
Feature-Based Analysis of Haydn String Quartets

Lawson Wong

5/15/12

1 Introduction

When listening to multi-movement works, amateur listeners have almost certainly asked the
following situation1: Am I still listening to the same movement? If not, which movement is
being played now? Is this still the same work? These questions motivate the key questions in
this study. First, is it possible to distinguish between different movements of the same multi-

movement work? Further, can one identify which movement an excerpt comes from? That is,
for the four-movement works that will be studied here, are there defining characteristics that
distinguish between movement types? Second, given previously-heard excerpts of movements
belonging to the same multi-movement work, does the current excerpt belong to the same
work? More informally, if I listened attentively to the first movement and then dozed off
in the second and third, can I identify, when waking up in the fourth movement, that I am
still listening to the same work? Through several feature-based classification tasks, I have
found that movement type classification is reasonably achievable with a slight modification
in the problem formulation. However, identification of a movement using features from other
movements within the same multi-movement work is more challenging.

To perform the above analysis, a corpus of multi-movement works is necessary. The
music21 corpus2 contains many works, in particular many string quartets by Haydn, Mozart,
Beethoven, and other composers. String quartets are a good initial object of study due to
their well-defined four-movement structure (with some exceptions), as will be seen in the
study of movement type classification. For this study, I will look at Haydn’s string quartets.
Haydn wrote 68 string quartets, and in doing so essentially defined the structure of the
classical string quartet. I will use a feature-based approach by extracting features from a
subset of Haydn’s string quartets, using the feature extraction classes of music21 [2]. Details
on the dataset will be described next, followed by discussion of the classification tasks.

1 This has certainly happened to myself for an embarrassingly many number of times.
2 http://mit.edu/music21/doc/html/referenceCorpus.html

1

http://mit.edu/music21/doc/html/referenceCorpus.html

Movement 1 Movement 2 Movement 3 Movement 4 Total
Frag-4
Frag-16

378
90

192
44

225
53

501
122

1296
309

2 Description of data

To ensure a feasible study for the given time constraints, I used a small dataset of 10 Haydn
string quartets. The list of works is in the appendix. Haydn composed string quartets
throughout his life, resulting in many opuses of string quartets, usually six at a time. I took
10 six-quartet opuses and used the first string quartet in each opus for my dataset, spanning
the years 1771-1799. Haydn in fact wrote two opuses earlier in 1762-1765, but these are
five-movement works and so were not included in the corpus. I will return to opus 1 later.

The music21 features include many of the over 100 features from jSymbolic [3], as well as
some new features. I chose a relevant subset of 56 features for this study. The features cover
aspects from melody (e.g., interval histograms), pitch (e.g., pitch prevalence and histograms),
and rhythm (e.g., note durations, time signature). The full list of features used can be found
in the appendix. Since many of these features have vector values, when fully expanded this
gives 365 numbers in total for each excerpt analyzed. To more accurately model the majority
of listeners who do not have cannot recognize absolute pitch, I also considered removing 5
features that require this ability (e.g., pitch class histograms). The omitted features are also
listed in the appendix. This ‘NoPitch’ setting gives a total of 190 numbers for each excerpt.

Since there are so many features compared to the amount of data in the corpus (there
are only 10 pieces of each movement type!), it was necessary to create more data points.
Moreover, since many of the features are quite local (intervals, note durations), it seems
wasteful to extract features from an entire movement when its representational power does
not go beyond a few measures. Hence each movement was split into non-overlapping segments
of length 4 and 16 (two parameter settings); leftover measures were discarded. This approach
gave a more reasonable dataset size as shown by the numbers in Table 1. Notice that
although there are 10 pieces of each movement type, movement 4 has a tendency to be
longer and hence the greater amount of data. (Because of this, movement 4 is the majority
baseline class for movement type classification.) Although there are still more features than
desirable, I attempt to avoid overfitting by using appropriate classification techniques. The
interpretation of this approach is in the spirit of ensemble of weak learners: when predicting
for a new excerpt, features of short segments can be extracted to give a ‘weak’ prediction,
then predictions from multiple segments can be combined to vote for a ‘strong’ prediction.

