Using Tarsos and music21 to Analyze Presidential Speech Patterns
MIT student

Abstract

1 believed that over the course of their first term in office, presidents would increase the size of their
pitch range, and that their range would shift towards lower frequencies. I found no strong correlation
suggesting that their range increased in size, but there was there a trend suggesting that their range

decreased in frequency.

Introduction
Tarsos is a program for analyzing Music Information Retrieval (MIR) features of music in a culture-
independent way[3]. Specifically, it can analyze an mp3 file, extract a pitch histogram, and calculate

things such as the best fit “scale” that is being used (using peak finding algorithms).

I was interested in how this software might be applied in less conventional ways. I recently took a class
on public speaking, and one of the things we examined was the actual pitches that we were using when
we spoke. Thinking of these together, I became curious about the speech patterns of various presidents

during their first term in office.

While I have obviously never been the President of the United States, I feel that perhaps I can relate to
what that first term must feel like. In my four years of college, I entered feeling ready and that people
expected a lot from me. I soon realized that I wasn't ready at all, but that's okay because I had some
time to get there. I matured a lot, and grew as a speaker, a leader, and as a student. I became more
experienced and more confident at handling the various situations that arise in college. Similarly, I'm

1

sure that the President feels ready to take office by the time he is elected. During the first years, he
begins to realize exactly what the role entails. Towards the end, he is more confident in his position and
in his stances, and he is ready to handle any of the various crises that arise during a four year term as

president.

I thought that because the president would gain much experience (and confidence) speaking over the
course of his presidency, that he would become monotonically less monotonous in his speech patterns.
Specifically, I believed that the range of pitches that he employs in his speeches would increase in size
as he becomes more confident and perhaps dramatic. Additionally, I hypothesized that as his initial
excitement faded into confident experience, he would use more lower pitches and his pitch range would

shift downwards.

Methodology

The first task was finding recordings to use of various presidential speeches. Fortunately, I found a
large database online that contains recordings of presidential speeches going back to President
Roosevelt[2]. Some presidents had only a few recordings relative to others though, so I had to decide
how to choose speeches that would be comparable from president to president, and also spread fairly
evenly throughout their first term. I decided to use the State of the Union Addresses because every
president back to Kennedy has a recorded speech given every year after being sworn in for their first
term. They all occurred in the same time of year, in the same location, to the same audience. They were
also all roughly the same duration. The recording technologies for each president was roughly the same
throughout his term, and I only compared each recorded State of the Union Address with those of the
same president. [also found Tarsos to be relatively robust to noise caused by older recording

techniques.

After downloading the relevant files, I ran them through the Tarsos analysis program and exported the
pitch and pitch class histograms as CSV files. I experimented with different settings on the first set of
recordings in order to find one set of options' that gave a near-optimal scale description for each of
those three recordings. Once I found these options, I used the same set of options for each file and also

extracted a Scala[4] file.

Finally, I used music21[5] as well as some of my own code (see Appendix B) to analyze the data and
extract information about range, most common pitches, average interval between Scala pitch classes,
etc. Of the various metrics that I analyzed, I decided that the most relevant were the highest and lowest

used pitch, the average pitch, and the range (highest minus lowest pitch).

For the highest, lowest, and average pitch, I filtered the pitch histogram produced by Tarsos by number
of annotations to account for noise that may have been produced by the recording technology or by the

audience. I used threshold values of 0.33% of the number of annotations for each speech. Empirically, I
found that this threshold kept as much of the vocal range as possible while eliminating most of the

frequencies caused by the audience.

Results and Analysis
The raw data for each president for each metric is in Appendix A. I was more interested in how these

features were changing over time.

1 The settings were: Window size: 15; Threshold: 10; Time: 100; Cents: 15; Quality: 0

3

Table 1 shows how the range changed from speech to speech for each president sampled.

