
Chapter 10. Meeting 10, Approaches: Probability and Markov
Chains

10.1. Announcements

•	 Musical Design Report 2 due this Thursday, 11 March

•	 Thursday we will work in PD and Csound

•	 Quiz next Tuesday

10.2. Half-Period Oscillators as ParameterObjects

•	 Continuously varying the seconds per cycle (frequency) of an oscillator results in complex
periodicities; random or discrete frequency variation results in complexity

:: tpmap 100 ws,e,(ls,e,50,10,30),0,0,10

waveSine, event, (lineSegment, (constant, 50), (constant, 10), (constant, 30)),

0, (constant, 0), (constant, 10)

TPmap display complete.

:: tpmap 100 ws,e,(ru,19,21),0,0,10

waveSine, event, (randomUniform, (constant, 19), (constant, 21)), 0, (constant,

0), (constant, 10)

TPmap display complete.

• An alternative is an oscillator that only updates seconds per half cycle (half frequency) once per
half-period

96

WaveHalfPeriodSine, WaveHalfPeriodTriangle, WaveHalfPeriodPulse, WaveHalfPeriodCosine

:: tpmap 100 whps,e,(bg,rp,(2,6,10,14,18)),0,0,10

waveHalfPeriodSine, event, (basketGen, randomPermutate, (2,6,10,14,18)), 0,

(constant, 0), (constant, 10)

TPmap display complete.

:: tpmap 100 whpt,e,(bg,rp,(2,6,10,14,18)),0,0,10

waveHalfPeriodTriangle, event, (basketGen, randomPermutate, (2,6,10,14,18)), 0,

(constant, 0), (constant, 10)

TPmap display complete.

:: tpmap 100 whpp,e,(bg,rp,(2,6,10,14,18)),0,0,10

waveHalfPeriodPulse, event, (basketGen, randomPermutate, (2,6,10,14,18)), 0,

(constant, 0), (constant, 10)

TPmap display complete.

10.3. Markov Analysis and Generation: Basics

• Examine an ordered sequence states

• Given an event at n-1, what is the probability of any state (of all possible states) at n?

97

•	 Look at all possible n-1 states, and find how often they move to each state at n

•	 Use these probabilities to re-generate new sequences (where more frequent states result in
proportionally weighted randomness)

10.4. Markov Analysis and Generation: Orders

•	 Zeroth order: examine 0 past states; given all possible states, generate n based on the distribution
of all states.

•	 First order: examine 1 past state; generate n based on the probability of n-1 moving to each state.

•	 Second order: examine 2 past states; generate n based on the probability of n-2 and n-1 moving to
each state.

•	 Second order: examine 3 past states; generate n based on the probability of n-3, n-2 and n-1
moving to each state.

•	 The greater the order, the more the past is taken into account in determining the next state

•	 The greater the order, the more the output is similar to the source

10.5. Reading: Ames: The Markov Process as a Compositional Model:
A Survey and Tutorial

•	 Ames, C. 1989. “The Markov Process as a Compositional Model: A Survey and Tutorial.”
Leonardo 22(2): 175-187.

•	 What does Ames refer to by stationary probabilities

•	 What does Ames claim as the greatest strength of Markov chains?

•	 What technique does Ames suggests as a way to create large-scale behavior out of Markov chains?

10.6. Markov Chains: History

•	 1906: Andrey Andreyevich Markov, Russian mathematician

Used Markov chains to show tendencies in written Russian in a text by Pushkin

•	 1949: Claude E. Shannon and Warren Weaver: A Mathematical Theory of Communication; associated
with information theory

•	 Demonstrate using stochastic processes to generate English sentences

•	 Suggest application to any sequence of symbols, including music

98

10.7. Markov Chains: History: Early Musical Applications

• The “Banal Tune-Maker” of Richard C. Pinkerton (1956)

© Scientific American, Inc. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

99

http://ocw.mit.edu/fairuse

© Scientific American, Inc. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

• John F. Sowa with a Geniac “Electronic Brain Kit” (1957)

100

http://ocw.mit.edu/fairuse

© Oliver Garfield Co., Inc. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

101

http://ocw.mit.edu/fairuse

© Oliver Garfield Co., Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

102

http://ocw.mit.edu/fairuse

Courtesy of John F. Sowa. Used with permission.

