

Interoperable Digital Musicology Research via music21 Web Applications

Michael Scott Cuthbert, Beth Hadley, Lars Johnson, Christopher Reyes
Department of Music and Theater Arts

Massachusetts Institute of Technology

Cambridge, Mass., USA

Abstract

Digital humanities practices applied to musical scores h ave the potential to open up vast new d atasets and avenu es for research in
musicology and are beginning to transform the field of musical research. Yet beyond the common difficulties of all digital humanities
projects, significant problems arise in d igital musicology that are unique to the structure of musical scores and the lack of available
tools for manip ulating scor es. Performing an alysis tasks of ten requires spec ialized tools th at h ave high barr iers to entr y, su ch as
compiling, choosing a par ticular operating system, and converting data between divergent formats. The “webapps” module of the
open-source music21 toolk it p rovides the ar chitecture to connect var ious digital musicolog y projects. I t m akes standard b ut
time-consuming musicological tools availab le to less technolo gically sophisticated users while providing tremendously var ied
developmental options to technically-inclined researchers . The authors propose a JSON format for encod ing bo th score d ata and
manipulations to/analysis of scores that can easily be used by backend systems besides music21, whether specialized for musical
analysis or for other digital humanities and machine learning tasks. The article ends by stressing, with examples, the continued need for
standalone musical analysis systems even in a world of easily available web systems.

Keywords: Digital Musicology, scores, music web systems

1.	 Background: Digital Musicology today 2. The Present and Future Need for Web
Applications in Digital Musicology

Musicological research, particularly of wes tern classical
music, has l ong relied o n t he i ntense st udy of sm all Over t he pa st fi fteen y ears, we b a pplications have numbers o f i ndividual works l ooking f or particularly dominated the field of computational musicology tools by distinctive, i nspiring, or unusual m oments i n si ngle

providing musicologists with immediate access to music scores. Comparative research among scores or repertories
datasets an d si mple an alytical to ols. However, withou t has bee n o ut of fa vor si nce t he m iddle o f t he ce ntury
providing an infrastructure for customization, research is (Cook, 2004) because of inaccuracies (particularly a bias
commonly limited to the materials provided through the towards western, often Germanic, forms) and an inability

to cope systematically with large corpora. Computational site, leav ing little ro om fo r creativ e development and
approaches to repertories have been embraced in the past investigation.
twenty years by several projects, but they have not been
the norm in musicology due to the difficulty in obtaining We t ake t he pr oject Ke rnscores (Sapp, 2008) as
computer-encoded versions of scores and in particular the exemplifying bot h t he great pot ential and binding
absence of easy-to-use software packages for examining, limitations of curren t m usicological web app lication
analyzing, and manipulating these scores. systems. Like most digital musicology sites, it uses

URL-encoded comm ands accessed via we bsites to
Music21 (Cuthbert & Ariza, 20 10) is an open-source transform data into a variety of musical formats and give
object-oriented to olkit b uilt in Pytho n for d igital and the resu lts o f simple an alytical processes such as key
computational musicology. The t oolkit b uilds on t he analysis or piano roll diagrams of the pieces. T hese
strengths of earlier app lications, su ch as t he Humdrum analyses have great potential, yet th e currently available
toolkit (Huron, 1997), but ad ds t o it an ob ject-oriented methods c ome wi th si gnificant drawbacks. T he m ost
framework th at allo ws u sers to find desired d ata m ore obvious is that the tools can only be applied to the scores
quickly and easily. First released in 2008 for all standard made available by the developers—a problem shared with
operating systems (including Windows, OS X, and Unix nearly all similar sites. These scores need to be encoded in
variants), the music21 too lkit is now in its fourteen th formats that are either not i n ge neral use (e .g., release and the first non-beta version was released on June Humdrum/Kern) or cannot represent standard notational 14, 2012. Th e r apid ad option of music21 fo r use b y symbols that are important to researchers and performers computational musicology projects has made it close to a

(e.g., MIDI which stores the notes D and E as the same new de facto st andard f or com puter-aided w ork, b ut
pitch and cannot encode tempo markings such as allegro difficulties in increasing its use am ong less techn ically
moderato). More sign ificantly fo r d evelopers, t he minded m usicologists has necessitated rec ent w ork i n
URL-encodings are not documented and the code for the building web applications to take advantage of its power

while making it simpler to use and eliminating the need backend systems are ge nerally not released, m aking i t
for installation. impossible for outside developers to expand the system.