Range Change over Time

Interval 1 Interval 2 Overall
G.W. Bush 66 84 -150
Clinton 90 141 51
H.W. Bush 249 -396 147
Reagan 48 51 3
Carter 81 9 90
Ford -45 93 48
Nixon -792 -87 -879
Johnson 243 81 162
Kennedy 24 21 3

Table 1: Change over time of Pitch Range (in cents above 8.176 Hz)

Between the 1% and 2™ speech, only 44% of presidents sampled increased the size of their range. Going
from the 2™ to the 3™ speech, again 44% of presidents sampled increased the size of their range. Over
the course of their entire presidency (between their 1% and 3™ speech), again only 44% of them
increased the size of their range. As consistent as these numbers are, I believe that they show that there
is no strong trend showing that the size of the pitch range of presidents increases over the course of

their first term in office.

Highest Pitch Change over Time

Interval 1 Interval 2 Overall
G.W. Bush 615 366 -249
Clinton 53 141 120
H.W. Bush 183 -201 18
Reagan 12 -54 -42
Carter 90 48 -138
Ford 93 99 6
Nixon -1050 105 945
Johnson -120 150 30
Kennedy 27 -18 -45

Table 2: Change over time of Highest Pitch used (in cents above 8.176 Hz)

Tables 2 shows how the highest pitch used in each speech varied over time from speech to speech.

Between the 1* and 2™ speech, 78% of presidents sampled decreased their highest pitch used. Going
from the 2™ to the 3" speech, only 44% of presidents sampled decreased the size of their highest pitch
used. Over the course of their entire presidency (between their 1% and 3™ speech), 56% of them
decreased their highest pitch used. I believe that these numbers show that there is no strong trend
showing that the highest pitch used of presidents decreases over the course of their first term in office,

although it is interesting to notice patterns emerging over smaller lengths of time.

Table 3 shows how the lowest pitch used in each speech varied over time from speech to speech

Lowest Pitch Change over Time

Interval 1 Interval 2 Overall
G.W. Bush -549 450 -95
Clinton 69 0 69
H.W. Bush 66 195 129
Reagan 36 3 39
Carter 171 57 -228
Ford -48 6 -42
Nixon -258 192 -66
Johnson -363 231 -132
Kennedy 3 39 42

Table 3: Change over time of average Pitch used (in cents above 8.176 Hz)

Between the 1* and 2™ speech, 89% of presidents sampled decreased their lowest pitch used. Going
from the 2™ to the 3™ speech, only 44% of presidents sampled did not increase the size of their lowest
pitch used. Over the course of their entire presidency (between their 1% and 3™ speech), 78% of them
decreased their lowest pitch used. I believe that these numbers might reveal a trend towards the range

of pitches used decreasing in frequency over time, or at least that the lower pitches get lower.

Table 4 shows how the average pitch used in each speech varied over time from speech to speech.

Average Pitch Change over Time

Interval 1 Interval 2 Overall
G.W. Bush -590.1 450.7 -139.4
Clinton 7.3 113.7 121.0
H.W. Bush -28.2 16.2 -12.0
Reagan -25.2 -24.7 -49.9
Carter -119.0 -63.4 -182.4
Ford -77.8 55.9 219
Nixon -953.8 171.7 -782.1
Johnson -170.7 119.5 -51.2
Kennedy -14.5 17.5 -32.0

Table 4: Change over time of Average Pitch used (in cents above 8.176)

Between the 1* and 2™ speech, 89% of presidents sampled decreased their average pitch used. Going
from the 2™ to the 3™ speech, only 33% of presidents sampled decreased the size of their average pitch
used. Over the course of their entire presidency (between their 1* and 3™ speech), 89% of them
decreased their average pitch used. I believe that these numbers (especially in light of the data for the
lowest pitches used) suggest that the pitch range of presidents decreases in frequency over the course of

their first term in office.

