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peak occurs between samples, so interpolate 

shifted peak occurs before unshifted peak, 
so lead, so +φ 
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phase between two shifted cosines 
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relative phase 
phase between two shifted cosines 

look at shift between zero-crossings 
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zero-crossing occurs between samples, 
so interpolate.


easier to interpolate zero-crossing, than peak.
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Systems


represent the system


solve system response to arbitrary input




Equivalent ways to represent the system
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frequency response	 to be stable. (general)
(FIR filter always stable) 



Equivalent ways to solve for response to arbitrary input
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y[n] = h[n]* x[n]

use frequency response 
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Equivalent ways to solve for response to arbitrary input 

Initial rest conditions
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iteration of difference equation 
i) numerical 

a) convolution sumLTI b) synthetic polynomial
ii) graphical 

i)	 numerical 

! 

y[n] = h[n]* x[n]
convolve input with impulse response multiplication 

FIR h[n]=bn 
ii) graphical 

IIR h[n] solved iteratively (see 1) 

a) FIR 
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a)	 long division
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Equivalent ways to solve for response to arbitrary input
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iteration of difference equation 
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y[n] = h[n]* x[n]

convolve input with impulse response 
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y[n]
x[n ]= e j ˆ " n = H ˆ " ( )e j ˆ " n

use frequency response 

4 

! 

Y (z) = H(z) " X(z)

! 

y[n]
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" IZT

one sample at a time

(possibly in sequence order)

Do you have eqn?


one sample at a time

(possibly in sequence order)

Do you have impulse response?


one frequency component

at a time.

Do you know freq content of x[n]?


General

Can you do inverse z-transform?


use z-transforms




Fourier Transforms 
Compute spectrum of signals 

Fourier 
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DFT 
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Discrete Fourier Transform (DFT)


Compute spectrum of discrete-time periodic signals 

N samples in time domain N complex numbers in frequency domain 
IDFT 
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DFT: sample continuous H(ω) (DTFT) at N evenly spaced frequencies 

Pad to get more samples / “bins”. 
Window data. (DFT assumes periodicity). 

FFT is an efficient algorithm to compute DFT 

1

z



DFT Convolution

DTFT 
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y[n]* x[n]" Z( ˆ # ) =Y ( ˆ # )X( ˆ # )" z[n]
IDTFT 

sample frequency sample

domain domain domain


sampled version of

Use DFT to compute Y[k] and X[k]
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circular
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To avoid temporal aliasing:

if len(x)=N, len(y)=M, then pad so lengths are N+M-1




Filter Design
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transition band




Filter Design


FIR vs. IIR Filters  (Matlab Help)


FIR filters advantages:

They can have exactly linear phase.

They are always stable.

The design methods are generally linear.

They can be realized efficiently in hardware.

The filter startup transients have finite duration.


FIR filter disadvantage

Much higher filter order than IIR filters to achieve a given level of performance.

Delay is greater than for an equal performance IIR filter.




Filter Design


FIR Filters Design Methods 

Description 
Windowing 
Apply window to truncated inverse 
Fourier transform of desired "brick wall" filter 

Multiband with Transition Bands 
Equiripple or least squares approach over 
sub-bands of the frequency range 

Constrained Least Squares 
Minimize squared integral error over entire frequency 
range subject to maximum error constraints 

Arbitrary Response 
Arbitrary responses, including nonlinear phase and 
complex filters 

Raised Cosine 
Lowpass response with smooth, sinusoidal transition 
(used for data transmission pulse shaping) 

Matlab functions 

fir1, fir2, kaiserord 

firls, firpm, firpmord 

fircls, fircls1 

cfirpm 

firrcos 



 FIR1 FIR filter design using the window method.
 B = FIR1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter coefficients in length N+1 vector B.
 The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. 

B = FIR1(N,Wn,'high') highpass filter. 
B = FIR1(N,Wn,'low') lowpass  filter. 