1

Although music21 has been designed to be easy enough
for a pr ofessional musicologist wi thout pre vious
programming experience to l earn to use in a few weeks,
even this requirement presents too high of a bar for many
users. Web applications offering even simple commands
that p rocess user-uploaded dat a a nd return results
designed f or users t o view or hear wi thout f urther
computational processing ca n be i ncredibly val uable t o
researchers of all technical backgrounds.

Additionally, a serv ice-oriented arch itecture (SOA)
allows more advanced web developers to easily in tegrate
complex co mputational m ethods in to th eir o wn web
applications. Web app lications are cu rrently b eing
produced for many platforms, and the easy integration of
computational bac k-end t ools w ould m ake suc h
applications even more powerful.

Finally, co mputer scien tists wo rking on i mproving
generalized algorithms for cl assification of dat a are
another untapped audience needing web applications for
musical scores. A researcher wishing t o see if he r
algorithm for clustering data ca n als o work on m usical
scores will seld om h ave ti me o r exp ertise to learn a
specialized system for feature extraction of musical data;
she and her team will be searching for already created sets
of feature data (such as the Million Song Dataset gives for
audio dat a (B ertin-Mahieux, et . al, 20 11)) or a way of
easily obt aining t hese features fr om dat a ga thered f rom
other s ources. A se rvice-oriented arc hitecture is c ritical
for the needs of researchers only tangentially connected to
digital musicology. Such a web architecture would allow
this researc her to leave sp ecialized feature extraction
tasks t o m usicological ex perts an d focus on he r own
expertise in algorithmic design.

3. Music21 Web Applications

Since its co nception, music21 h as pr ovided a m odular
infrastructure for manipulating and analyzing scores. This
makes it ideal for provi ding the link between accessible
web en vironments an d s ophisticated m usic re search.
Beginning with the 1.0 release, music21 includes a
module desi gned for developing a s ervice-oriented
architecture u tilizing th e full su ite o f analysis to ols
provided by music21. Th e web apps SOA elimin ates
many hurdles to utilizing the music21 toolkit by placing
it in a web-based setting , yet stil l p rovides users and
developers unparalleled freedom.

Music21 web ap plications im port an d ex port d ata in a
variety of formats, catering to a wi de r ange of user
communities. Co mputer-aided m usicology h as always
depended on utilizing various data formats to encapsulate
the vast v ariety of i nformation e xtracted fr om music
queries. For example, music21 web applications export
textual and numeric data in formats ranging from simple
text or J SON, to .csv and sp readsheet formats, to
graphical pl ots. It s upports n umerous m usic notation

formats, in cluding M usicXML an d Lilypo nd as w ell as
MIDI and ev en Braille translatio n. Additionally, th ese
web applications can take advantage of being embedded
in m odern web b rowsers by ena bling l ive, edi table
notational ou tput thro ugh th e No teflight (Berk ovitz,
2008) Flash-based plugin and m anipulable high- quality
Canvas an d SVG g raphics th rough th e op en-source
VexFlow (Cheppudira, 2010) Java Script l ibrary. Use rs
can run web applications using the 10,000 scores in the
music21 corpus or asse mble their own c orpora.
Providing su ch versatility to u sers en sures a bro ad
compatibility with o ther m usic-based web sites and
independent stand-alone music applications.

Music21’s i mplementation of t he V exFlow Ja vaScript
library is particularly important for future adoption of web
applications for m usical scor es. Prior t o the creation of
VexFlow, no freely avai lable way o f re ndering m usical
data on th e Intern et as a viewable sc ore was feasible.
Previous attem pts su ch as the Med iawiki ex tension to
Lilypond (www.mediawiki.org/wiki/Extension:LilyPond)
posed se rious security haza rds a nd required t ranslating
existing MIDI, Mu sicXML, and o ther score files in to a
new format. W ith music21’s adoption of VexFlow and
the SOA, any Internet user can render a data file in one of
numerous formats as a score for v iewing within a web
page or other JavaScript/HTML5-compatible application.
Future work on this module will add JavaScript callbacks
from t he VexFlow c ode t o t he music21 S OA en abling
interactive musical markup, annotation, and editing.

