by a spectrum rectangular
(boxcar) window. window (sinc-like). Sinc’s sidelobes

pick up extraneous frequency
contributions.

Sampled time frame Spectrum equivalent to convolving
equivalent to multiplying periodic signal’s spectrum (spikes)
signal by a rectangular by a spectrum rectangular
(boxcar) window. window (sinc-like). Sinc’s sidelobes

pick up extraneous frequency
contributions.

Padding is also windowing

Integer # of cycles
Continuous/periodic

padded integer# of cycles
discontinuous

Padding adds more bins (frequency samples), but introduces

leakage, and doesn’t increase real resolution

(resolution = highest freq.

still defined by sampling rate, not record length)

!

ˆ " = #

Soln: Use other windows to make finite sampled
signal look periodic and continuous in time frame.
Try to reduce window’s sidelobe’s to reduce picking up
other frequency contributions.

Hanning window

Soln: Use other windows to make finite sampled
signal look periodic and continuous in time frame.
Try to reduce window’s sidelobes to reduce picking up
other frequency contributions.

Hanning window

wider mainlobe than boxcar
But smaller sidelobes

Soln: Use other windows to make finite sampled
signal look periodic and continuous in time frame.
Try to reduce window’s sidelobes to reduce picking up
other frequency contributions.

Hanning windowed cosine
Now signal looks periodic
in time frame

w2=window(@hann,256);
x=cos(2*pi/14*n);
x2=x.*w2';
y=fftshift(abs(fft(x2))*2/256))

need to account for window attenuation

Soln: Use other windows to make finite sampled
signal look periodic and continuous in time frame.
Try to reduce window’s sidelobe’s to reduce picking up
other frequency contributions.

Hanning windowed cosine
Now signal looks periodic
in time frame

less frequency resolution
(wider main lobe)

but better amplitude (?)
(smaller side lobes)

!

x[n] =10cos(2" /16 # n) + 5cos(2" /7.5 # n)

Boxcar
greater frequency resolution
(smaller main lobe)
but worse amplitude
(smaller side lobes)

Hanning
less frequency resolution
(wider main lobe)
but better amplitude
(smaller side lobes)

Trade off between
frequency resolution
(main lobe width)
and leakage
(side lobes)

Content removed due to copyright restrictions.
Table and graphs from LDS Application Note AN014, "Understanding FFT Windows." (2003)

Text removed due to copyright restrictions. Description of advantages and preferred applications of common windowing types.
From National Semiconductor website "Windowing: Optimizing FFTs Using Window Functions," http://zone.ni.com/devzone/cda/tut/p/id/4844.

http://zone.ni.com/devzone/cda/tut/p/id/4844

WINDOW(@WNAME,N) returns an N-point window of type specified
by the function handle @WNAME in a column vector. @WNAME can
be any valid window function name, for example:

@bartlett - Bartlett window.

@barthannwin - Modified Bartlett-Hanning window.

@blackman - Blackman window.

@blackmanharris - Minimum 4-term Blackman-Harris window.

@bohmanwin - Bohman window.

@chebwin - Chebyshev window.

@flattopwin - Flat Top window.

@gausswin - Gaussian window.

@hamming - Hamming window.

@hann - Hann window.

@kaiser - Kaiser window.

@nuttallwin - Nuttall defined minimum 4-term Blackman-Harris window.

@parzenwin - Parzen (de la Valle-Poussin) window.

@rectwin - Rectangular window.

@tukeywin - Tukey window.

@triang - Triangular window.

Cepstrum

Voice = vocal tract * periodic excitation (vocal cords))

y[n]=h[n]*x[n]
fft
Y[n]=H[n]X[n]

log(Y[k])=log(H[k])+log(X[k])
low freq high freq

ifft
quefrencies

Separate out system and signal. (remove user effects)

Uses homographic filtering (use log to separate product
and fft to look at slow and fast variations, then filter)

(homographic filtering also used to separate albedo vs. lighting)

The transfer function usually appears as a steep slant at
the beginning of the plot.
The excitation appears as periodic peaks occurring after
around 5ms.
The female voice has peaks occurring more often then in
the male’s cepstrum. This is due to the higher pitch of a
female voice.

http://cnx.org/content/m12469/latest/
Courtesy of Brian Van Osdol. (CC attribution license)

http://cnx.org/content/m12469/latest/

