
Chapter 3. Meeting 3, Approaches: Distributions and
Stochastics

3.1. Announcements

•	 Download: most recent athenaCL

http://code.google.com/p/athenacl

3.2. Reading: Ames: A Catalog of Statistical Distributions

•	 Ames, C. 1991. “A Catalog of Statistical Distributions: Techniques for Transforming Random,
Determinate and Chaotic Sequences.” Leonardo Music Journal 1(1): 55-70.

•	 What does Ames mean by balance, and that there can be a balance that is not fair?

•	 What is meant by a weight? Why is this term preferable to alternatives?

•	 The use of statistics here might be considered outside of the discipline of statistics: why?

•	 Which musical parameters are better suited for discrete values? Which for continuous values?

•	 Are any distributions dependent on past occurrences?

•	 Why might the Law of Large Numbers make working with distributions difficult in musical
contexts?

•	 In terms of the distribution output, what are time domain and frequency domain graphs?

•	 What is the relationship between the Poisson distribution and the Exponential distribution?

•	 Ames notes that, when working with some distributions, values may have to be discarded: why?
What does this say about working with distributions?

3.3. ParameterObjects

•	 Reusable value selectors and generators

32

http://code.google.com/p/athenacl

•	 Can be created and controlled with strings of comma-separated lists

•	 Values in ParameterObjects can be strings (without quotes), numbers, or lists (delimited by
parenthesis or brackets)

•	 In some cases ParameterObjects, enclosed as a list, can be used inside of other ParameterObjects
to generate values

•	 Three types of ParameterObjects

•	 Generator: produce values based on arguments alone

•	 Rhythm: specialized for rhythm creation

•	 Filter: specialized for transforming values produced from a Texture

•	 Complete documentation for ParameterObjects, and samples, can be found here:

http://www.flexatone.net/athenaDocs/www/ax03.htm

•	 ParameterObject names and string values can always be provided with acronyms

•	 Trailing arguments, when not provided, are automatically supplied

3.4. ParameterObjects: Viewing Arguments and Output

•	 TPls: view a list of all available ParameterObjects

•	 TPv: vie detailed documentation for one or more ParameterObjects

pi{}ti{} :: tpv ru

Generator ParameterObject

{name,documentation}

RandomUniform randomUniform, min, max

 Description: Provides random numbers between 0 and 1 within an

uniform distribution.

 This value is scaled within the range designated by min and max;

min and max may be

 specified with ParameterObjects. Note: values are evenly

distributed between min and

 max. Arguments: (1) name, (2) min, (3) max

•	 TPmap: create a graphical output providing a number of values and a ParameterObject name

Note that, when providing arguments from the command-line, spaces cannot be used between
ParameterObject arguments

pi{}ti{} :: tpmap 100 ru,3,8

randomUniform, (constant, 3), (constant, 8)

TPmap display complete.

33

http://www.flexatone.net/athenaDocs/www/ax03.htm

•	 With a nested ParameterObject for the maximum value

pi{}ti{} :: tpmap 100 ru,3,(ru,8,15)

randomUniform, (constant, 3), (randomUniform, (constant, 8), (constant, 15))

TPmap display complete.

3.5. Configuring Graphical Outputs in athenaCL

•	 athenaCL supports numerous types of graphical outputs, some with various dependencies

•	 Output formats:

•	 JPG, PNG: requires working installation of the Python Imaging Library (PIL)

Windows: http://www.pythonware.com/products/pil

Others: not so easy for Python 2.6 (easier for Python 2.5)

•	 TK: uses the TK GUI system that ships with Python

Works for full installs of Python 2.6 on Windows, Mac, Others

•	 EPS: works on all Pythons on all platforms

•	 APgfx: set graphical output preferences

pi{}ti{} :: apgfx

active graphics format: png.

select text, eps, tk, jpg, png. (t, e, k, j, or p): p

graphics format changed to png.