4. Example Uses of Music21
Web Applications

The music21 service -oriented arc hitecture can be used
for a variety of purposes. Applications can be developed
in which a simple click of a button can trigger advanced
analysis routines. For exa mple, commands easily
automated via music21 webapps include output of range
and key data, detection of contrapuntal anomalies such as
parallel and direct fifths, transformation of a collection of
pieces to t he same key or meter, and various feat ure
extraction m ethods. One c ommonly use d m ethod of
music21 is the “chord ify” command wh ich takes in an
entire score, measure ra nge, or c ollection of parts, a nd
reduces it to a series of c hords representing t he m usic
sounding at each moment in the score. This reduced score
is much easier to understand at a quick glance than a full
score. The tremen dous m odularity inn ate in music21
methods and objects allows identification and analysis of
music scores not possible via static interfaces sim ilar to
previous m usicology si tes whe re both user i nput an d
analysis tools are limited.

For the adva nced user, the music21 service-orie nted
architecture may be used as a p latform upon which more
complex web app lications may b e built. An ex ample
demonstrating the versatility of the webapp architecture

2

www.mediawiki.org/wiki/Extension:LilyPond

coupled with the interoperability offered by the toolkit is a
tool we create d for analyzin g a st udent’s music t heory
assignment for contrapuntal writing errors (See Figure 1).
Using t he music21 we bapp a rchitecture, the st udent’s
assignment passes easily from th ird-party no tation
software t o a nalysis methods wi thin t he t oolkit t hat
identify areas of c oncern i n th e work. Th e too l th en
returns a p re-graded sc ore, either t o t he s tudent o r t he
professor, al ong with t ext desc ribing e ach e rror. O f
particular in terest to ed ucators is t he au tomatic
identification of violations o f common-practice rul es of
counterpoint, such as motion by parallel fifth or dissonant
harmonic intervals. In developing this app, we extended
and c ustomized t he existi ng music21 m ethods o f
analysis, c reating specialized music21 obj ects t o
encapsulate individual elements within the score, such as
linear seg ments, vertical slices o f simultaneously
sounding o bjects, and t wo by t wo m atrices of notes.
Elements id entified as errors were co lored, and tex t
output further explained the algorithm’s observation (such
as b etween wh ich notes th e p arallel fifth s ex ist, or the
name of the dissonant interval). This data is packaged into
a JSON data structure and provided directly to the client
(either a w eb bro wser or t he open-source Mu seScore
notation s oftware (B rontë, et . al ., 2 008) co mpleting t he
service to the user. This service-oriented architecture for
music is under consideration to become the backbone for
music course s i n t he developing M ITx/EdX open
educational platform.

Figure 1: Screenshot di splaying the use of this webapp
embedded as a plugin for th e op en-source no tation
software M useScore use d as part of a n aut omatic
“pre-grading” system for m usic the ory teac hing. A full
video sh owing this dem onstration is avai lable at
http://www.youtube.com/watch?v=5VBfag3YwIs .

5. Service-Oriented Architecture in
music21: the webapps library

To enable development of interoperable webapps utilizing
the full suite of computational tools, the music21 toolkit
includes a n e xtensive se rvice-oriented architecture. It
consists of Pyt hon classes and functions used to pa rse a
server request, execute the desired commands, and return
content to the user in an appropriate format. The flexible
nature of the architecture allows it to use a single URL to

handle any requests to the server wishing to use music21.
These requests can com e from a va riety of s ources,
including HTML form POSTs, AJAX requests, or e ven
web requests from a pl ugin i n an open s ource n otation
application. T he c ommands used by t he re quests ca n
either b e co mmands built in to music21 or c ustom
commands created by the user.

The core of the module involves two objects: an Agenda,
and a C ommandProcessor. An Agenda ob ject is a
dictionary-like structure th at specifies data input,
requested c ommands, an d a desi red o utput f ormat. A
CommandProcessor object t akes a n A genda, parses t he
data input into a format compatible with music21, safely
executes the commands, and generates the output.