B = FIR1(N,Wn,'bandpass') if Wn = [W1 W2] with bandpass filter with passband  W1 < W < W2. 
B = FIR1(N,Wn,'stop') if Wn = [W1 W2] will design a bandstop filter. 

Ex. We have a sound recording (sampled at 44000Hz) and we want to isolate the speech range (200-8000Hz).

(Note: we assume the sound recording was properly analog filtered BEFORE sampling to avoid aliasing. You can’t remove

the aliasing after you sample.)


Design a bandpass filter to isolate speech range.

We are sampling at 44kHz, so the maximum frequency in the recording is 22kHz (Nyquist).
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11
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>>b=fir1(10,[0.0091 0.3636],’bandpass’) 

b =

-0.0040 -0.0169 -0.0177 0.0869 0.2930 0.4061 0.2930 0.0869 -0.0177 -0.0169


>>[h,w]=freqz(b,1);plot(w/pi,abs(h))


-0.0040 



>> pzmap(tf(b,1)) 

Realtime?

An optimized 20MHz MAXQ2000 uC can run a 100 tap FIR filter at close to 60kHz sampling rate.


http://www.maxim-ic.com/appnotes.cfm/an_pk/3483 

http://www.maxim-ic.com/appnotes.cfm/an_pk/3483


LOW PASS


>>b=fir1(50,[0.0091 0.3636],’low’) >>b=fir1(100,[0.0091 0.3636],’low’) 
>>[h,w]=freqz(b,1);plot(w/pi,abs(h)) >>[h,w]=freqz(b,1);plot(w/pi,abs(h)) 



b = firpm(n,f,a)


order n FIR filter (n+1 coefficients)

linear-phase FIR filter

Uses Remez exchange algorithm

Maximum error between the desired and the actual frequency response is minimized.

Equiripple filters -- exhibit an equiripple behavior in their frequency responses


f and a specify the frequency-magnitude characteristics of the filter:

f is a vector of pairs of normalized frequency points, specified in the range between 0 and 1,

frequencies must be in increasing order.


a is a vector containing the desired amplitudes at the points specified in f. (Between pairs, ‘don’t care’))


f and a must be the same length. The length must be an even number.
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>>b=firpm(10,[0 0.005 0.0091 0.3636 0.39 1],[0 0 1 1 0 0]); 
b = -0.2149 -0.0145 -0.0986 0.0353 0.3131 0.4559 0.3131 

0.0353 -0.0986 -0.0145 -0.2149 

>>[h,w]=freqz(b,1);plot(w/pi,abs(h)) 



>>b=firpm(100,[0 0.005 0.0091 0.3636 0.39 1],[0 0 1 1 0 0]); 
>>pzmap(tf(b,a)) 

n=50 n=250 



Lowpass


one zero @ z=-13 

>>b=firpm(100,[0 0.3636 0.39 1],[1 1 0 0]); 

n=50 n=250 

To choose, you need to decide/trade off max allowable width of transition band, 
ripple in pass and stop bands, and how much computational power you have. 



Filter Design


IIR Filters Design Methods 

Description 
Analog Prototyping 
Using the poles and zeros of a classical lowpass 
prototype filter in the continuous (Laplace) domain, 

obtain a digital filter through frequency transformation
 and filter discretization. 

Direct Design 
Design digital filter directly in the discrete time-domain
 by approximating a piecewise linear magnitude response 

Matlab functions 

butter, 
cheby1, 
cheby2, 
ellip 

yulewalk 

fdatool




BUTTER Butterworth digital and analog filter design.
 [B,A] = BUTTER(N,Wn) 
Nth order lowpass digital Butterworth filter 
Cutoff frequency Wn 0.0 < Wn < 1.0, 1.0=half sampling rate 

[B,A] = BUTTER(N,Wn,'high') designs a highpass filter.

 [B,A] = BUTTER(N,Wn,'low') designs a lowpass filter.

 [B,A] = BUTTER(N,Wn,’bandpass’) is a bandpass filter if Wn = [W1 W2].