103

•	 1961: Harry Olson and Herbert Belar build a sophisticated electronic machine that produced and
synthesized melodices based on Markovian pitch and rhythm analysis of eleven Stephen Collins
Foster songs (1961)

104

Source: Olson, H. F., and H. Belar. "Aid to Music Composition Employing a Random Probability System."
J. Acoust. Soc. Am. 33, no. 9 (1961): 1163-1170.
© Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

105

Source: Olson, H. F., and H. Belar. "Aid to Music Composition Employing a Random Probability System."
J. Acoust. Soc. Am. 33, no. 9 (1961): 1163-1170.
© Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

• David Zicarelli’s Jam Factory and Joel Chadabe and Zicarelli’s M (1987)

106

Source: Olson, H. F., and H. Belar. "Aid to Music Composition Employing a Random Probability System."
J. Acoust. Soc. Am. 33, no. 9 (1961): 1163-1170.
© Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Courtesy of Cycling '74. Used with permission.

107

10.8. Markov Chains: Example: Shakespear

• Hamlet Act 3, Scene 1, Soliloquy

YouTube (http://www.youtube.com/watch?v=-JD6gOrARk4)

• Shakespear: Hamlet: “To be or not to be”

To be, or not to be- that is the question:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous fortune

Or to take arms against a sea of troubles,

And by opposing end them. To die- to sleep-

No more; and by a sleep to say we end

The heartache, and the thousand natural shocks

That flesh is heir to. ’Tis a consummation

Devoutly to be wish’d. To die- to sleep.

To sleep- perchance to dream: ay, there’s the rub!

For in that sleep of death what dreams may come

When we have shuffled off this mortal coil,

Must give us pause. There’s the respect

That makes calamity of so long life.

For who would bear the whips and scorns of time,

Th’ oppressor’s wrong, the proud man’s contumely,

The pangs of despis’d love, the law’s delay,

The insolence of office, and the spurns

That patient merit of th’ unworthy takes,

When he himself might his quietus make

With a bare bodkin? Who would these fardels bear,

To grunt and sweat under a weary life,

But that the dread of something after death-

The undiscover’d country, from whose bourn

No traveller returns- puzzles the will,

And makes us rather bear those ills we have

Than fly to others that we know not of?

Thus conscience does make cowards of us all,

And thus the native hue of resolution

Is sicklied o'er with the pale cast of thought,

And enterprises of great pith and moment

With this regard their currents turn awry

And lose the name of action.- Soft you now!

The fair Ophelia!- Nymph, in thy orisons

Be all my sins rememb'red.

• 0-order Markov re-generation

wish’d. contumely, Be contumely, the Devoutly thus pangs by thy of fardels makes name
consummation pale Who we to respect coil, the to be and To Nymph, Th’ That No ’Tis There’s
And the cowards of that When the weary or To a against wrong, And name With th’ we thought,
the sins That To my wrong, off perchance those Be scorns To his a that With others The quietus
currents fly wrong, weary that To traveller time, When have scorns wrong, pale traveller against of
make scorns quietus of delay, sleep. awry With to currents in and With cast coil, But have may
arms Th’ take arrows and The those their to regard the end we coil, fortune take

• 1-order Markov re-generation

108

http://www.youtube.com/watch?v=-JD6gOrARk4

die to others that is the name of so long life. For in the will, And enterprises of great pith and
scorns of thought, And enterprises of thought, And lose the proud man’s contumely, The
undiscover’d country, from whose bourn No more; and the whips and moment With this regard
their currents turn awry And lose the proud man’s contumely, The slings and sweat under a sleep
perchance to dream: ay, there’s the whips and scorns of office, and arrows of great pith and
scorns of something after death what dreams may come When he himself might his quietus make
With this regard their currents turn awry And makes us pause. There’s the law’s delay, The
heartache, and arrows of