Previous and Future Work
While no one has attempted to use automatic pitch annotation software to analyze the speech patterns

of various presidents before, there has been other work into analyzing speech pitch patterns and also

speech synthesis. Atal et. al. used an alternative representation of a speech and attempted to synthesize
speech by analyzing the waveforms of other speeches[1]. Using Tarsos, it might be possible to recreate
speeches through careful selection and application of the Scala files that are generated. Another next
step could be to examine the pitch contours within a particular speech and see how those pitch contours
vary with time. It would also be interesting to examine the intentional use of pauses within each speech
over time. One could also determine if there is a correlation between the rate of speaking and the

average pitch or pitch range used.

Conclusions

I made two hypotheses. First was that the pitch range of a president increases in size over the course of
his first term in office. I believe that the data shows that there is no strong trend to suggest this. Second,
I hypothesized that the pitch range of a president decreases in frequency over the course of his first

term in office. I believe that the data does, in fact, support this hypothesis.

Change over Time Range Size Change over Time

Average Pitch Lowest Pitch 5w Bush 150
G: ¥ Bush 3 99 Glinton 51
Clinton I 690 H.W. Bush 147
H.W. Bush -12.0 129.0 Reagan i3
Reagan -49.9 -390 Carter 90
Carter 182.4 2280 Ford 48
Ford -21.9 -42.0 Nixon -879
Nixon -782.1 -66.0 Johnson 162
Johnson -51.2 -132.0 Kennedy -3
Kennedy -32.0 -42.0 Table 6: Summarized results showing that

there is no strong trend of increasing the size

Table 5: Summarized results supporting the hypothesis of the range over the first term of presidency

that the pitch frequency of the range decreases

References
[1] Atal, B. S. "Speech Analysis and Synthesis by Linear Prediction of the Speech Wave." The Journal
of the Acoustical Society of America 47.1A (1970): 637-55. Print.

[2] Presidential Speech Archive. The Miller Center at the University of Virginia. Web. 9 May 2012.
<http://millercenter.org/president/speeches>.

[3] Six, Joren, and Olmo Cornelis. Tarsos - a Platform to Explore Pitch Scales in Non-Western and
Western Music. Proceedings of the 12th International Society for Music Information Retrieval
Conference, ISMIR 2011. International Society for Music Information Retrieval. Print.

[4] Op De Coul, Manuel. "Scala Scale File Format." Scala Scale File (.scl) Format. 2001. Web. 9 May
2012. <http://www.huygens-fokker.org/scala/scl format.html>.

[5] Cuthbert, Michael Scott and Christopher Ariza, “music21: A Toolkit for Computer-
Aided Musicology and Symbolic Music Data,” Proceedings of the International Symposium
on Music Information Retrieval 11 (2010), pp. 637-42.

http://millercenter.org/president/speeches
http://www.huygens-fokker.org/scala/scl_format.html

Appendix A — Raw Data

Range (0.33% threshold)
Speech 1 Speech 2 Speech 3

G.W. Bush 468 402 318
Clinton 516 426 567
H.W. Bush 480 729 333
Reagan 462 510 455
Carter 333 414 423
Ford 363 318 411
Nixon 1515 723 636
Johnson 159 402 321
Kennedy 399 375 396

Table 7: Range of each Speech (in cents above 8.176 Hz). Only accepted pitches
with more annotations than .0033 times the total number of annotations

Highest Pitch (0.33% threshold)
Speech 1 Speech 2 Speech 3

G.W. Bush 5411 4796 5162
Clinton 5618 5597 5738
H.W. Bush 5120 5303 5102
Reagan 5072 5084 5030
Carter 5906 5816 5768
Ford 5708 5615 5714
Nixon 6155 5105 5210
Johnson 5552 5432 5582
Kennedy 5609 5582 5564

Table 8: Highest Pitch Frequency per Speech (in cents above 8.176 Hz)