Table 1: Number of data points (per movement) in corpus.

2

3 Movement type classification

The first task I studied was one can use the features described above to determine which
movement an excerpt came from. From a machine learning standpoint, this is essentially a
multi-class classification problem, with one class for each of the four movements.

There are many possible classifiers for multi-class classification, including schemes for
converting binary classifiers into a multi-class setting. For the tasks in this study, I used k­
nearest-neighbors (k-NN) and random forests, each with three different parameter settings.
Both classifiers are inherently multi-class, and have been implemented in the Python package
Scikit-learn [4]. k-NN is a simple baseline approach that classifies a given data point to
the majority class of its k nearest neighbors (in feature space with Euclidean metric); ties
are broken randomly. k = 3, 5, 10 were used (3NN, 5NN, 10NN respectively in tables below).

Random forests (RF) [1] is a relatively recent classification method that combines the
flexibility of decision trees with the robustness of ensemble methods (‘weak’ learners that
vote to give a ‘strong’ learner). A RF consists of a collection of decision trees (hence forest),
but randomized such that each decision tree is built with a small random subset of the
features. To avoid overfitting, each tree in the forest is usually quite shallow, and hence
each tree’s performance is typically worse than a single decision tree fit using all available
features. However, because many ‘weak’ trees are combined by voting, specific errors tend
to be averaged out, while generalization performance tends to be significantly better due to
lower overall overfitting (precise characterization of this empirical finding is still an active
area of research). For this study, I used three parameter settings: 50 depth-10 trees (RF10),
100 depth-5 trees (RF5), and 200 depth-3 trees (RF3).

A leave-one-out cross-validation (LOOCV) scheme was used. Each hold-out fold consisted
of all movements of a string quartet. For example, opus17no1 was removed, then each
classifier was trained on the remaining 9 string quartets; then their performance was tested
on opus17no1 features. This is then repeated for each of the 10 string quartets. Average
results per movement and overall are reported in Table 2. Random forests (especially RF10)
performs quite well, although it is significantly worse at predicting movements 2 and 3.

Movement 3NN 5NN 10NN RF10 RF5 RF3 Majority
1 0.66 0.65 0.70 0.87 0.79 0.58 0
2 0.21 0.17 0.13 0.20 0.06 0.01 0
3 0.12 0.16 0.14 0.61 0.58 0.21 0
4 0.49 0.51 0.56 0.79 0.84 0.88 1

Average 0.37 0.37 0.38 0.62 0.56 0.42 0.39

Table 2: LOOCV performance for 4-class movement type classification.

3

Movement Frag4-NoPitch Frag4-AllFeats Frag16-NoPitch Frag16-AllFeats
1
2
3
4

0.87
0.20
0.61
0.79

0.80
0.19
0.50
0.79

0.84
0.29
0.50
0.82

0.78
0.34
0.52
0.81

Average 0.62 0.57 0.61 0.61

Table 3: LOOCV performance for RF10 across different parameter settings.

Table 3 shows LOOCV performance of the RF10 across different parameter settings.
Somewhat surprisingly, the NoPitch setting tends to work better (most likely because it
does not overfit as much), and the use of either segment length setting (4- or 16-measure)
does not affect the task much. Since 4-measure segments without pitch features achieves
slightly better average performance, only the results for these parameter settings are shown
in the previous table as well as in results below.

The results on the 4-class classification task given in Table 2 were modest (and sig­
nificantly beat the baseline majority and k-NN classifiers), but the poor performance on
movements 2 and 3 were unsatisfactory. A closer look at the errors reveal the main source
of confusion. Table 4 shows the confusion matrix of the RF10 classifier. This is the 4 × 4
matrix of (true class, predicted class) instances. For example, the entry in row 2, column 3
shows that there were 91 data points from movement 2 (true class 2) that were incorrectly
predicted as belonging to movement 3 (predicted class 3). Since there are only 192 data
points in movement 2 (see Table 1), this is a major souce of errors! In particular, this error
type is more prevalent that correctly classifying a movement 2 excerpt as class 2. Movement
3 excerpts also suffer from a similar problem, though not as profound.