 [B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].


[b,a]=butter(20,0.3636,'low'); 

no ripple in pass band or stop band 
wide transition band 



CHEBY1 Chebyshev Type I digital design.
 [B,A] = CHEBY1(N,R,Wp) 
Nth order lowpass digital Chebyshev filter 
R decibels of peak-to-peak ripple in the passband. 
Wp passband-edge frequency 0.0 < Wp < 1.0, 
Use R=0.5 as a starting point, if you are unsure about choosing R. 

ripple in pass band 
no ripple stop band 
narrow transition band 
max p-p ripple 0.1dB 
0.1dB=20log10(X/1) 
X=10(0.1/20)=1.01 

-0.1dB=20log10(X/1) 
[b,a]=cheby1(20,.1,0.3636); X=10(-0.1/20)=0.99 



CHEBY2 Chebyshev Type II digital filter design.
 [B,A] = CHEBY2(N,R,Wst) 
Nth order lowpass digital Chebyshev
 stopband ripple R decibels down 
stopband-edge frequency Wst. 

Use R = 20 as a starting point, if you are unsure about choosing R. 

no ripple in pass band 
ripple in stop band 
narrow transition band 

max ripple 40dB down 
-40dB=20log10(X/1) 
X=10(-40/20)=10-2 

[b,a]=cheby2(20,40,0.3636); =0.01 



ELLIP Elliptic or Cauer digital filter design. 
[B,A] = ELLIP(N,Rp,Rs,Wp 
Nth order lowpass digital elliptic filter 
Rp decibels of peak-to-peak ripple 
Rs decibels minimum stopband attenuation 
Wp passband-edge frequency 0.0 < Wp < 1.0 
Use Rp = 0.5 and Rs = 20 as starting points, if you are unsure about choosing them. 

ripple in pass band 
ripple in stop band 
narrowest transition band 

[b,a]=ellip(20,0.1,40,0.3636);




ELLIP Elliptic or Cauer digital filter design. 
[B,A] = ELLIP(N,Rp,Rs,Wp 
Nth order lowpass digital elliptic filter 
Rp decibels of peak-to-peak ripple 
Rs decibels minimum stopband attenuation 
Wp passband-edge frequency 0.0 < Wp < 1.0 
Use Rp = 0.5 and Rs = 20 as starting points, if you are unsure about choosing them. 

IIR typically have
[b,a]=ellip(20,0.1,40,0.3636); nonlinear phase 



yulewalk designs IIR digital filters using a least-squares fit to a specified frequency response.


[b,a] = yulewalk(n,f,m)

N order IIR filter whose frequency-magnitude characteristics approx. match those given in vectors f and m:

f is a vector of frequency points, specified in the range between 0 and 1

The first point of f must be 0 and the last point 1, with all intermediate points in increasing order.

Duplicate frequency points are allowed, corresponding to steps in the frequency response.


m is a vector containing the desired magnitude response at the points specified in f.

f and m must be the same length.

plot(f,m) displays the filter shape.


When specifying the frequency response, avoid excessively sharp transitions from passband to stopband.

You may need to experiment with the slope of the transition region to get the best filter design.


[b,a]=yulewalk(10,[0 0.005 .01 0.3 0.3636 .38 .4 .5 1],[.01 0.5 1 1. 1 .5 0.1 .01 0.01]); 



Screenshot of MATLAB FDAtool removed due to copyright restrictions.