10

Lowest Pitch (0.33% threshold)
Speech 1 Speech 2 Speech 3

G.W. Bush 4943 4394 4844
Clinton 5102 5171 5171
H.W. Bush 4640 4574 4769
Reagan 4610 4574 4571
Carter 5573 5402 5345
Ford 5345 5297 5303
Nixon 4640 4382 4574
Johnson 5393 5030 5261
Kennedy 5210 5207 5168

Table 9: Lowest Pitch Frequency used per Speech (in cents above 8.176 Hz)

Average Pitch (0.33% threshold)
Speech 1 Speech 2 Speech 3

G.W. Bush 5158.7 4568.6 5019.3
Clinton 5375.3 5382.6 5496.3
H.W. Bush 4953.4 4925.2 4941.4
Reagan 4847.2 4822.0 4797.3
Carter 5752.6 5633.6 5570.2
Ford 5546.1 5468.3 5524.2
Nixon 5714.2 4760.4 4932.1
Johnson 5457.3 5286.6 5406.1
Kennedy 5418.6 5404.1 5386.6

Table 10: Average Pitch Frequency used per Speech (in cents above 8.176 Hz)

11

Appendix B — Analysis Code
from sys import stdout
from music21 import *
import numpy

defaultThreshold = 10

presidentToSpeechDates = {
'hwBush': ['1990 0131','1991 0129','1992 0128'],
'bush': ['2002_0129','2003 0128', 2004 0120,
'carter”: ['1978 0119,'1979 0123','1980 0123"],
'clinton": ['1994 0125','1995 0124','1996 0123"],
'ford": ['1975_0115','1976_0119','1977 _0112'],
johnson': ['1964 0108','1965 0104",'1966 _0112"],
'kennedy": ['1961 0130','1962 0111','1963 0114'],
'nixon": ['1970 0122','1971 0122','1972_0120"],
'reagan': ['1982 0126','1983 0125','1984 0125']

h

presidentToFolderName = {}

for president in presidentToSpeechDates.keys():
presidentToFolderName[president] = president

presidentToFolderName['hwBush'] = 'bush'’

paperKeys = ['average pitch_default', 'highest pitch default', \
'lowest pitch_default', 'range default']

def getAveragelnterval(presidentScala):

m

Returns the average interval in cents of the scala

m

return numpy.average([i.cents for i in presidentScala.getIntervalSequence()\

D

def getAverageCentsAboveTonic(presidentScala):

m

Returns the average cents above tonic for the scala

Could be interpereted as the middle of the scale

m

return numpy.average(presidentScala.getCents AboveTonic())

def getMostCommonPitchClass(annotationsToCents):

m

Returns the frequency in cents of the most common pitch class

m

return annotationsToCents[max(annotationsToCents.keys())]

12

def getMostCommonPitch(annotationsToCents):

m

Returns the frequency in cents of the most common pitch

m

return annotationsToCents[max(annotationsToCents.keys())]

def getAveragePitch(centsToAnnotations, threshold):

Returns the average pitch above a certain threshold
weighted by it's occurence

validPitches = [cent for cent in centsToAnnotations.items() if cent[1] >\
threshold]

pitches =[]

for (pitch, annotations) in validPitches:
pitches += [pitch] * annotations

return numpy.average(pitches)

def getHistograms(president, speechDate, directory=\
'/home/the8ball/Documents/term8/21M.269/final/):
Returns 4 histograms:
centsToAnnotations for pitch classes
centsToAnnotations for pitches
annotationsToCents for pitch classes
annotationsToCents for pitches
presidentPath = directory + president +'/' + 'spe_' + speechDate +' ' +\
president
myFiles = [open(presidentPath +' pitch_histogram.csv', 'r'), \
open(presidentPath +' pitch_class histogram.csv', '1')]
centsToAnnotations = {}
centsToAnnotationsClasses = {}
annotationsToCents = {}
annotationsToCentsClasses = {}
for line in myFiles[0]:
(cents, annotations) = line.split(';")
try:
cents = float(cents)
annotations = int(annotations)
centsToAnnotations[cents] = annotations
annotationsToCents[annotations] = cents
except:
#Key or Value can't be converted to a number. Probably means we've
reached the header
if cents !='Bin (cents)"