The confusion matrix suggests that there is significant confusion between movements 2
and 3, which is intuitive since inner movements tend to be less strict than the outer ones. To
explore this further, I considered lumping classes 2 and 3 together. Although this does not
solve the initial problem, perhaps there is no clustering-based reason to separate the two.

True Predicted class
class 1 2 3 4
1 308 1 0 69
2 24 36 91 41
3 0 54 136 35
4 39 22 7 433

Table 4: Confusion matrix for RF10 on 4-class movement type classification.

4

Movement 3NN 5NN 10NN RF10 RF5 RF3 Majority
1 0.64 0.63 0.66 0.86 0.81 0.61 0
2 0.40 0.47 0.40 0.77 0.72 0.71 0
3 0.31 0.38 0.40 0.90 0.90 0.90 0
4 0.49 0.48 0.50 0.79 0.83 0.88 1

Average 0.46 0.49 0.49 0.83 0.81 0.78 0.39

Table 5: LOOCV performance for 3-class movement type classification.

Movement 3NN 5NN 10NN RF10 RF5 RF3 Majority
4-class 0.37 0.37 0.38 0.62 0.56 0.42 0.39
3-class 0.46 0.49 0.49 0.83 0.81 0.78 0.39

Improvement 0.09 0.12 0.11 0.19 0.25 0.36 0

Table 6: Performance comparison between 4-class (Table 2) and 3-class (Table 5).

Performing the new 3-class classification task (with a new combined 2/3 class) shows
significantly improved performance as expected. Performance for movements 2 and 3 have
increased greatly (by construction), as seen in Table 5, while performance for the outer
movements is essentially unchanged. The improvement in average performance for each
classifier is shown in Table 6. Interestingly, although the 2/3 class combines two previous
classes, the baseline majority classifier still outputs class 4 and hence has no improvement.
The numbers in the new confusion matrix in Table 7 show that the new RF10 classifier has
lumped the movement 2 and 3 numbers together, with little improvement for the others.

Although the results of the 3-class classification task are mostly expected, the new perfor­
mance figures are much more satisfactory and suggest that the movement-type classification
task is feasible with a feature-based approach. The only compromise one must make is that
the inner movements tend to be quite similar and even mixed, so it is inherently difficult to
separate the two using the currently used features. There may be other features that can
distinguish the two; for example, the tempo marking and pace of the second movement tends
to be slower than the rest (hence usually referred to as the ‘slow’ movement).

True Predicted class
class 1 2/3 4
1 308 2 68
2/3 24 333 60
4 42 29 430

Table 7: Confusion matrix for RF10 on 3-class movement type classification.

5

4 Further explorations

One advantage of using random forests is that, by comparing the individual decision tree
performance with the features chosen for that tree, a measure of feature importance can be
found. Below are the 10 most important features identified by RF10 (this list is essentially
the same as that found by all forests across all parameter settings):

Initial_Time_Signature_0
Triple_Meter
Initial_Time_Signature_1
Compound_Or_Simple_Meter
Minimum_Note_Duration
Tonal_Certainty
Maximum_Note_Duration
Pitch_Variety
Staccato_Incidence
Unique_Note_Quarter_Lengths

It is immediately clear that the classifiers generally distinguish movements by their time
signature and meter, and to some extent their rhythm (note duration) and pitch variety.
A depth-3 decision tree using only (a subset of) these 10 features is shown in Figure 1
and illustrates the choices made to distinguish between the three movement types. It is
interesting to see that, for example, class 2/3 tends to be triple meter (upper numeral is 3).

Initial_Time_Signature_0 <= 2.5000
error = 0.661962
samples = 1296

value = [378. 417. 501.]

Minimum_Note_Duration <= 0.1042
error = 0.379728
samples = 566

value = [56. 74. 436.]

