
Chapter 5. Meeting 5, History: Serialism, Loops, Tiling, and
Phasing

5.1. Announcements

• Musical Design Report 1 due Tuesday, 23 February

• Review readings from last class

5.2. Trigonometric Functions and Break-Point Graphs as
ParameterObjects

• WaveSine: A scalable sine oscillator controlled by seconds or events per cycle

pi{}ti{} :: tpmap 100 ws,e,20,0,0,10

waveSine, event, (constant, 20), 0, (constant, 0), (constant, 10)

TPmap display complete.

• BreakPointLinear: Break point segments defined by seconds or events

pi{}ti{} :: tpmap 100 bpl,e,l,((0,.5),(8,0),(16,1),(24,.75),(32,.9),(40,.5))

breakPointLinear, event, loop, ((0,0.5),(8,0),(16,1),(24,0.75),(32,0.9),(40,0.5))

TPmap display complete.

48

•	 Numerous alternative trigonometric function generators exist as ParameterObjects: WaveCosine,
WavePulse, WaveSawDown, WaveSine, WaveTriangle

•	 Numerous alternative break-point function generators exist as ParameterObjects: BreakPointFlat,
BreakPointHalfCosine, BreakPointLinear, BreakPointPower

5.3. Configuring Tempo

•	 The TIe command can be use to edit tempo by specifying “b” for BPM

•	 Tempo can be controlled by any ParameterObject

5.4. Approaches to Composing Time

•	 Creating overlapping repeats of the same material

•	 Creating overlapping repeats of transformed material

•	 Creating ordered material that is then transformed in ways that retain order

5.5. Canons and Tiling

•	 Create an initial line and repeat it with staggered entrances

•	 An approach to polyphony

•	 The initial line can be temporally shifted and temporally transformed

•	 Can be seen as an approach to musical tiling

5.6. Listening: Andriessen

•	 Louis Andriessen (1939-)

•	 Dutch composer notable for combining American Minimalism with (at times) more diverse
harmonic language

•	 Andriessen: “Hout” (1991)

49

5.7. Building a Basic Beat

•	 Kick, snare, and hats

•	 Command sequence:

•	 emo mp

•	 tin a 36

•	 tie r pt,(c,2),(bg,oc,(7,5,2,1,1)),(c,1)

•	 tin b 37

•	 tie r pt,(c,2),(bg,oc,(3,5)),(bg,oc,(0,1))

•	 tin c 42

•	 tie r pt,(c,2),(c,1),(bg,oc,(0,1))

•	 eln; elh

5.8. A Basic Beat with More Complex Snare Part

•	 Continued command sequence:

•	 tio b

•	 tie r pt,(c,4),(bg,rp,(3,3,5,4,1)),(bg,oc,(0,1,1))

•	 eln; elh

5.9. Adding Canonic Snare Imitation: Texture Copying

•	 Copying a texture creates a new, independent, and dynamic part

•	 While having identically configured ParameterObjects, if randomness is employed, unique
structures will be created

•	 Continued command sequence:

•	 tio b

•	 ticp b b1

•	 tie t .25, 20.25

50

• tie i 76

• ticp b b2

• tie t .5, 20.5

• tie i 77

• eln; elh

5.10. Saving and Loading the AthenaObject

• An athenaCL XML file can be loaded in to athenaCL to restore Textures

• These XML files can be automatically created whenever an event list is created

• Continued command sequence:

• eoo xao

• eln

5.11. Building an Extended Rhythmic Line with Canonic Imitation

• Using different length ordered cyclic generators will create complex but non-random sequences

• Command sequence:

• aorm confirm

• emo mp

• tin a 77

• tie r pt,(c,1),(c,1),(c,1)

• tin b 67

• tie r pt,(bg,oc,(2,4,1)),(bg,oc,(3,5,1,7,1,3)),(c,1)

• ticp b b1

• tie t 0.125,20.125

• tie i 60

• ticp b b2

51

• tie t 0.25,20.25

• tie i 68

• eln; elh

5.12. Creating Mensural Canons

• Mensural canons use ratio-base time signatures for each part

• Continued command sequence:

• tio b1

• tie b c,90

• tio b2

• tie b c,180

• eln; elh

5.13. Extensions

• We can generate complex, deterministic patterns by combining cycles at high ratios

• The same musical rhythm at different (low ratio related) rates produces interesting musical results