13

print "couldn't parse:", cents, annotations
pass
for line in myFiles[1]:
(cents, annotations) = line.split(';")
try:
cents = float(cents)
annotations = int(annotations)
centsToAnnotationsClasses[cents] = annotations
annotationsToCentsClasses[annotations] = cents
except:
#Key or Value can't be converted to a number. Probably means we've
reached the header
if cents !='Bin (cents)"
print "couldn't parse:", cents, annotations
return (centsToAnnotationsClasses, centsToAnnotations, \
annotationsToCentsClasses, annotationsToCents)

def getPresidentialScala(president, speechDate, directory=\
'/home/the8ball/Documents/term8/21M.269/final/'):

m

Returns a ScalaStorage object for this speech for this president

presidentPath = directory + president + '/ + 'spe '+ speechDate +' ' +\
president

return scala.parse(presidentPath + '.scl')

def generatePresidentialHistograms(threshold=defaultThreshold, \
printProgress=True):
Returns a dictionary from president last names to information regarding
their first 3 state of the union addresses
#Used for printing progress
progress =0
progressPerPresident = 1.0 / (len(presidentToFolderName.keys()) * 1.0)

presidential Analysis = {}
for (president, presidentFolderName) in presidentToFolderName.items():

if printProgress:
bars = int(progress * 78)
spaces = 78 - bars
stdout.write('|' + '="*bars + ' "*spaces + ')
stdout.flush()

speechDates = presidentToSpeechDates[president]
presidential Analysis[president] = {}

14

progressPerSpeech = progressPerPresident * (1.0 /\
(len(speechDates) * 1.0))

for 1 in xrange(len(speechDates)):
speechDate = speechDates][i]
speechName = 'state_of the union' + str(i+1)

#See the getHistograms function for the order of the histograms
histograms = getHistograms(presidentFolderName, speechDate)
thisScala = getPresidentialScala(presidentFolderName, speechDate)

presidential Analysis[president][speechName] = {
'date": speechDate,
'scala': thisScala,
'cents to annotations_classes': histograms[0],
'cents_to_annotations': histograms[1],
'annotations to cents_classes': histograms|[2],
'annotations_to_cents': histograms|3],
'average interval': getAveragelnterval(thisScala),
'average cents_above tonic': \
getAverageCentsAboveTonic(thisScala),
'most_common_pitch class': \
getMostCommonPitchClass(histograms[2]),
'most_common_pitch': getMostCommonPitch(histograms[3]),
'average pitch': \
getAveragePitch(histograms[1], threshold=threshold),
'average pitch_ class': \
getAveragePitch(histograms[0], threshold=threshold)
}

progress += progressPerSpeech

if printProgress:
bars = int(progress * 78)
spaces = 78 - bars
stdout.write('|' + '="*bars + ' "*spaces +'|')

stdout.flush()
if printProgress:
stdout.write('|' + '="*78 + ")
stdout.flush()

print 'Completed'
return presidential Analysis

def picklePresidentiallnfo(filename = 'analysis2.pkl', printProgress=True, \
directory="/home/the8ball/Documents/term8/21M.269/final/"):