Initial_Time_Signature_0 <= 3.5000
error = 0.576735
samples = 730

value = [322. 343. 65.]

Pitch_Variety <= 15.5000
error = 0.312765

samples = 67
value = [0. 54. 13.]

Initial_Time_Signature_1 <= 3.0000
error = 0.267212
samples = 499

value = [56. 20. 423.]

error = 0.1528
samples = 12

value = [0. 1. 11.]

error = 0.0701
samples = 55

value = [0. 53. 2.]

error = 0.4984
samples = 106

value = [56. 0. 50.]

error = 0.0966
samples = 393

value = [0. 20. 373.]

error = 0.0000
samples = 223

value = [0. 223. 0.]

Initial_Time_Signature_0 <= 5.0000
error = 0.52418
samples = 507

value = [322. 120. 65.]

error = 0.2730
samples = 381

value = [322. 22. 37.]

error = 0.3457
samples = 126

value = [0. 98. 28.]

Figure 1: Depth-3 decision tree trained using the 10 most important features. The first line
in each inner node indicates the choice at each node, going to the left child if true and right
if false. The last line in each node indicates the number of data points in each class at that
node before the node’s splitting decision (if any) is made.

6

Work Movement 1
1 2/3 4

Movement 2
1 2/3 4

Movement 3
1 2/3 4

Movement 4
1 2/3 4

Movement 5
1 2/3 4

opus1-no0
opus1-no1
opus1-no2
opus1-no3
opus1-no4
opus1-no6

1
1
1
1
1
1

1
1
1
1
1
1

1
.1 .7 .2
.5 .5

1
.9 .1

.3 .7

1
1
1
1
1
1

1
1
1

1
1
1

Table 8: Prediction (proportion of segment votes) of movement type by RF10 on Opus 1.

Another interesting task that could be performed with the available features and classi­
fiers is the characterization of non-standard string quartets. As mentioned earlier, Haydn
wrote a set of 6 five-movement string quartets (Opus 1) early in his life around 1762. Since
they have five movements, it is interesting to see what ‘type’ they belong to, of the three
types that have been identified in the previous section. Features were extracted in a similar
fashion for all six string quartets, and their movement type was predicted by RF10. The
proportion of votes (over four-measure segments in each movement) are shown in Table 8.

The results show that each movement, apart from those in movement 3, are remarkably
consistent, even across different string quartets in the same opus. Looking at the scores,
movements 2 and 4 tend to be denoted as minuets, hence have triple meter and are all
classified as class 2/3. Interesting, the first movement usually also had triple meter, hence
also giving a class 2/3 prediction. It appears that the usual common time/ cut time signature
of the first movement was a later development. Movement 4, similar to later eras, was usually
in 2/4 time. Movement 3 has the greatest uncertainty, and perhaps can be seen as the ‘extra’
movement of the four (with respect to the later standard four-movement structure).

5 String quartet identification

The second task of string quartet identification was also attempted, but time constraints
will not allow a detailed description (sorry!). Since there are 10 classes for our dataset (and
more for the Haydn corpus), I framed this task as a simpler binary classification problem
of identifying movements between two string quartets. Still, this was a challenging task
for the feature-based approach described above, especially if without pitch features. In this
scenario, all features essentially have performance similar to the majority / random baseline,
indicating that the features do not distinguish individual string quartets well. Including
pitch features significantly improves the performance overall, since they essentially identify
the key, which is generally different between pairs of string quartets.

7

6 Conclusion

I have explored the use of music21 features in the two tasks related to the analysis of string
quartets. Movement-type classification performance was quite satisfactory using random
forest classifiers, although it was difficult to distinguish between the inner movements. Using
the feature importances determined by these classifiers, I found that time signature and
rhythmic / pitch variety features tend to distinguish movement types. This information was
also used to analyze the non-standard five-movement string quartets of Haydn’s Opus 1,
suggesting some significant differences in their structure compared to his later works that
defined the classical string quartet structure. The same approach was also attempted on
the task of distinguishing between excerpts of different string quartets, but without much
success if absolute pitch-based features (that identified the key) were not included.

