
Chapter 18. Meeting 18, Approaches: Genetic Algorithms 

18.1. Announcements 

•	 Next Quiz: Thursday, 15 April (inclusive) 

•	 Sonic system draft due: 27 April 

•	 No class Tuesday, 20 April 

18.2. Genetic Algorithms 

•	 Model states of a system (or processes) as an allele, or a fundamental unit of expression 

•	 Two or more alleles form a chromosome; order of alleles generally is significant 

•	 Chromosomes, representing individuals, are collected in a population 

•	 Using a fitness function, each chromosome is given a fitness value 

•	 Chromosomes are mated under conditions where more-fit chromosomes are more likely to mate 

•	 Two chromosomes can produce two offspring (replacing themselves) 

•	 Each new chromosome is created by either cloning parents or intermingling their alleles 

through one or two-point crossover 


•	 Each child chromosome may undergo mutation at the level of single allele changes or multiple 
allele changes 

•	 The population is completely replaced through mating 

•	 Numerous cycles of regeneration are completed 

•	 The goal is for the population to evolve the most fit chromosome 

18.3. GA History and Common Applications 

•	 First described in depth by John Holland in 1975 

Holland, J. 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications 
to Biology, Control, and Artificial Intelligence. Michigan: The University of Michigan Press. 

•	 Employed in tasks ranging from computational protein engineering, automatic programming, and 
the modeling of economic and ecological systems. 
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• Generally best suited for solving problems that lack rigorous definition 

18.4. Encoding the Alleles and Chromosomes 

• Many GA designs use binary encoding: 1s and 0s encode desired parameters 

• Real-value encoding uses an alphabet of many characters or real numbers 

• Many GAs use fixed length chromosomes 

18.5. Mutations 

• Binary GAs often perform bit-level manipulations 

• Bits can be flipped 

• Segments of bits can be deleted, repeated, or reversed 

• Domain-specific GA mutations are possible 

18.6. The Fitness Function and Finding Solutions 

• The fitness function is the key 

• The fitness function expresses the priorities of the system 

• GAs can evolve toward a local fitness yet get stuck, not reaching the maximum fitness 

• Some systems have employed human-mediated fitness evaluation 

18.7. A GA of Pulse Triple Chromosomes 

• Project conducted in 2001-2002 

Ariza, C. 2002. “Prokaryotic Groove: Rhythmic Cycles as Real-Value Encoded Genetic 
Algorithms.” In Proceedings of the International Computer Music Conference. San Francisco: International 
Computer Music Association. 561-567. Internet: http://www.flexatone.net/docs/pgrcrvega.pdf. 

• First design for sub-system models in athenaCL, exposed through ParameterObjects 

• Alleles are pulse triples 

• Chromosome is a sequence of alleles where order is musically performed order 

• Fitness function is based on similarity to a target chromosome 
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•	 Find temporal distance of note durations, rest durations, and total duration (larger values mean 
greater distance) 

•	 Find weighted duration of non-matched alleles (non-exact pulse triple matches, where count is 
multiplied by average allele duration) 

•	 Find weighted duration of non-matched duration ratios (non matching pulse triple ratios, 

where count is multiplied by average allele duration)


•	 Sum of these values weighted with values found through experiment: noteDistance*1.50, 

restDistance*1.50, durDistance*2.33, noMatchAlleleDistance*1.00, 

noMatchValueDistance*0.66.


•	 An inverse relation: the larger the value, the greater the distance from the target 

•	 Two point crossover employed in mating 

•	 Mutations are specific to pulse triples 

•	 Ratio equivalence: multiply or divide divisor or multiplier by 2 or 3 

•	 Divisor mutate: add or subtract 1 to divisor 

•	 Multiplier mutate: add or subtract 1 to multiplier 

•	 Flip note/rest state 

•	 Inversion: select to lic, reverse the segment with the retrograde of the segment 

•	 Population is initialized through random arrangements of pulse triples found in the source 

•	 For each generation, retain the chromosome that is the best fit (and is unique) 