5.14. Tonal, Atonal, and Post-Tonal

• Tonal music employs functional harmony

• Harmonies (chords) have a trajectory, expectation, and a resolution

• One (or two) chords are more than others

• Atonal music does not employ functional harmony

• The expectations and priorities of chords are removed

• Ideally, no pitch is more important than any other

• Post-tonal refers approaches to harmony other than tonal

• May be atonal, or may employ other approaches to pitch

• Pitch centers may be developed and exploited

52

5.15. Serialism

•	 An approach to atonality that serialized (ordered) elements of musical parameters, developed by
Arnold Schoenberg

•	 An alternative approach to atonality employed chords that completed the aggregate (all 12
pitches), developed by Josef Matthias Haur

•	 By serializing the order of all 12-tone pitches, all get equal usage

•	 Pitch groups smaller than 12 can be used

•	 A series of all 12 tones is used as a motivic origin

•	 The series can be transposed to any of 12 pitch levels: prime

•	 The series can be reversed: retrograde

•	 The series can be inverted ((12-n) % 12): inversion

•	 The inverted series can be reversed: retrograde inversion

•	 The 12 x 4 possible rows can be presented in a matrix

Generated with Python tools in music21: http://code.google.com/p/music21/

from music21 import serial

p = [8,1,7,9,0,2,3,5,4,11,6,10]

print serial.rowToMatrix(p)

 0 5 11 1 4 6 7 9 8 3 10 2

 7 0 6 8 11 1 2 4 3 10 5 9

 1 6 0 2 5 7 8 10 9 4 11 3

 11 4 10 0 3 5 6 8 7 2 9 1

 8 1 7 9 0 2 3 5 4 11 6 10

 6 11 5 7 10 0 1 3 2 9 4 8

 5 10 4 6 9 11 0 2 1 8 3 7

 3 8 2 4 7 9 10 0 11 6 1 5

 4 9 3 5 8 10 11 1 0 7 2 6

 9 2 8 10 1 3 4 6 5 0 7 11

 2 7 1 3 6 8 9 11 10 5 0 4

10 3 9 11 2 4 5 7 6 1 8 0

•	 Milton Babbitt and Pierre Boulez extended serial techniques to new parameters and alternative
organizations

•	 Karlheinz Stockhausen and others attempted to employ serial techniques to organize parameters
in the early Electronic Music studio

•	 Total serialism orders amplitudes, rhythms, and other musical parameters

53

http://code.google.com/p/music21/

5.16. Listening: Boulez

•	 Pierre Boulez (1925-)

•	 Post WWII and total serialism

•	 Boulez: “Structures, Book I” (1952)

5.17. Extensions

•	 The algorithmic opportunities of serialism led many composers to generalize such techniques with
the computer

•	 athenaCL features Paths as a way for Textures to share source Pitch data

•	 One Path might be shared by multiple Textures, each transposing, reversing, and inverting this
Path to create serial arrangements

•	 While some have tried (Babbitt 1958), serial rhythm techniques have not been widely embraced

5.18. Phasing

•	 Musical material shifting in and out of time, or moving at different rates

•	 Developed out of manipulations to recording reels: flanging and phasing

54

•	 Can be used as a canon-like technique

5.19. Listening: Reich

•	 Steve Reich (1936-)

•	 Influenced by techniques of minimalism based in part on music of Terry Riley, La Monte Young,
and others

•	 Reich: “It’s gonna rain” (1965)

•	 “Scorification” of a technological process for acoustic instruments

•	 Reich: “Piano Phase” (1967)

5.20. Phasing with athenaCL Python Libraries

•	 pianoPhase.py

import os

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

OUTDIR = '/Volumes/xdisc/_scratch'

BEATDUR = rhythm.bpmToBeatTime(225) # provide bpm value

def getInstName(nameMatch):

for name, pgm in generalMidi.gmProgramNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

return None

def getSource(repeat):

"""get source melody and rhythm"""

pitchSequence = ['E4','F#4','B4','C#5','D5','F#4',

'E4','C#5','B4','F#4','D5','C#5']

rhythmSequence = [.5, .5, .5, .5, .5]

ampGen = parameter.factory(['ws','e',14,0,90,120]) # sine osc b/n 90 and 120

55

 score = []

 tStart = 0.0

for i in range(len(pitchSequence) * repeat):

ps = pitchTools.psNameToPs(pitchSequence[i%len(pitchSequence)])

pitch = pitchTools.psToMidi(ps)

dur = BEATDUR * rhythmSequence[i%len(rhythmSequence)]

amp = int(round(ampGen(0)))

pan = 30

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score, len(pitchSequence)

def transformSource(score, srcLength):

"""transform source, srcLength is size of each melodic unit

"""

post = []

 octaveShift = -1

panShift = 60

shiftUnit = BEATDUR / 16.