These objects are used in a server application compliant
with t he Python WSGI interf ace, a portion of which is
shown below. Thi s a pplication ca n be en abled on a n
Apache/modWSGI serv er by add ing a few lin es to th e
httpd.conf, as Figure 2 demonstrates.

from music21 import *

agda = webapps.makeAgendaFromRequest(requestInput,environ)

processor = webapps.CommandProcessor(agda)

processor.executeCommands()

(responseData, responseContentType) = processor.getOutput()

Figure 2: Code for setting up a music21 web application.

The code shown is representative of the steps involved in
processing a request. First, the POST data and GET data
from the request are combined into an Agenda object. The
post d ata can be url-encoded fo rm d ata, m ultipart form
data, or a JS ON string. In this way a si ngle mount point
can be used to serve a variety of request types.

Figure 3 shows an example of the typical JSON formatted
input t o t he we bapp i nterface. T his text e ncodes
commands to use music21 parse a Bach chorale from the
corpus, transpose t hat c horale by a pe rfect fifth, t hen
return the chordified score in VexFlow format. Should the
user wis h t o view thei r sc ore in a different
music21-supported output format, such as MusicXML,
Braille, Lilyp ond, or MIDI, only a on e-word ch ange t o
this JSON format is necessary.

{ "dataDict": { "workName": { "data": "'bwv7.7'" } },
"commandList": [

{ "function": "corpus.parse",

"argList": ["workName"],

"resultVar": "chorale" },

{ "caller": "chorale",

"method": "transpose",

"argList": ["'p5'"],

"resultVar": "choraleTransposed" },

{ "caller": "choraleTransposed",

"method": "chordify",

"resultVar": "choraleChordified" }

],

3

http://www.youtube.com/watch?v=5VBfag3YwIs

 "outputTemplate": "templates.vexflow",

"outputArgList": ["choraleChordified"]

}

Figure 3: An example JSON re quest to return a Bach
chorale (B WV 7 m ovement 7) as a c hordal reduct ion,
transposed up a perfect fifth as a VexFlow Canvas.

If an appName is specifie d in one of the request fields,
additional data and commands are ad ded to th e agenda.
This flexibility allows for the creation of applications in
which the majority of the commands are specified by the
server and only a subset of the data is specified by the user
for each request. For i nstance, by specifying a
“featureExtractorApp,” as the appNam e, each re quest
would only need to include the name of the feature t hey
would like to extract and the zipfile containing the scores,
without ex plicitly n eeding to sp ecify th e ind ividual
commands necessary for feature extraction and machine
learning of m usical data (C uthbert, Ariza & Fried land,
2011).

The command processor then takes the agenda and parses
its input dat a into pri mitives or music21 objects.
Although most of the values arising from POST and GET
fields start as typ e string, the processor will determine if
the string was intending to be a number, boolean, list, etc.
and save its value accordingly. Additionally, music21 is
compatible with a wide variety of symbolic music formats
(MusicXML, Humdrum/Kern, abc , M IDI, etc.) a nd ca n
convert fields of those types into corresponding music21
objects.

Next, the c ommand processor e xecutes the comm ands
specified by the age nda. T o avoid t he sec urity ri sk of
executing arb itrary cod e while still maintaining th e
flexibility of the architecture, the server checks that each
requested c ommand i s al lowed t o be e xecuted o n t he
server and only interacts with a set of variable bindings
internal to the processor.

Finally, the processor generates the output of the results.
The elem ents of t he Agenda specify the output form at
which can be of a wide variety of types, including an html
page with a score displayed in an SVG or Flash embed, a
downloadable MusicXML or comma-separated value file
containing analysis resu lts, or sim ply th e raw JSON of
selected variables that can be decoded using JavaScript in
a client HTML page.

A vi deo demonstrating t his sy stem i s vi ewable a t
http://ciconia.mit.edu/feature-extraction.wmv and t he
software itself is at
 http://ciconia.mit.edu/music21/featureapp/uploadForm
Examples of sam ple we bapps are a vailable at
http://ciconia.mit.edu/music21/webapps/client/.