+

iterative implementation

(FIR) direct form


x[n] 
v3 

% setup input

fs=8192;

t=0:1/fs:4;

x=cos(2*pi*(8192/2/4)/2*t.^2);

%%%%%%%

% filter coefficients (4 pt averager)

b0=0.25;b1=0.25;b2=0.25;b3=0.25;


%direct form

v3o=0; %setup storage for past inputs

v2o=0;

v1o=0;


for i=1:length(x); %this would be an infinite loop for uC
 v3=x(i); %take a sample (A/D) x[n]
 v2=v3o; % recall  input 1 samples ago x[n-1]
 v1=v2o; % recall  input 2 samples ago x[n-2] 

% calculate output
 y1(i)=b0*v3+b1*v2+b2*v1+b3*v1o; 

% store inputs

v1o=v1; % save input 2 sample ago x[n-3]=x[n-2]

v2o=v2; % save input 1 sample ago x[n-2]=x[n-1]

v3o=v3; % save current input x[n-1]=x[n]


end


y[n] 
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0
x n[ ] + b

1
x n "1[ ] + b

2
x n " 2[ ] + b

3
x n " 3[ ]

unit delay 
x[n-1] 
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0
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b
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! 

b
2
x n " 2[ ]

unit delay 
x[n-3] 

! 

b
3

+ 
! 

b
3
x n " 3[ ]

v1o 
v1 v2 

Optimize 
Use better structures 
Add feedforward (IIR) 
(store outputs and add to difference eqn ) 



+

iterative implementation

(FIR) transpose form


! 

y n[ ] = b
0
x n[ ] + b

1
x n "1[ ] + b

2
x n " 2[ ] + b

3
x n " 3[ ]

x[n] 

% setup input 
fs=8192;

t=0:1/fs:4;

x=cos(2*pi*(8192/2/4)/2*t.^2);


+ v1 %%%%%%% v3 
unit delay +% filter coefficients (4 pt averager) unit delay + +v2 

unit delay 
+ 

b0=0.25;b1=0.25;b2=0.25;b3=0.25; 

%transpose form

v3=0; %setup storage for past combos

v2=0;

v1=0;


for i=1:length(x); %this would be an infinite loop for uC 

% calculate output

xs=x(i);  %take a sample (A/D)

y2(i)=b0*xs+v1; %b0*x[n]+(b1*x[n-1]+b2*x[n-2]+b3*x[n-3])


% store combos

 v1=b1*xs+v2; %b1*x[n]+(b2*x[n-1]+x3*x[n-2])

v2=b2*xs+v3; %b2*x[n]+x3*x[n-1]

v3=b3*xs; %b3*x[n]


end 

Direct Form versus Transposed Form implementations; in the former, input samples are buffered (i.e. effectively move
 through a delay line) whereas in the Transpose version, partial sums are stored and propagated. Although the 
theoretical number of computations is often nominally the same, these differences will often show up in word lengths 
required, control logic, pipeline stages, etc. -http://syndicated.synplicity.com/Q207/dsp.html 
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b
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b
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b
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-http://syndicated.synplicity.com/Q207/dsp.html


FFT Windows


Content removed due to copyright restrictions. 
Text from LDS Application Note AN014, "Understanding FFT Windows." (2003)



Integer # of cycles 

n=0:255 
x=cos(2*pi/16*n) 
y=fftshift(abs(fft(x))/256); 

Non-integer # of cycles 
n=0:255 
x=cos(2*pi/14*n) 
y=fftshift(abs(fft(x))/256); 

Note: fft(x) for freq response 
fft(x)/L for spectrum 



Integer # of cycles

Continuous/periodic


Non-integer # of cycles 
Discontinuity has lots of freq. 
leakage 



Sampled time frame Spectrum equivalent to convolving 
equivalent to multiplying periodic signal’s spectrum (spikes) 
signal by a rectangular by a spectrum rectangular 
(boxcar) window. window (sinc-like). Sinc’s sidelobes 

pick up extraneous frequency 
contributions. 



Sampled time frame Spectrum equivalent to convolving 
equivalent to multiplying periodic signal’s spectrum (spikes) 
signal by a rectangular by a spectrum rectangular 
(boxcar) window. window (sinc-like). Sinc’s sidelobes 

pick up extraneous frequency 
contributions. 



Padding is also windowing


Integer # of cycles 
Continuous/periodic 

padded integer# of cycles 
discontinuous 

Padding adds more bins (frequency samples), but introduces

leakage, and doesn’t increase real resolution

(resolution = highest freq.

still defined by sampling rate, not record length)


! 