•	 Use APea to set the imageViewer and psViewer applications if not already set properly

34

http://www.pythonware.com/products/pil

3.6. The Constant ParameterObject

• The most simple ParameterObject

pi{}ti{} :: tpv constant

Generator ParameterObject

{name,documentation}

Constant constant, value

 Description: Return a constant string or numeric value.

Arguments: (1) name, (2)

value

3.7. Continuous and Discrete Stochastic Distributions as
ParameterObjects

• Discrete

• BasketGen

• Continuous POs put through the Quantize PO or other POs

• Continuous

• RandomUniform

• RandomGauss

• RandomBeta

• RandomExponential and RandomInverseExponential

• Many others...

3.8. Discrete Stochastic Distributions as ParameterObjects

• BasketGen: the ball and urn (or basket) paradigm

• Documentation with TPv

35

:: tpv bg

Generator ParameterObject

{name,documentation}

BasketGen basketGen, selectionString, valueList

 Description: Chooses values from a user-supplied list

(valueList). Values can be strings or numbers. Values are

 chosen from this list using the selector specified by the

selectionString argument. Arguments: (1) name, (2)

selectionString {'randomChoice', 'randomWalk',

'randomPermutate', 'orderedCyclic',

 'orderedCyclicRetrograde', 'orderedOscillate'}, (3)

valueList

• Selection methods

• randomChoice: random selection with replacement

pi{}ti{} :: tpmap 100 bg,rc,(0,.2,.4,.6,.8,1)

basketGen, randomChoice, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

• randomPermutate: random selection without replacement

pi{}ti{} :: tpmap 100 bg,rp,(0,.2,.4,.6,.8,1)

basketGen, randomPermutate, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

• randomWalk: random up/down movement along order of list, with wrapping

pi{}ti{} :: tpmap 100 bg,rw,(0,.2,.4,.6,.8,1)

basketGen, randomChoice, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

36

•	 orderedCyclic: looping

pi{}ti{} :: tpmap 100 bg,oc,(0,.2,.4,.6,.8,1)

basketGen, orderedCyclic, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

•	 orderedOscillate: oscillating

pi{}ti{} :: tpmap 100 bg,oo,(0,.2,.4,.6,.8,1)

basketGen, orderedOscillate, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

•	 By configuring the values drawn from, discrete uniform, Bernoulli, and binomial distributions can
be modeled

3.9. Continuous Stochastic Distributions as ParameterObjects

•	 RandomUniform: continuous uniform distribution

scaled between 0 and 10

37

pi{}ti{} :: tpmap 100 ru,0,10

randomUniform, (constant, 0), (constant, 10)

TPmap display complete.

• RandomGauss: normal distribution, arguments mu and sigma

• mu: center of distribution, between 0 and 1

• sigma: deviation around center, where .001 is little deviation

• mu at .3, sigma at .01, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rg,.3,.01,0,10

randomGauss, 0.3, 0.01, (constant, 0), (constant, 10)

TPmap display complete.

• mu at .7, sigma at .2, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rg,.7,.2,0,10

randomGauss, 0.7, 0.2, (constant, 0), (constant, 10)

TPmap display complete.

38

• RandomBeta: arguments alpha and beta

• This implementation is different than Ames (1991)

• alpha and beta: low values increase draw to boundaries

• alpha and beta: large values approach a uniform distribution

• alpha at .1, beta at .1, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rb,0.1,0.1,0,10

randomBeta, 0.1, 0.1, (constant, 0), (constant, 10)

TPmap display complete.

• alpha at .3, beta at .3, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rb,.3,.3,0,10

randomBeta, 0.3, 0.3, (constant, 0), (constant, 10)

TPmap display complete.

• RandomExponential and RandomInverseExponential

• lambda: larger values create a tighter pull to to one boundary

• exponential, lambda at 5, scaled between 0 and 10

pi{}ti{} :: tpmap 100 re,5,0,10

randomExponential, 5.0, (constant, 0), (constant, 10)

TPmap display complete.

39

•	 inverse exponential, lambda at 20, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rie,20,0,10

randomInverseExponential, 20.0, (constant, 0), (constant, 10)

TPmap display complete.