6. Cloud Computing and Web Services

Repertorial analysis requiring the best analytical methods
might run hundreds of times per score on a corpus of tens
of t housands of sc ores. T he music21 servi ce-oriented
architecture provides t he in frastructure n ecessary to
command c omplex and computationally i ntensive
analysis. However, such tasks might take hours to run and
provide little to no real-time feedback during processing.
Thus, it h as become app arent th at in tegrating m ore
powerful pr ocessing power w ould m ake music21
webapp services even more accessible. Our recent work
has i ncluded r esearch i nto providing cl oud com puting
functionality to music21 analysis routines via Amazon
Web Services and the Python map-reduce module, mrjob
(Yelp, 2009)

Any webapp routine that can b e abstracted into multiple
independent task s benefits greatly fro m th e add itional
computing pow er provided th rough cloud co mputing.
Processing time can be greatly de creased by
implementing a standard MapReduce algorithm (Dean &
Ghemawat, 2004) to distribute processing of hundreds or
thousands o f fi les over a net work o f i ndependent
computers. T he Python lib rary m rjob acce sses Am azon
Web Services and can be utilized to prepare Map Reduce
algorithms employing music21 analytical methods. Due
to t he m odularity of t he music21 ser vice-oriented
architecture, webapps ca n be d eveloped t o provide
quicker acce ss to music21 processes via the Amazon
Cloud. These webapps would route input data from the
user, suc h a s a corpus of music files, establish a n SSH
connection wi th EC2 instan ces pr ovided by Am azon,
deploy the job sp ecified, and wait wh ile the d ata is
processed. The resulting output would be passed back to
the web interface and displayed to the user in a fraction of
the time it wou ld take the user to run the same analysis
algorithm on a local com puter. After im plementing th is
process i n a t est ru n e xamining bass m otion o ver
thousands of p opular m usic leadsheets we rec orded
promising improvements in the time taken in processing
many scores.

By ad ding th e co mponent of cloud co mputing to our
already ex isting serv ice-oriented music21 architecture,
the limit o f co mputational po wer an d tim e is
tremendously alleviated. I ntegrating cl oud com puting
into a pre-existing web service allows musicologists great
freedom in both developing and running research studies.

7.	 Limitations of Web-systems and the
Co-existence of Stand-alone systems
in Digital Musicology

While web-b ased ap plications will op en up m any n ew
avenues for re search and data exc hange, downloadable
applications t o be r un on i ndividual users’ systems wi ll
need to continue to be developed. To start, unless a system
is implemented entirely in JavaScript, users’ queries need

4

http://ciconia.mit.edu/feature-extraction.wmv
http://ciconia.mit.edu/music21/featureapp/uploadForm
http://ciconia.mit.edu/music21/webapps/client/

to be parsed and understood by a t raditionally base d interactive ann otation and ed iting of SVG-rendered
backend system. As long as such an engine exists, there is musical sco res. Th e possibilities o f serv ice-oriented
little to be gained by limiting programmers’ access to this architectures i n co mputational musicology too lkits such
backend, an d co ntinued de velopment of ser ver-based as music21 are only beginning to be tapped. In the near
systems dem and t ests t hat c an be exec uted outside t he future m usic web app lications will b e am ong t he m ost
web system. More complex queries that nest the filtering important co ntributors to th e ex citing cro ss-disciplinary
of musical objects and annotations a re much more easily advancements emerging in digital humanities.
created with s hort scri pts th at have direct access to the
musical objects. For instance, the research question “does 9. Acknowledgements
Mozart cade nce on first-inversion t riads m ore often o n
strong beats vs. weak beats in his sonatas written earlier in The de velopment of music21 and its web app lications
his life ?” is easily an swered in music21 b y writing a has been funded by a NEH Digging into Data Challenge
short m odule usi ng n ested “i f,” “ break,” an d Grant as pa rt of t he ELVIS project and by the Seave r
“getElementsByClass()” statements. A similar web query Institute. Add itional support has b een prov ided b y the
would be s o c omplex t hat t he desi gning t he com mand School of Humanities, Arts, and Social Sciences at MIT
would be a more d ifficult pro cess t han in stalling th e and support for this presentation has been provided by the
system and writing a script by hand. A researcher must Germany Seed Fund of the MIT International Science and
carefully evaluate the adva ntages t o d eveloping a Technology Initiatives.
web-based a pplication versus st and-alone sc ripts,
depending on t heir i ndividual g oals, t echnical
background, an d tim e co nstraints. In additio n, while 10. References
HTML5 simplifies many programming tasks and moves them fro m th e serv er to t he clien t, it d oes no t con tain Berkovitz, J. (2008, continuing). Noteflight: support fo r microphone or MIDI inpu t without ex ternal http://www.noteflight.com/ plugins (u sually Adob e Flash). Thu s for man y realtim e Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, audio and musical applications, standalone versions of the P. (2011). “The Million Song Dataset,” Proceedings of software are needed.