• 2-order Markov re-generation

To be, or not to be wish’d. To die to sleep No more; and by a sleep to say we end The heartache,
and the thousand natural shocks That flesh is heir to. ’Tis a consummation Devoutly to be wish’d.
To die to sleep No more; and by a sleep to say we end The heartache, and the thousand natural
shocks That flesh is heir to. ’Tis a consummation Devoutly to be wish’d. To die to sleep No
more; and by a sleep to say we end The heartache, and the thousand natural shocks That flesh is
heir to. ’Tis a consummation Devoutly to be that is the question: Whether ’tis nobler in the mind
to suffer The slings and

• 3-order Markov re-generation

the name of action. Soft you now! The fair Ophelia! Nymph, in thy orisons Be all my sins
rememb'red. To be, or not to be wish’d. To die to sleep No more; and by a sleep to say we end
The heartache, and the thousand natural shocks That flesh is heir to. ’Tis a consummation
Devoutly to be that is the question: Whether ’tis nobler in the mind to suffer The slings and
arrows of outrageous fortune Or to take arms against a sea of troubles, And by opposing end
them. To die to sleep No more; and by a sleep to say we end The heartache, and the spurns That
patient merit of th’ unworthy takes, When he himself

• 4-order Markov re-generation

those ills we have Than fly to others that we know not of? Thus conscience does make cowards
of us all, And thus the native hue of resolution Is sicklied o'er with the pale cast of thought, And
enterprises of great pith and moment With this regard their currents turn awry And lose the name
of action. Soft you now! The fair Ophelia! Nymph, in thy orisons Be all my sins rememb'red. To
be, or not to be wish’d. To die to sleep No more; and by a sleep to say we end The heartache, and
the thousand natural shocks That flesh is heir to. ’Tis a consummation Devoutly to be that is the
question: Whether ’tis nobler in the

• 5-order Markov re-generation

we have shuffled off this mortal coil, Must give us pause. There’s the respect That makes calamity
of so long life. For who would bear the whips and scorns of time, Th’ oppressor’s wrong, the
proud man’s contumely, The pangs of despis’d love, the law’s delay, The insolence of office, and
the spurns That patient merit of th’ unworthy takes, When he himself might his quietus make
With a bare bodkin? Who would these fardels bear, To grunt and sweat under a weary life, But
that the dread of something after death The undiscover’d country, from whose bourn No

109

traveller returns puzzles the will, And makes us rather bear those ills we have Than fly to others
that we know

10.9. Markov Chains: Example: Mozart Symphony 40

• Audio: Mozart: Symphony 40

• Pitch and rhythm based Markov regeneration at various orders

• Markov-generated examples [markovMozart.py]

10.10. Markov Analysis and Generation with athenaCL Python
Libraries: Text

• Use the athenaCL Markov module

• Create a markov.Transition instances to do analysis

• Example: string data [markovShakespear.py]

import random

from athenaCL.libATH import markov

src = """To be, or not to be- that is the question:

Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune

Or to take arms against a sea of troubles,

And by opposing end them. To die- to sleep-

No more; and by a sleep to say we end

The heartache, and the thousand natural shocks

That flesh is heir to. 'Tis a consummation

Devoutly to be wish'd. To die- to sleep.

To sleep- perchance to dream: ay, there’s the rub!

For in that sleep of death what dreams may come

When we have shuffled off this mortal coil,

Must give us pause. There’s the respect

That makes calamity of so long life.

For who would bear the whips and scorns of time,

Th' oppressor’s wrong, the proud man’s contumely,

The pangs of despis'd love, the law’s delay,

The insolence of office, and the spurns

That patient merit of th' unworthy takes,

When he himself might his quietus make

With a bare bodkin? Who would these fardels bear,

To grunt and sweat under a weary life,

But that the dread of something after death-

The undiscover'd country, from whose bourn

No traveller returns- puzzles the will,

And makes us rather bear those ills we have

Than fly to others that we know not of?