15

import pickle

myFile = open(directory + str(filename), 'w')

pickle.dump(generatePresidentialHistograms(printProgress = printProgress), \
myFile)

print 'Dumped succesfully to', filename

def unpicklePresidentiallnfo(filename = 'analysis.pkl'):
import pickle
globals()['allPresidents'] = pickle.load(open(filename, 't'))
print 'Created allPresidents'
for (thisPresident, thisHist) in allPresidents.items():
globals()[str(thisPresident)] = President(thisHist)
print 'Created %s' % str(thisPresident)

def gatherAllDataForAllPresidents():

m

Returns all the data for all the presidents sorted by key
if 'allPresidents' not in globals():
unpicklePresidentiallnfo()

result = {}
allDataKeys =[]
for thisPresident in allPresidents.keys():
if allDataKeys == []:
allDataKeys = globals()[thisPresident].getDataKeys()
for thisKey in allDataKeys:
if thisKey not in result:
result[thisKey] = {}

try:
result[thisKey][thisPresident] = globals()[thisPresident].\
getDataFromSpeeches(thisKey)
except KeyError:
print "President %s doesn't have the key %s" % (thisPresident, \
thisKey)

return result

def displayDictNicely(thisDict, indentation=0):

m

Displays each item of this dictionary on a new line
for (key, value) in thisDict.items():
if isinstance(value, dict):
print "\t"*indentation + str(key)
displayDictNicely(value, indentation=indentation+1)
else:
print "\t'*indentation, key, value

16

def displayChangeOverTime(hist, keys, indentation=0, showOverallChange=True, \
showOriginal Values=False):
Displays the difference between speeches for a given key
Dict should be sorted by data key first, and then by president
if not isinstance(keys, list):
keys = [keys]

for dataKey in keys:
print \t' * indentation + dataKey
for (key, value) in hist[dataKey].items():
values = value.values()
data = {key:{'Change Over Time":[values[1] - values[0], values[2] -\
values[1]]}}
if showOverallChange:
data[key]['Overall Change'] = values[-1] - values[0]
if showOriginal Values:
data[key]['Original Values'] = values
displayDictNicely(data, indentation=indentation+1)
print

class President(object):

m

Allows for easy analysis of presidential histograms

m

def init_ (self, presidentialHistogram):

self.hist = presidentialHistogram

self.histogramNames = ['cents_to_annotations_classes', \
'cents_to_annotations', 'annotations_to cents_classes', \
'annotations_to_cents']

self.speechPrefix = 'state_of the union'

self.getHighestPitch(default=True)

self.getLowestPitch(default=True)

self.getRange(default=True)

self.getAveragePitch(default=True)

def getSpeechData(self, speechNumber, showHist=False):

m

Shows all of the analysed data for the given speech but the histograms
only show the histograms if showHist=True

m

result = dict(self hist[self.speechPrefix + str(speechNumber)])

17

if not showHist:
for thisName in self.histogramNames:
del result[thisName]
return result

def getDataKeys(self):

Return the valid data keys for this president

return self.hist['state_of the unionl'].keys()

def getDataFromSpeeches(self, dataKey, speeches=[1,2,3]):
Returns the specified data key for each of the speeches in the list
'speeches’
result = {}
for speechNum in speeches:
try:
result[speechNum] = self.hist[self.speechPrefix + \
str(speechNum)][dataKey]
except KeyError:
print "The speech %s doesn't have the key %s" % \
(self.speechPrefix + str(speechNum), dataKey)
return result

def getDataFromSpeech(self, dataKey, speechNum):

m

Returns the specified data key for the specified speech

m

return self.getDataFromSpeeches(dataKey=dataKey, speeches=[speechNum])

def getAllData(self, showHist=False):

m

Gets all data for all speeches excluding the histograms

unless showHist is True
result = dict(self hist)
if not showHist:
for i in xrange(1,4):
for thisName in self.histogramNames:
del result[self.speechPrefix + str(i)][thisName]
return result

def getAllDataByKeys(self, showHist=False):

18

Gets all data for all speeches excluding the histograms
unless showHist is True

Returns an object sorted by the Data key
result = {}
for thisKey in self.getDataKeys():
if thisKey in self.-histogramNames and not showHist:
continue
result[thisKey] = {}
for i in xrange(1,4):

try:
result[thisKey][i] = self.hist[self.speechPrefix +\
str(1)][thisKey]
except KeyError:

print "The speech %s doesn't have the key %s" % \
(self.speechPrefix + str(speechNum), dataKey)
return result

def getHighestPitch(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):

m

Returns the value of the highest pitch used (in cents)