•	 For all generators min and max can be embedded POs

3.10. Working with athenaCL

•	 Often best to use interactive mode for testing values, quick sketches, setting preferences

•	 Best to use a Python script for composing or other work

•	 Same preferences used in interactive mode are used in scripts

•	 For examples, the presence of the command prompt designates that athenaCL is in interactive
mode

pi{}ti{} ::

3.11. Configuring Amplitudes

•	 Amplitudes in athenaCL are represented within the unit interval (0, 1)

•	 After creating texture, we can edit the amplitude with the TIe command

•	 The TIe command needs an argument for what Texture parameter to edit: enter “a” is for
amplitude

40

• Parameter abbreviations can be found with the TIv command

• Setting the amplitude to a RandomUniform value between 0 and 1 [03a.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

create a new texture with instrument 45

ath.cmd('tin a 45')

edit the amplitude of the texture to be RandomUniform between .1 and 1

ath.cmd('tie a ru,.1,1')

ath.cmd('eln')

ath.cmd('elh')

• Two parts, one with RandomUniform amplitudes, another with RandomExponential [03b.py]

Note that textures have to have different names

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

create a new texture with instrument 45

ath.cmd('tin a 45')

ath.cmd('tie a ru,.1,1')

create a new texture with instrument 65

texture must have a different name

ath.cmd('tin b 65')

ath.cmd('tie a re,15,.2,1')

ath.cmd('eln')

ath.cmd('elh')

• Three parts, RandomUniform, RandomExponential, and RandomBeta amplitudes [03c.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

create a new texture with instrument 45

ath.cmd('tin a 45')

ath.cmd('tie a ru,.1,1')

create a new texture with instrument 65

ath.cmd('tin b 65')

ath.cmd('tie a re,15,.2,1')

create a new texture with instrument 53

ath.cmd('tin c 53')

ath.cmd('tie a rb,.1,.1,.3,.7')

ath.cmd('eln')

ath.cmd('elh')

41

3.12. Duration and Sustain

•	 Duration

•	 The temporal space of an event

•	 If events are packed end to end, the time of the next event

•	 If a notated event, the written rhythm

•	 Sustain

•	 The sounding (actual) time of the event

•	 A scalar applied to the duration

•	 A scalar of 0.2 would suggest a staccato (shortened) event

•	 A scalar of 1.2 would create overlapping events

3.13. The Pulse Triple

•	 athenaCL supports both absolute and relative rhythm values

•	 The PulseTriple is relative to the beat-defining tempo and made of three values

•	 Divisor: divides the tempo beat duration

•	 Multiplier: scales the value divided

•	 Accent: a rhythm-specific amplitude value, between 0 (o) and 1 (+) (or with symbolic
dynamics: mp, mf, etc)

•	 Conventional rhythms can be easily expressed

•	 (4,1,1): 1/4th of a beat (if the beat is a quarter, a sixteenth note)

•	 (4,3,1): 3/4ths of a beat (if the beat is a quarter, a dotted eighth note)

•	 (1,4,1): 4 beats (if the beat is a quarter, a whole note)

•	 (3,1,1): 1/3rd of a beat (if the beat is a quarter, a triplet eighth)

•	 (5,8,1): 8/5ths of a beat

•	 Representational redundancy may be useful

•	 (4,2,1) is the same as (2,1,1)

42

• (1,5,1) is the same as (4,20,1)

3.14. Basic Rhythm ParameterObjects

• PulseTriple: create PulseTriples from embedded ParameterObjects

pi{}ti{} :: tpv pulsetriple

Rhythm Generator ParameterObject

{name,documentation}

PulseTriple pulseTriple, parameterObject, parameterObject, parameterObject,

parameterObject

 Description: Produces Pulse sequences with four Generator

ParameterObjects that

 directly specify Pulse triple values and a sustain scalar. The

Generators specify

 Pulse divisor, multiplier, accent, and sustain scalar. Floating-

point divisor and

 multiplier values are treated as probabilistic weightings. Note:

divisor and

 multiplier values of 0 are not permitted and are replaced by 1;