110

Thus conscience does make cowards of us all,

And thus the native hue of resolution

Is sicklied o'er with the pale cast of thought,

And enterprises of great pith and moment

With this regard their currents turn awry

And lose the name of action.- Soft you now!

The fair Ophelia!- Nymph, in thy orisons

Be all my sins rememb'red."""

orderMax = 2 # large numbers here will take time!

mkObj = markov.Transition()

mkObj.loadString(src, orderMax) # source and max order1

for order in range(0, orderMax+1):

print('requested order: ' + order)

msg = []

for x in range(120):

val = random.random()

msg.append(mkObj.next(val, msg, order))

 print(' '.join(msg) + '\n')

10.11. Markov Analysis and Generation with athenaCL Python
Libraries: MIDI

• Example: pitch and rhythm data [markovMozart.py]

import os, random, sys

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH import markov

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

from athenaCL.libATH.libPmtr import basePmtr

OUTDIR = '/Volumes/xdisc/_scratch'

BEATDUR = rhythm.bpmToBeatTime(128) # provide bpm value

def getInstName(nameMatch):

for name, pgm in generalMidi.gmProgramNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

return None

def convertPitch(src, octShift):

post = []

for pitch in src:

 midiPs = pitchTools.psToMidi(pitchTools.psNameToPs(pitch))

midiPs = midiPs + (12*octShift)

post.append(midiPs)

return post # a list of integers

def convertRhythm(src, scale):

post = []

for rhythm in src:

post.append(rhythm*scale)

 return post # a list of integers

def mozartMarkov(events, order, octaveShift, rhythmScale):

pitchSequence = [

111

 'E$5','D5','D5','E$5','D5','D5','E$5','D5','D5',

 'B$5','B$5','A5','G5','G5','F5','E$5','E$5','D5','C5','C5',

 'D5','C5','C5', 'D5','C5','C5', 'D5','C5','C5',

 'A5','A5','G5','G$5','G$5','E$5','D5','D5','C5','B$4','B$4',

'B$5','A5','A5','C6','G$5','A5','G5','D5',

 'B$5','A5','A5','C6','G$5','A5','G5','B$5','A5','G5','F5','E$5',

 'D5','D$5','D5',

 'D4','D4','D4', 'D4','D4','D4',

'D4','D4','D4', 'D4','D4','D4', 'D4','D4','D4']

rhtyhmSequence = [

.5, .5, 1, .5, .5, 1, .5, .5, 1, 1,

 .5, .5, 1, .5, .5, 1, .5, .5, 1, 2,

 .5, .5, 1, .5, .5, 1, .5, .5, 1,

 2, .5, .5, 1, .5, .5, 1, .5, .5, 1, 2,

 .5, .5, 1, 1, 1, 1, 1, 2,

 .5, .5, 1, 1, 1, 1, 1, 1, .5, .5, .5, .5,

 4, 4, 3,

 .5, .5, 3, .5, .5, 3,

.5, .5, 1, .5, .5, 1, .5, .5, 1]

 mkPitch = markov.Transition()

 mkRhythm = markov.Transition()

mkPitch.loadList(convertPitch(pitchSequence, octaveShift), order)

mkRhythm.loadList(convertRhythm(rhtyhmSequence, rhythmScale), order)

 pitchHistory = []

rhythmHistory = []

 ampGen = parameter.factory(['ws','e',4,0,100,120]) # sine osc b/n 90 and 120

f = random.choice(range(50,70))

phase = random.random()

panGen = parameter.factory(['ws','e',f,phase,20,107])

score = []

tStart = 0.0

 for i in range(events):

pitch = mkPitch.next(random.random(), pitchHistory, order)

pitchHistory.append(pitch)

rhythm = mkRhythm.next(random.random(), rhythmHistory, order)

rhythmHistory.append(rhythm)

 dur = BEATDUR * rhythm

 amp = int(round(ampGen(0)))

pan = int(round(panGen(0)))