References

[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[2] Michael Scott Cuthbert, Christopher Ariza, and Lisa Friedland. Feature extraction and
machine learning on symbolic music using the music21 toolkit. In Anssi Klapuri and
Colby Leider, editors, ISMIR, pages 387–392. University of Miami, 2011.

[3] Cory McKay. Automatic Music Classification with jMIR. PhD thesis, McGill University,
Canada, 2010.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon­
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python .
Journal of Machine Learning Research, 12:2825–2830, 2011.

8

A Corpus (Haydn four-movement string quartets)

opus17no1
opus20no1
opus33no1
opus50no1
opus54no1
opus55no1
opus64no1
opus71no1
opus76no1
opus77no1

B Features used

* = from music21.native, otherwise from jSymbolic ([3]); + = not used in NoPitch setting

*K 1 TonalCertainty
M 1 MelodicIntervalHistogramFeature
M 2 AverageMelodicIntervalFeature
M 3 MostCommonMelodicIntervalFeature
M 4 DistanceBetweenMostCommonMelodicIntervalsFeat
M 5 MostCommonMelodicIntervalPrevalenceFeature
M 6 RelativeStrengthOfMostCommonIntervalsFeature
M 7 NumberOfCommonMelodicIntervalsFeature
M 8 AmountOfArpeggiationFeature
M 9 RepeatedNotesFeature
M 10 ChromaticMotionFeature
M 11 StepwiseMotionFeature
M 12 MelodicThirdsFeature
M 13 MelodicFifthsFeature
M 14 MelodicTritonesFeature
M 15 MelodicOctavesFeature
M 17 DirectionOfMotionFeature
M 18 DurationOfMelodicArcsFeature
M 19 SizeOfMelodicArcsFeature
P 1 MostCommonPitchPrevalenceFeature

ure

9

P 2 MostCommonPitchClassPrevalenceFeature
P 3 RelativeStrengthOfTopPitchesFeature
P 4 RelativeStrengthOfTopPitchClassesFeature
P 5 IntervalBetweenStrongestPitchesFeature
P 6 IntervalBetweenStrongestPitchClassesFeature
P 7 NumberOfCommonPitchesFeature
P 8 PitchVarietyFeature
P 9 PitchClassVarietyFeature
P 10 RangeFeature

+P 11 MostCommonPitchFeature
P 12 PrimaryRegisterFeature
P 13 ImportanceOfBassRegisterFeature
P 14 ImportanceOfMiddleRegisterFeature
P 15 ImportanceOfHighRegisterFeature

+P 16 MostCommonPitchClassFeature
+P 19 BasicPitchHistogramFeature
+P 20 PitchClassDistributionFeature
+P 21 FifthsPitchHistogramFeature
P 22 QualityFeature

*Q 11 UniqueNoteQuarterLengths
*Q 12 MostCommonNoteQuarterLength
*Q 13 MostCommonNoteQuarterLengthPrevalence
*Q 14 RangeOfNoteQuarterLengths
R 15 NoteDensityFeature
R 17 AverageNoteDurationFeature
R 19 MaximumNoteDurationFeature
R 20 MinimumNoteDurationFeature
R 21 StaccatoIncidenceFeature
R 22 AverageTimeBetweenAttacksFeature
R 23 VariabilityOfTimeBetweenAttacksFeature
R 24 AverageTimeBetweenAttacksForEachVoiceFeature
R 25 AverageVariabilityOfTimeBetweenAttacksForEachVoiceFeature
R 30 InitialTempoFeature
R 31 InitialTimeSignatureFeature
R 32 CompoundOrSimpleMeterFeature
R 33 TripleMeterFeature

10

MIT OpenCourseWare
http://ocw.mit.edu

21M.269 Studies in Western Music History: Quantitative
and Computational Approaches to Music History
 Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Introduction
	Description of data
	Movement type classification
	Further explorations
	String quartet identification
	Conclusion
	Corpus (Haydn four-movement string quartets)
	Features used

