
21M.380

Music and Technology: Algorithmic and Generative Music

Systems

Christopher Ariza

Table of Contents
1. Meeting 1, Foundations: Algorithmic and Generative Music Systems 1

2. Meeting 2, Foundations: Musical Parameters, Mappings, and Tools................................ 20

3. Meeting 3, Approaches: Distributions and Stochastics .. 32

4. Meeting 4, Foundations: Historical and Categorical Perspectives.....................................47

5. Meeting 5, History: Serialism, Loops, Tiling, and Phasing.. 48

6. Meeting 6, Workshop...60

7. Meeting 7, History: Gottfried Michael Koenig ...62

8. Meeting 8, Approaches: Permutations, Generators, and Chaos ...72

9. Meeting 9, History: Lejaren Hiller .. 82

10. Meeting 10, Approaches: Probability and Markov Chains .. 96

11. Meeting 11, Workshop ...118

12. Meeting 12, History: Iannis Xenakis.. 125

13. Meeting 13, Approaches: Non-Standard Synthesis.. 136

14. Meeting 14, Approaches: Granular and Concatenative Synthesis 152

15. Meeting 15, Approaches: Mapping, Sonification, and Data Bending............................. 165

16. Meeting 16, Workshop.. 173

17. Meeting 17, Approaches: Cellular Automata ... 174

18. Meeting 18, Approaches: Genetic Algorithms ... 197

19. Meeting 19, Approaches: Grammars and L-Systems... 206

20. Meeting 20, History: Mechanical Musical Automata.. 223

21. Meeting 21, Workshop.. 254

22. Meeting 22, Approaches: Agents and Ecological Models... 255

23. Meeting 23, Approaches: Expert Systems and Style Emulation 263

24. Meeting 24, Discussion: Aesthetics and Evaluations.. 267

25. Meeting 25.. 278

26. Meeting 26.. 279

References ... 280

iii

Chapter 1. Meeting 1, Foundations: Algorithmic and
Generative Music Systems

1.1. Announcements

• 21M.380: Music Technology: Algorithmic and Generative Music Systems

1.2. Overview

• The last 10 years of algorithmic and generative music systems

• What are algorithmic and generative music systems?

• Two examples

• About this course

1.3. Generative Systems: Definitions

• Machines that make music

• Humans that use or make machines to make music

• Humans that use or make machines to help them make music

• Humans that use or make machines to help them make components of their music

1.4. A New Field of Compositional Research

• Generative music with a computer took many names:

• Algorithmic composition

• Computer music

• Score synthesis

• Computer-aided (or -assisted) composition

• Computer-aided algorithmic composition (CAAC)

• A new type of generative (rather than reductive) music theory

1

1.5. Computer-Aided Algorithmic Composition: Definition

•	 A negative definition

•	 A CAAC system is software that facilitates the generation of new music by means other than the
manipulation of a direct music representation (Ariza 2005b)

•	 New music: a unique musical variant, not just as copy

•	 Output may be in the form of any sound or sound parameter data, from a sequence of samples to
the notation of a complete composition

•	 A “direct music representation” refers to a linear, literal, or symbolic representation of complete
musical events, such as an event list (a score in Western notation or a MIDI file) or an ordered list
of amplitude values (a digital audio file or stream)

•	 If the representation provided to the user is the same as the output, the representation may
reasonably be considered direct.

•	 Anything that is not a direct representation employs CAAC

1.6. A Wide Range of Interactions and Collaborations

•	 Machines can be used to create complete structucres

•	 Machines can be used to create small fragments that are manually integrated

•	 Machines can be used to create guidelines, contexts, or situations for human music making

1.7. Two Examples

•	 I: Minuets and Contredances

•	 II: babelcast

1.8. I: Minuets and Contredances

•	 Minuet: a French dance in moderate triple meter, popular in aristocratic society from mid 17th
century to late 18th century (Grove Music Online)

•	 Textbook composition method: two or four bar groups, each section being 8 or 16 bars long

•	 Audio played in class: Bach: Minuet in G, MWV Anh 114

2

•	 Audio played in class: Mozart: Minuet in G, K. 1

1.9. I: Minutes and Contredances: Musical Dice Games

•	 1757-1812: at least 20 musical dices games published (Kirnberger, CPE Bach, J Haydn, Mozart,
others)

•	 Musical composition game, one of many 18th-century parlor games (Hedges 1978, p. 180)

•	 A table is used to translate the sum of two dice to appropriate score positions

•	 Score positions specify complete measure-length segments for each possible phrase position

•	 German composer Kirnberger published one of the first in 1757

3

4

5

•	 Numerous versions of Musikalisches Würfelspiel attributed to Mozart

•	 The version attributed to Mozart was first published two years after his death by Juhan Julius
Hummel (1793) and includes two similar games: one for Minuets and another for contredances

•	 Two 8-bar phrases are created from combining 176 pre-composed measures

•	 The last bar of each phrase always uses the same measure

1.10. I: Minuets and Contredances: The First Computer
Implementation

•	 1955: David Caplin and Dietrich Prinz write a program to generate and synthesize the Mozart
Dice Game for contredances on a Ferranti Mark 1* (MIRACLE) at Shell laboratories in
Amsterdam (Ariza 2010)

•	 Likely the first use of a computer to generate music

•	 Ferranti Mark 1* (MIRACLE)

6

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Audio sample played in class.

1.11. I: Minutes and Contredances: Motivations and Meanings

•	 Why do this? How is this possible?

•	 Is new music being made?

•	 What meaning, if any, is conveyed?