Must occur more than threshold times
if not isinstance(speeches, list):
speeches = [speeches]

baseName = 'highest pitch '
if default:
baseName = baseName + 'default’

results = {}
for speech in speeches:
thisName = baseName
if threshold==None and thresholdPercentage==None:
thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)
elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \
thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)
else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

19

http:thresholdPercentage=0.33

if thisName not in self hist[self.speechPrefix + str(speech)]:
validPitches = [pair[0] for pair in self.hist[self.speechPrefix\
+ str(speech)]['cents_to_annotations'].items() if pair[1] >\
thisThreshold]
self.hist[self.speechPrefix + str(speech)][thisName] =\
max(validPitches)
results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
return results

def getLowestPitch(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):

Returns the value of the lowest pitch used (in cents)

Must occur more than threshold times
if not isinstance(speeches, list):
speeches = [speeches]

baseName = 'lowest_pitch '
if default:
baseName = baseName + 'default’

results = {}
for speech in speeches:
thisName = baseName
if threshold==None and thresholdPercentage==None:
thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)
elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \
thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)
else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

if thisName not in self hist[self.speechPrefix + str(speech)]:
validPitches = [pair[0] for pair in self.hist[self.speechPrefix\
+ str(speech)]['cents_to_annotations'].items() if pair[1] >\
thisThreshold]
self hist[self.speechPrefix + str(speech)][thisName] =\
min(validPitches)
results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
return results

20

http:thresholdPercentage=0.33

def getRange(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):

m

Returns the distance in cents between the highest used pitch and the lowest one
if not isinstance(speeches, list):
speeches = [speeches]
baseName = 'range '
if default:
baseName = baseName + 'default'

results = {}
for speech in speeches:
thisName = baseName
if threshold==None and thresholdPercentage==None:
thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)
elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \
thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)
else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

if thisName not in self hist[self.speechPrefix + str(speech)]:
validPitches = [pair[0] for pair in self.hist[self.speechPrefix\
+ str(speech)]['cents_to annotations'].items() if pair[1] >\
thisThreshold]
self.hist[self.speechPrefix + str(speech)][thisName] =\
max(validPitches) - min(validPitches)
results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
return results

def getNumAnnotations(self, speechNum):

returns the total number of annotations for a given speech

return sum(self.hist[self.speechPrefix + str(speechNum)]\
['cents_to annotations'].values())

def getAverageNumAnnotations(self):

returns the average number of annotations per speech

21

http:thresholdPercentage=0.33

return numpy.average([self.getNumAnnotations(i) for 1 in xrange(1,4)])

def getAveragePitch(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):
Returns the average pitch above a certain threshold
weighted by it's occurence
if not isinstance(speeches, list):
speeches = [speeches]

baseName = 'average pitch '
if default:
baseName = baseName + 'default’

results = {}

for speech in speeches:
thisName = baseName
if threshold==None and thresholdPercentage==None:
thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)
elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \
thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)
else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)
validPitches = [cent for cent in self.hist[self.speechPrefix + \
str(speech)]['cents to annotations'].items() if cent[1] >\
thisThreshold]
pitches =[]
for (thisPitch, annotations) in validPitches:
pitches += [thisPitch] * annotations

if thisName not in self.hist[self.speechPrefix + str(speech)]:
self hist[self.speechPrefix + str(speech)][thisName] =\
numpy.average(pitches)
results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
return results

22

http:thresholdPercentage=0.33

MIT OpenCourseWare
http://ocw.mit.edu

21M.269 Studies in Western Music History: Quantitative
and Computational Approaches to Music History
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