ˆ " = #



Soln: Use other windows to make finite sampled 
signal look periodic and continuous in time frame. 
Try to reduce window’s sidelobe’s to reduce picking up 
other frequency contributions. 

Hanning window




Soln: Use other windows to make finite sampled 
signal look periodic and continuous in time frame. 
Try to reduce window’s sidelobes to reduce picking up 
other frequency contributions. 

Hanning window 

wider mainlobe than boxcar 
But smaller sidelobes 



Soln: Use other windows to make finite sampled 
signal look periodic and continuous in time frame. 
Try to reduce window’s sidelobes to reduce picking up 
other frequency contributions. 

Hanning windowed cosine 
Now signal looks periodic 
in time frame 

w2=window(@hann,256); 
x=cos(2*pi/14*n); 
x2=x.*w2'; 
y=fftshift(abs(fft(x2))*2/256)) 

need to account for window attenuation 



Soln: Use other windows to make finite sampled 
signal look periodic and continuous in time frame. 
Try to reduce window’s sidelobe’s to reduce picking up 
other frequency contributions. 

Hanning windowed cosine 
Now signal looks periodic 
in time frame 

less frequency resolution 
(wider main lobe) 

but better amplitude (?) 
(smaller side lobes) 



! 

x[n] =10cos(2" /16 # n) + 5cos(2" /7.5 # n)

Boxcar 
greater frequency resolution 
(smaller main lobe) 
but worse amplitude 
(smaller side lobes) 

Hanning 
less frequency resolution 
(wider main lobe) 
but better amplitude 
(smaller side lobes) 



Trade off between 
frequency resolution 
(main lobe width) 
and leakage 
(side lobes) 



Content removed due to copyright restrictions.
Table and graphs from LDS Application Note AN014, "Understanding FFT Windows." (2003) 



Text removed due to copyright restrictions. Description of advantages and preferred applications of common windowing types.
From National Semiconductor website "Windowing: Optimizing FFTs Using Window Functions," http://zone.ni.com/devzone/cda/tut/p/id/4844.

http://zone.ni.com/devzone/cda/tut/p/id/4844


WINDOW(@WNAME,N) returns an N-point window of type specified 
by the function handle @WNAME in a column vector. @WNAME can 
be any valid window function name, for example: 

@bartlett - Bartlett window.

@barthannwin - Modified Bartlett-Hanning window.

@blackman - Blackman window.

@blackmanharris - Minimum 4-term Blackman-Harris window.

@bohmanwin - Bohman window.

@chebwin - Chebyshev window.

@flattopwin - Flat Top window.

@gausswin - Gaussian window.

@hamming - Hamming window.

@hann - Hann window.

@kaiser - Kaiser window.

@nuttallwin - Nuttall defined minimum 4-term Blackman-Harris window.

@parzenwin - Parzen (de la Valle-Poussin) window.

@rectwin - Rectangular window.

@tukeywin - Tukey window.

@triang - Triangular window.




  

Cepstrum 

Voice = vocal tract * periodic excitation (vocal cords)) 

y[n]=h[n]*x[n] 
fft 
Y[n]=H[n]X[n] 

log(Y[k])=log(H[k])+log(X[k]) 
low freq  high freq 

ifft 
quefrencies 

Separate out system and signal. (remove user effects) 

Uses homographic filtering (use log to separate product 
and fft to look at slow and fast variations, then filter) 

( homographic filtering also used to separate albedo vs. lighting) 



The transfer function usually appears as a steep slant at 
the beginning of the plot. 
The excitation appears as periodic peaks occurring after 
around 5ms. 
The female voice has peaks occurring more often then in 
the male’s cepstrum. This is due to the higher pitch of a 
female voice. 

http://cnx.org/content/m12469/latest/ 
Courtesy of Brian Van Osdol. (CC attribution license) 

http://cnx.org/content/m12469/latest/