•	 After generations are complete, order best-fit chromosomes by fitness 

•	 Example: python genetic.py 

18.8. GA as ParameterObject 

•	 The gaRhythm ParameterObject 

:: tpv garhythm

Rhythm Generator ParameterObject

{name,documentation}

GaRhythm gaRhythm, pulseList, crossover, mutation, elitism,


selectionString, populationSize

Description: Uses a genetic algorithm to create rhythmic

variants of a source rhythm. Crossover rate is a percentage,

expressed within the unit interval, of genetic crossings

that undergo crossover. Mutation rate is a percentage,

expressed within the unit interval, of genetic crossings
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                    that undergo mutation. Elitism rate is a percentage,

expressed within the unit interval, of the entire population

that passes into the next population unchanged. All rhythms

in the final population are added to a list. Pulses are

chosen from this list using the selector specified by the

control argument. Arguments: (1) name, (2) pulseList {a list


                    of Pulse notations}, (3) crossover, (4) mutation, (5)

elitism, (6) selectionString {“randomChoice”, “randomWalk”,

“randomPermutate”, “orderedCyclic”,


                    “orderedCyclicRetrograde”, “orderedOscillate”}, (7) 

populationSize


18.9. Evolving African Drum Patterns with a GA 

• Slow Agbekor (Chernoff 1979) 

© University of Chicago Press. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

• Command sequence 1: exploring two durations: 

• emo mp 

• tmo lg 
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• tin a 61 

• bell line, set to loop 

tie r l,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)] 

• accent the first of each articulation 

tie a bg,oc,(1,.5,.5,.5,.5,.5,.5) 

• tin b 68 

• create genetic variations using a high mutation rate 

tie r gr,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)],.7,.25,0 

• tie a bg,oc,(1,.5,.5,.5,.5,.5,.5) 

• eln; elh 

• Command sequence 2: combinations of rests and silences 

• emo mp 

• tmo lg 

• tin a 61 

• kagan line, set to loop 

tie r l,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0), (4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1)] 

• accent the first of each articulation 

tie a bg,oc,(.5,1,.5, .5,.5,.5, .5,.5,.5, .5,.5,.5) 

• turning on silence mode will use parameters even for rests 

timode s on 

• tin b 68 

• create genetic variations using a high crossover, no mutation 

tie r gr,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0), 

(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1)],1,0,0


• tie a bg,oc,(.5,1,.5, .5,.5,.5, .5,.5,.5, .5,.5,.5) 

• turning on silence mode will use parameters even for rests 
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timode s on 

• eln; elh 

• Command sequence 3: multiple rhythmic values: 

• emo mp 

• tmo lg 

• tin a 61 

• kroboto line, set to loop 

tie r l,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1), 

(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)]


• accent the first of each articulation 

tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5) 

• tin b 68 

• create genetic variations using a high crossover and mutation rate and some elitism 

tie r gr,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1), 

(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)],.9,.25,0.1


• tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5) 

• eln; elh 

18.10. Polyphonic African Drum Patterns with a GA 

• Slow Agbekor (Chernoff 1979) 
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• Command sequence: 

• emo mp 

• tmo lg 

• tin a 45 

• tie r gr,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)],.7,.15,0 

• tie a bg,oc,(1,.5,.5,.5,.5,.5,.5) 

• tin b 60 

• create genetic variations using a high crossover, no mutation 

tie r gr,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0), 
(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1)],1,0,0 

• tie a bg,oc,(.5,1,.5, .5,.5,.5, .5,.5,.5, .5,.5,.5) 
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•	 turning on silence mode will use parameters even for rests 

timode s on 

•	 tin c 68 

•	 create genetic variations using a high crossover and mutation rate and some elitism 

tie r gr,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1), 

(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)],.9,.25,0.1


•	 tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5) 

•	 eln; elh 

18.11. Reading: Biles, GenJam in Perspective: A Tentative Taxonomy 
for GA Music and Art Systems 

•	 Biles, J. A. 2003. “GenJam in Perspective: A Tentative Taxonomy for GA Music and Art 
Systems.” Leonardo 36(1): 43-45. 

•	 What are the alleles and chromosomes in this study? 

•	 At what level of the chromosome do the mutations operate? What types of mutations are used 

•	 How is fitness measured? 

•	 How does the concept of “musically meaningful mutations” deviate from conventional GAs? 

•	 Which does the author suggest are more solution-rich: artistic domains or non-artistic domains? 

18.12. GenJam Example 

•	 Video: Demonstration created in 2003 

18.13. Reading: Magnus, Evolving electroacoustic music: the 
application of genetic algorithms to time-domain waveforms 

•	 Magnus, C. 2004. “Evolving electroacoustic music: the application of genetic algorithms to time-
domain waveforms.” In Proceedings of the International Computer Music Conference. San Francisco: 
International Computer Music Association. 173-176. 
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•	 What are the alleles and chromosomes in this study? 

•	 What types of mutations were explored in this study? 

•	 Is there a distinction between genotype and phenotype? 

•	 The author writes: “at each stage of programming, choices must be made that introduce designer 
bias into the system”; it this a problem? 
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