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GA Sonic System Report 
 
 
 Genetic Algorithms (GA’s) have been applied since the 1950’s to simulate the 

evolution of a population [1].  Soon enough, they became a widely known method to 

solve optimization problems in computer science [2] and several genetic 

algorithmic systems were developed, such as Evolver [3].  Genetic algorithms are 

not only suited for computer science; they may also be applied to artistic domains.  

For example, Ariza discusses an alternative application [4] of GA’s.  Rather than 

moving towards a complex solution, Ariza’s genetic algorithm system pulls from a 

trajectory of rhythmic populations that moves towards a simple solution.  My work 

with Genetic Algorithms also focuses on creating interesting trends from an 

evolutionary process that moves towards a simple solution.  I show that my system 

can be applied to granular synthesis to make compelling gestures.  

For my sonic system, I employ many of the principals described in Magnus’s 

overview of genetic algorithms [5].  Solutions are mapped onto chromosomes, which 

contain many parameters encoded as genes (or alleles).  Each chromosome can be 

rated with a fitness function by calculating the error from that chromosome to a 

target solution.  Figure 1 shows a sample population with 3 chromosomes, each of 



which has 3 alleles. 

 

Figure 1 Populations contains many chromosomes, each of which store multiple alleles. 

My GA system comes with several alleles and chromosomes.  The single note 

allele contains a single midi value, and is used in single note chromosomes and multi-

note chromosomes (chord chromosomes).  The more interesting grain allele holds 

several important parameters for granular synthesis and is employed in the grain 

chromosome.  My system also provides basic fitness functions that assign lower 

fitness to chromosomes that are farther from a target chromosome. 

A simulation is run, in which some chromosomes reproduce, and others die.  

While traditionally fitness probabilistically determines which chromosomes 

reproduce, as described by Magnus, in my system every chromosome has an equal 

chance of reproducing.  However, in my system less fit chromosomes have a higher 

chance of being replaced by an offspring.  The outcome is similar: less fit 

chromosomes produce less offspring because they are replaced sooner. 

During reproduction, offspring chromosomes have a probability that they 

will be mutated in several ways.  Crossovers may occur between two parent 



chromosomes, such that the offspring inherits some traits from one parent and 

some traits from the other.  Individual alleles may also undergo point mutation, in 

which a single allele is mutated.  For example, a note allele may be shifted up or 

down a few half steps.  Mutations combined with reproduction and dying pushes the 

population in a direction towards a target. 

At each step in the simulation, one or more chromosomes may be extracted.  

Extraction can be determined by fitness (most fit chromosome or least fit 

chromosome) or random.  Extracted chromosomes are accumulated into an array.  

The simulation ends when the most fit chromosome fitness, or the average 

chromosome fitness reaches a certain threshold.  Several simulations can be strung 

together, to produce multi-trend gestures.  The simulation process is summarized in 

Figure 2.  The corresponding code can be found in GA.py. 

 

Figure 2 the control logic of Simulation and Step. 



To demonstrate the capabilities of my GA system, I applied it to granular 

synthesis.   In granular synthesis, small pieces of sound, or grains, are played in 

rapid succession to create larger events as described by Roads [6].  The interesting 

gestures of granular synthesis are made possible due to the collective trends applied 

to grains over time.  The compelling trends that can be expressed with genetic 

algorithms are what motivated me apply genetic algorithms to granular synthesis. 

I chose to vary grains according to three parameters that Roads identifies as 

important: duration, frequency, and amplitude.  For this reason, each grain allele 

encodes three values, one per parameter.  Each grain chromosome stores it’s own 

grain allele. Grain chromosomes can also undergo crossover mutations, in which an 

offspring inherits one or more parameter from one parent and the rest from another 

parent.  Grain chromosomes can also undergo point mutations, in which one or 

more parameters of the offspring’s allele are increased or decreased.  The fitness of 

a grain is measured with respect to the distance between itself and a target grain.  A 

larger distance produces a lesser fitness. 

I created three sound samples of genetic algorithms applied to granular 

synthesis to demonstrate different features of my system.  In all three of my 

samples, output from the genetic algorithm was mapped to granular synthesis 

parameters in the csoundNative mode of athenaCL, using the LineGroove texture 

module to create SineUnitEnvelope grains (see Line_Groove.py).  In sample1, 

random selection is used to generate a gesture where grains go from long duration, 

low volume, and low pitch, to short duration, high volume, and high pitch.  This 

creates a linear transformation with a bit of up and down randomness.  In sample2, I 



show how the selection and mutation rate affect the gesture, by applying a best 

selection and a high mutation rate to the same population.  As seen, the solution 

converges much faster (~150 steps as opposed to ~750 steps), and the fitness of the 

recorded samples strictly increases.  In sample3, I use multiple-selection to select 

the best-fit chromosome and the least fit chromosomes, and play them in parallel.  

In this sample, grains go from high pitch, low volume, and short duration to low 

pitch, low volume, and long duration.  Sample1, sample2, and sample3 showcase the 

features of my system and it’s ability to be applied to specific domains, such as 

granular synthesis. 

Others have applied genetic algorithms to granular synthesis, such as 

Fijinaga [7].  My system differs in several ways.  First, where Fijinaga’s GA deploys 

bit manipulation mutation, my system applies domain specific mutation.  Second, 

my granular synthesis chromosome utilizes a fitness functions specific to its domain.  

For example, rather than making the fitness function be additive over the different 

granular parameters, I deploy a different fitness functions for each parameter and 

take the minimum of these functions to represent the fitness of a chromosome.  The 

result is that all of the features converge at the same rate, which I feel is desirable 

for granular synthesis.  Finally, my system is different because of its flexible 

selection strategy. 

To summarize, my system can be formally described according to Ariza’s 

seven descriptors [8].  My system produces semi-macro-scale gestures (not full 

pieces, but not just single events) by combining micro-scale sounds according to a 

non-real-time process model.  While the granular synthesis extension is tied to a 



single idiom, the system as a whole exhibits a plural idiom-affinity.  The GA system 

is openly extendable – it is coded generally enough such that users can define their 

own functions and / or subclasses to alter or extend it.  My genetic algorithm follows 

a generative event production model because parameters are generated and pulled 

from the population.  It is conceivable that one could use it as a transformational 

tool by supplying key events from a source as targets for the GA’s fitness function.  

My system does not directly produce sound – it must be mapped to an external 

sound source, such as AthenaCL as I did when generating granular synthesis 

samples.  Finally, the user interacts with my system through the python scripting 

language.  They can either supply arguments to one of many functions defined at the 

bottom of GA.py to run a simulation, or expose more parameters by writing 

functions of their own.  

I have several ideas for further research that would build upon my sonic 

system.  First, it would be interesting to experiment with a population that could 

grow or shrink over time.  Varying-sized populations could provide an interesting 

application to granular synthesis in which the density of grains is proportional to 

the population size.  Second, it would be informative to apply the GA to domains 

other than granular synthesis.  It would also be interesting to gauge the ease of use 

with which an outside party could extend or use my system.  Finally, it would be 

useful to support more chromosomes, such as a scale chromosome or a key 

chromosome and see how they could be applied to generating interesting gestures. 
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