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart += dur

 return score

def main(order):

trackList = []

 score = mozartMarkov(100, order, -1, 1)

 trackList.append(['part-a', getInstName('piano'), None, score])

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

mObj.write(path) # writes in cwd

osTools.openMedia(path)

if __name__ == '__main__':

if len(sys.argv) != 2:

print(“args: order”)

else:

 main(int(sys.argv[1]))

112

10.12. Reading: Ariza: Beyond the Transition Matrix: A Language-
Independent, String-Based Input Notation for Incomplete, Multiple-
Order, Static Markov Transition Values

•	 Ariza, C. 2006. “Beyond the Transition Matrix: A Language-Independent, String-Based Input
Notation for Incomplete, Multiple-Order, Static Markov Transition Values.” Internet:
http://www.flexatone.net/docs/btmimosmtv.pdf.

•	 What are some potential advantages of the transition string over the transition matrix?

•	 Why might modulating Markov order be desirable?

10.13. Utility Markov Analysis and Generation within athenaCL

•	 AUma command can be used to get an analysis string for an space-separated sequence

:: auma

maximum analysis order: 1

enter space-separated string: 0 1 1 1 1 0 1 2 3 4 0 0 2 1 3 2 4 0 0

AthenaUtility Markov Analysis

a{0}b{1}c{2}d{3}e{4}:{a=6|b=6|c=3|d=2|e=2}a:{a=3|b=2|c=1}b:{a=1|b=3|c=1|d=1}c:{b=1|d

=1|e=1}d:{c=1|e=1}e:{a=2}

•	 AUmg command can be used to use a transition string to generate values

:: aumg

number of generations: 20

desired order: 1

enter Markov transition string:

a{0}b{1}c{2}d{3}e{4}:{a=6|b=6|c=3|d=2|e=2}a:{a=3|b=2|c=1}b:{a=1|b=3|c=1|d=1}c:{b=1|d

=1|e=1}d:{c=1|e=1}e:{a=2}

AthenaUtility Markov Generator

4,0,1,1,1,1,1,3,2,1,1,1,1,1,2,4,0,0,1,0

10.14. Markov-Based Proportional Rhythm Generation

•	 The MarkovPulse Generator permits specifying proportional rhythms (pulse truples) as Markov
states

:: tpv markovpulse

Rhythm Generator ParameterObject

{name,documentation}

MarkovPulse markovPulse, transitionString, parameterObject

Description: Produces Pulse sequences by means of a Markov

 transition string specification and a dynamic transition

order generator. The Markov transition string must define

symbols that specify valid Pulses. Markov transition order

is specified by a ParameterObject that produces values

between 0 and the maximum order available in the Markov

 transition string. If generated-orders are greater than

those available, the largest available transition order will

 be used. Floating-point order values are treated as

probabilistic weightings: for example, a transition of 1.5

113

http://www.flexatone.net/docs/btmimosmtv.pdf

 offers equal probability of first or second order selection.

Arguments: (1) name, (2) transitionString, (3)

parameterObject {order value}

•	 Command sequence:

•	 emo mp

•	 tin a 64

•	 simple zero-order selection

tie r mp,a{4,1}b{4,3}c{4,5}d{4,7}:{a=4|b=3|c=2|d=1}

•	 first order generation that encourages movement toward the shortest duration

tie r mp,a{8,1}b{4,3}c{4,7}d{4,13}a:{a=9|d=1}b:{a=5|c=1}c:{b=1}d:{c=1},(c,1)

•	 eln; elh

10.15. Markov-Based Value Generation

•	 The MarkovValue Generator permits specifying any value as Markov states, and dynamically
moving between different Markov orders

:: tpv mv

Generator ParameterObject

{name,documentation}

MarkovValue markovValue, transitionString, parameterObject

Description: Produces values by means of a Markov transition

string specification and a dynamic transition order

generator. Markov transition order is specified by a

 ParameterObject that produces values between 0 and the

maximum order available in the Markov transition string. If

 generated-orders are greater than those available, the

 largest available transition order will be used. Floating-

point order values are treated as probabilistic weightings:

for example, a transition of 1.5 offers equal probability of

 first or second order selection. Arguments: (1) name, (2)

transitionString, (3) parameterObject {order value}

:: tpmap 100

mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d=1}d:{c=

3|e=1}e:{d=1},(c,1)

markovValue, a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:

{b=3|d=1}d:{c=3|e=1}e:{d=1}, (constant, 1)

TPmap display complete.