the International Symposium on Music Information
Retrieval 12. Security and privacy conce rns are t wo other fact ors t o Brontë, T., Froment, N., Schweer, W. (2008, continuing). consider w hen e valuating w hether t o de velop a MuseScore: http://www.musescore.org/ web-based platform or stand-alone application. Complex Cheppudira, M.M. (2010, co ntinuing). V exFlow: queries may require access to the file system or generate http://www.vexflow.com/ huge t emporary fi les, both o f which c an i ntroduce Cook, N . (2004). “C omputational a nd C omparative security holes. Users may not wa nt to trust their private Musicology,” in Empirical Musicology: Aims, research dat a to be uploaded t o a web server not under
Methods, Prospects. Oxford: Oxford University Press, their con trol. This d esire may see m p aranoid when t he pp. 103–26: 103. only data are m usical scores, but music21 ca n als o Cuthbert, M.S., Ar iza, C . (201 0), “correlate score data with physiological response data from music21: A Toolkit
for Computer-Aided Musicology and Symbolic Music listeners and reported m usical prefe rences, all of whic h Data,” Proceedings of the International Symposium on could be used t o deanonymize su rvey dat a. T hus, both
Music Information Retrieval 11, pp. 637–42. security a nd privacy con cerns p romote co ntinued Cuthbert, M.S., Ariza, C., Fr iedland, L. (2011), “Feature development of stand-alone applications. Extraction and Mach ine Learning on Symbolic Music

8. Conclusion and Future Work using t he music21 T oolkit,” Proceedings of the
International Symposium on Music Information

 Retrieval 12, pp. 387–92.
Fundamentally, the goal of the music21 service-oriented Dean, J., 	 Ghemawat, S. (2004). “MapRe duce:
architecture is to provide researchers from a wide range of Simplified data p rocessing on lar ge clu sters,”
technical backgrounds and disciplines access to powerful Proceedings of the 6th Symposium on Operating
musical analysis tools c onveniently, ef ficiently, and System Design and Implementation, pp. 137–50.
quickly. Fut ure de velopment i ncludes ex panding t he Huron, D. (1997). “ Humdrum and Ke rn: Sel ective
webapp infra structure t o implem ent a lar ger suite of Feature Encoding.” In Beyond MIDI: the Handbook of
customizable music21 feat ures along with im proved Musical Codes. E. Selfridge-Field , ed. C ambridge,
computational p ower via t he Am azon C loud. M odules Mass.: MIT Press, pp. 375-401.
within t he to olkit th at req uire ex tensive ex ternal Sapp, C.S. (2008, continuing). K ernscores.
dependencies, suc h as “Gregori o” the LaTeX c hant http://kern.ccarh.org/
notation s oftware, ca n be a dapted t o use t he SO A t o Yelp (Software co mpany) (2009, con tinuing). m rjob.
render th e notation on a properly e quipped external http://packages.python.org/mrjob/index.html
server. Work in th e n ear fu ture will also in clude
extensions to our VexFlow web arch itecture t o en able

5

http://www.noteflight.com/
http://www.musescore.org/
http://www.vexflow.com/
http://kern.ccarh.org/
http://packages.python.org/mrjob/index.html

MIT OpenCourseWare
http://ocw.mit.edu

21M.269 Studies in Western Music History: Quantitative
and Computational Approaches to Music History
 Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