 eCount = 0

 repCount = 0 # starting at zero means first cycle will be in phase

for event in score:

 if eCount % srcLength == 0:

 shift = shiftUnit * repCount

repCount = repCount + 1 # increment after using

 newEvent = [event[0]+shift, event[1], event[2],

event[3]+(octaveShift*12), (event[4]+panShift)%128]

post.append(newEvent)

eCount = eCount + 1 # increment for each event

 return post

def main():

repeat = 33

partA, seqLen = getSource(repeat)

partB = transformSource(partA, seqLen)

 trackList = [('part-a', getInstName('piano'), None, partA),

('part-b', getInstName('piano'), None, partB),]

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

mObj.write(path)

osTools.openMedia(path)

if __name__ == '__main__':

main()

5.21. Beats with athenaCL Python Libraries

• basicBeat.py

import os, random

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

56

OUTDIR = '/Volumes/xdisc/_scratch' # provide output directory

BEATDUR = rhythm.bpmToBeatTime(160) # provide bpm value

def getInstPitch(nameMatch):

for name, pgm in generalMidi.gmPercussionNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

raise NameError('bad pitch name')

def getKickSnare(repeat):

rhythmA = [1, 1.5, .5, 1]

rhythmB = [1.5, .5, 1.5, .5]

rhythmC = [1.75, .25, 1.5, .125, .125, .125, .125]

instA = ['acousticBassDrum','sideStick']

instB = ['sideStick']

ampGen = parameter.factory(['rb',.2,.2,110,127])

score = []

tStart = 0.0

 for q in range(repeat):

if q % 3 == 0:

rhythmSequence = rhythmB

instSequence = instA

elif q % 11 == 10:

rhythmSequence = rhythmC

instSequence = instB

random.shuffle(rhythmSequence)

else:

 rhythmSequence = rhythmA

instSequence = instA

 for i in range(len(rhythmSequence)):

inst = instSequence[i % len(instSequence)]

pitch = getInstPitch(inst)

dur = BEATDUR * rhythmSequence[i % len(rhythmSequence)]

amp = int(round(ampGen(0)))

pan = 63

 event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score, len(rhythmSequence)

def getHats(repeat):

rhythmSequence = [.5, .5, .25, .25, .5, .5, .5, .5]

instSequence = ['closedHiHat','closedHiHat',

'closedHiHat','closedHiHat',

'closedHiHat','openHiHat']

ampGen = parameter.factory(['rb',.2,.2,50,80])

score = []

tStart = 0.0

 for q in range(repeat):

for i in range(len(rhythmSequence)):

inst = instSequence[i % len(instSequence)]

pitch = getInstPitch(inst)

dur = BEATDUR * rhythmSequence[i % len(rhythmSequence)]

amp = int(round(ampGen(0)))

pan = 63

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score, len(rhythmSequence)

57

def main():

repeat = 33

partA, seqLen = getKickSnare(repeat)

partB, seqLen = getHats(repeat)

 trackList = [('part-a', 0, 10, partA),

 ('part-b', 0, 10, partB),]

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

mObj.write(path) # writes in cwd

osTools.openMedia(path)

if __name__ == '__main__':

main()

5.22. Building an Extended Rhythmic Line with Fixed Tempo Phasing

• Using different tempi will create shifting rhythmic patterns

• Command sequence:

• aorm confirm

• emo mp

• tin a 70

• tie r pt,(bg,oc,(2,4,4)),(bg,oc,(4,1,1,2,1)),(c,1)

• tie t 0,60

• ticp a a1

• tie b c,124

• ticp a a2

• tie b c,128

• eln; elh

5.23. Building an Extended Rhythmic Line with Dynamic Tempo
Phasing

• Oscillating the tempo at different rates will create dynamic changes

• Command sequence:

• aorm confirm

58

•	 emo mp

•	 tin a 64

•	 tie r pt,(bg,oc,(2,4,4)),(bg,oc,(4,1,1,2,1)),(c,1)

•	 tie t 0,60

•	 ticp a a1

•	 tie i 60

•	 tie b ws,t,20,0,115,125

•	 ticp a a2

•	 tie i 69

•	 tie b ws,t,30,0,100,140

•	 eln; elh

5.24. Extensions

•	 Many works have been built with slow and gradual tempo changes

•	 Tempos might slowly deviate with a BreakPointLinear or similar generator

•	 Tempos might be randomly perturbed by adding in randomness: PO OperatorAdd can sum two
ParameterObjects

pi{}ti{} :: tpmap 100 oa,(ws,e,20,0,0,10),(ru,-2,2)

operatorAdd, (waveSine, event, (constant, 20), 0, (constant, 0), (constant, 10)),

(randomUniform,

(constant, -2), (constant, 2))

TPmap display complete.

59

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