the absolute value

 is taken of all values. Arguments: (1) name, (2) parameterObject

{pulse divisor},

 (3) parameterObject {pulse multiplier}, (4) parameterObject

{accent value between 0

and 1}, (5) parameterObject {sustain scalar greater than 0}

• ConvertSecond: create durations form values in seconds

pi{}ti{} :: tpv cs

Rhythm Generator ParameterObject

{name,documentation}

ConvertSecond convertSecond, parameterObject

Description: Allows the use of a Generator ParameterObject to

create rhythm

 durations. Values from this ParameterObject are interpreted as

equal Pulse duration

and sustain values in seconds. Accent values are fixed at 1.

Note: when using this

Rhythm Generator, tempo information (bpm) has no effect on event

timing. Arguments:

 (1) name, (2) parameterObject {duration values in seconds}

3.15. Configuring Rhythms

• After creating texture, we can edit the rhythm with the TIe command

• The TIe command needs an argument for what Texture parameter to edit: enter “r” for rhythm

• Using basketGen to control the multiplier [03d.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

43

ath.cmd(“tie a rb,.3,.3,.5,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

•	 Using two basketGens to control multiplier and divisor independently [03e.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

ath.cmd(“tie a rb,.3,.3,.4,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“tin b 65”)

ath.cmd(“tie a re,15,.3,1”)

ath.cmd(“tie r pt,(bg,rp,(2,1,1,1)),(c,1),(c,1)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

•	 Using two basketGens to control multiplier and divisor independently [03f.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

ath.cmd(“tie a rb,.3,.3,.4,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“tin b 65”)

ath.cmd(“tie a re,15,.3,1”)

ath.cmd(“tie r pt,(bg,rp,(2,1,1,1)),(c,1),(c,1)”)

ath.cmd(“tin c 67”)

ath.cmd(“tie a rb,.1,.1,.4,.6”)

ath.cmd(“tie r cs,(rb,.2,.2,.01,1.5)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

3.16. Configuring Time Range

•	 After creating texture, we can edit the time range with the TIe command

•	 The TIe command needs an argument for what Texture parameter to edit: enter “t” for time
range

•	 Enter two values in seconds separated by a comma

•	 Staggering the entrances of three parts [03g.py]

from athenaCL.libATH import athenaObj

44

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

ath.cmd(“tie t 0,20”)

ath.cmd(“tie a rb,.3,.3,.4,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“tin b 65”)

ath.cmd(“tie t 10,20”)

ath.cmd(“tie a re,15,.3,1”)

ath.cmd(“tie r pt,(bg,rp,(2,1,1,1)),(c,1),(c,1)”)

ath.cmd(“tin c 67”)

ath.cmd(“tie t 15,25”)

ath.cmd(“tie a rb,.1,.1,.4,.6”)

ath.cmd(“tie r cs,(rb,.2,.2,.01,1.5)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

3.17. Musical Design Report 1

• Must be primarily rhythmic in nature

• Must employ at least 4 different timbre sources

• Should have at least an AB or ABA form

• Must prominently feature both the beta and exponential distributions

• Can be composed with athenaCL, athenaCL and other tools, or other tools alone

• See syllabus for details on other aspects

3.18. Digital Audio Workstations

• The merger of software for editing MIDI and notation with software for editing digital audio

• Numerous commercial varieties: ProTools, Digital Performer, Cubase, FL, Logic, GarageBand

• Inexpensive varieties: Reaper

• Free varieties: Ardour, Rosegarden

• Having access to a DAW with virtual instruments will greatly assist your projects in this class

3.19. Digital Audio Workstations: Importing and Mixing Digital Audio

• Create tracks to store audio

45

• Drag and drop digital audio into a track

• Adjust levels, process, and edit

• Bounce to disc to mix down to a single audio file

3.20. Digital Audio Workstations: Importing MIDI and Rendering
Digital Audio

• Create tracks to store MIDI or for virtual instruments

• Drag and drop MIDI into a track

• Render, freeze, or bounce realization of virtual instrument

46

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