114

• The modulating the order of the Markov chain can create dynamic long-range behavior

:: tpmap 100

mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d=1}d:{c=

3|e=1}e:{d=1},(wp,e,50,0,1,0)

markovValue, a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:

{b=3|d=1}d:{c=3|e=1}e:{d=1},

TPmap display complete.

• Command sequence:

• emo m

• tin a 26

• rhythm generated with absolute values via ConvertSecond and a dynamic WaveHalfPeriodSine generator

tie r cs,(whps,e,(bg,rp,(5,10,15,20)),0,.200,.050)

• first-order selection

tie f
mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d
=1}d:{c=3|e=1}e:{d=1},(c,1)

• dynamic first and zero order selection

tie f
mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d
=1}d:{c=3|e=1}e:{d=1},(wp,e,100,0,1,0)

• zero-order Markov amplitude values

115

tie a mv,a{.4}b{.6}c{.8}d{1}:{a=6|b=4|c=3|d=1}

•	 amplitude values scaled by a dynamic WaveHalfPeriodPulse

tie a om,(mv,a{.4}b{.6}c{.8}d{1}:{a=6|b=4|c=3|d=1}),(whpp,e,(bg,rp,(5,15,10)))

•	 octave values are provided by a first-order Markov chain

tie o mv,a{0}b{-1}c{-2}d{-3}a:{a=9|d=1}b:{a=3|b=1}c:{b=3|c=1}d:{c=1},(c,1)

•	 tie t 0,60

•	 eln; elh

10.16. Markov-Based Combined Analysis and Generation

•	 The MarkovGeneratorAnalysis Generator permits using the output of a ParameterObject as the
source for Markov analysis

:: tpv mga

Generator ParameterObject

{name,documentation}

MarkovGeneratorAnalysis markovGeneratorAnalysis, parameterObject, valueCount,

maxAnalysisOrder, parameterObject

Description: Produces values by means of a Markov

 analysis of values provided by a source Generator

ParameterObject; the analysis of these values is used

with a dynamic transition order Generator to produce new

values. The number of values drawn from the source

 Generator is specified with the valueCount argument. The

maximum order of analysis is specified with the

maxAnalysisOrder argument. Markov transition order is

specified by a ParameterObject that produces values

between 0 and the maximum order available in the Markov

 transition string. If generated-orders are greater than

those available, the largest available transition order

 will be used. Floating-point order values are treated as

probabilistic weightings: for example, a transition of

1.5 offers equal probability of first or second order

selection. Arguments: (1) name, (2) parameterObject

{source Generator}, (3) valueCount, (4)

 maxAnalysisOrder, (5) parameterObject {output order

value}

•	 First order analysis and regeneration of a sine oscillation

:: tpmap 100 mga,(ws,e,30),30,2,(c,1)

markovGeneratorAnalysis, (waveSine, event, (constant, 30), 0, (constant, 0),

(constant, 1)), 30, 2, (constant, 1)

TPmap display complete.

116

• Analysis and regeneration of a sine oscillation with dynamic orders from 0.5 to 1.5

Floating-point orders are treated as probabilistic weightings toward nearest integers

:: tpmap 100 mga,(ws,e,30),30,2,(ws,e,50,0,0.5,1.5)

markovGeneratorAnalysis, (waveSine, event, (constant, 30), 0, (constant, 0),

(constant, 1)), 30, 2, (waveSine, event, (constant, 50), 0, (constant, 0.5),

(constant, 1.5))

TPmap display complete.

10.17. Resuming PD Tutorial

• PD Tutorial

117

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