1.12. II: The babelcast

•	 An algorithmic, computer generated podcast series (Ariza 2007b)

Audio RSS URL: (http://www.flexatone.net/babelcast.xml)

Video RSS URL: (http://www.flexatone.net/babelcast-zoetrope.xml)

•	 First released 5 August 2005, around one episode a month since

•	 Created with athenaCL, Python, and Csound

•	 Distributed in three formats: mp3, (-mosaic) m4a, and (-zoetrope) m4v

1.13. II: The babelcast: Information Abduction and Reduction

•	 Gather sounds of politicians and political commentators

•	 Gather images of politicians and political commentators

•	 Favor primary sources

•	 Favor massively redundant surplus media: images and sounds that are obtained by many sources

1.14. II: The babelcast: The Process

•	 Sounds are manually collected with minimal editing

•	 images are automatically downloaded and then manually filtered

•	 Around 40 Texture-generating procedures for athenaCL are configured for each episode

•	 Some Textures create noises

7

•	 Some Textures process samples

•	 Csound instruments use vocoders, granular synthesis methods, and other techniques

•	 Between 100 and 200 Textures are generated and mixed into a single audio file

•	 Images are randomly selected, cropped, and zoomed

1.15. II: Listening

•	 babelcast-zoetrope-2009.12.27

(http://www.flexatone.net/video/m4v/babelcast-zoetrope-2009.12.27.m4v)

1.16. II: The babelcast: Precedents

•	 1989: Umberto Ecco, The Open Work

•	 Leaving parts of a work to chance

•	 Works that “reject the definitive, concluded message and multiply the formal possibilities of the
distribution of their elements” (Eco 1989, p. 3).

•	 1986: William Gibson, Count Zero

•	 Artificial intelligence that sends randomly constructed human junk, found in space, back down
to earth, which is assumed to be forged works of artists Joseph Cornell

•	 American “assemblage” artist Joseph Cornell (1903-1972)

•	 Cornell: Object (Roses des Vents) (1942-53)

8

1.17. II: The babelcast: Motivations and Meanings

• Why do this?

• What meaning, if any, is conveyed?

9

© The Joseph and Robert Cornell Memorial Foundation / Visual Artists
and Galleries Association, Inc. (VAGA). This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

1.18. 21M.380: Objectives

•	 To gain a critical understanding of the history, techniques, and designs of algorithmic and
generative music systems

•	 To develop musical creativity and expression in the use and design of algorithmic and generative
music systems

•	 To critically evaluate claims of aesthetic and technological advancement, quality, and promise

1.19. 21M.380: Areas of Focus

•	 History: Mechanical Musical Automata, Serialism, Phasing, Gottfried Michael Koenig, Lejaren
Hiller, Iannis Xenakis

•	 Approaches: Distributions and Stochastics, Probability and Markov Chains, Cellular Automata,
Genetic Algorithms, Grammars and L-Systems, Agents and Ecological Models, Expert Systems
and Style Emulation, Non-Standard Synthesis, Granular and Concatenative Synthesis, Mapping,
Sonification, and Data Bending

•	 Workshops and Discussion

1.20. 21M.380: Prerequisites

•	 None but curiosity, willingness to experiment

•	 Programming in Python or other languages useful, but not required

•	 Experience with digital audio and DAW software desirable, but not required

1.21. 21M.380: Course Meetings and Materials

•	 Syllabus:

•	 Two types of meetings

•	 Topic meetings: focused on material in readings, listening, and themes, combining lecture,

discussion, demonstration, and listening

•	 Workshop meetings: focus on discussion of projects and techniques, hands-on experimentation

•	 If possible, bring laptops to all class meetings

•	 Software: core tools

•	 athenaCL

10

• Python

• Csound

• SuperCollider

• PD

• DAWs and virtual instruments

• Lecture notes

1.22. 21M.380: Assignments: Reading

• Numerous carefully selected readings

Ames, C. 1987. “Automated Composition in Retrospect: 1956-1986.” Leonardo 20(2): 169-185.

Ames, C. 1992. “A Catalog of Sequence Generators: Accounting for Proximity, Pattern,

Exclusion, Balance and/or Randomness.” Leonardo Music Journal 2(1): 55-72.

Ames, C. 1991. “A Catalog of Statistical Distributions: Techniques for Transforming Random,
Determinate and Chaotic Sequences.” Leonardo Music Journal 1(1): 55-70.

Ames, C. 1989. “The Markov Process as a Compositional Model: A Survey and Tutorial.”

Leonardo 22(2): 175-187.

Ariza, C. 2007a. “Automata Bending: Applications of Dynamic Mutation and Dynamic Rules in
Modular One-Dimensional Cellular Automata.” Computer Music Journal 31(1): 29-49. Internet:
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.1.29.

Ariza, C. 2006. “Beyond the Transition Matrix: A Language-Independent, String-Based Input
Notation for Incomplete, Multiple-Order, Static Markov Transition Values.” Internet:
http://www.flexatone.net/docs/btmimosmtv.pdf.

Ariza, C. 2009a. “The Interrogator as Critic: The Turing Test and the Evaluation of Generative
Music Systems.” Computer Music Journal 33(2): 48-70. Internet:
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2009.33.2.48.

11

Ariza, C. 2005b. “Navigating the Landscape of Computer-Aided Algorithmic Composition
Systems: A Definition, Seven Descriptors, and a Lexicon of Systems and Research.” In Proceedings
of the International Computer Music Conference. San Francisco: International Computer Music
Association. 765-772. Internet: http://www.flexatone.net/docs/nlcaacs.pdf.

Ariza, C. 2005c. “The Xenakis Sieve as Object: A New Model and a Complete Implementation.”
Computer Music Journal 29(2): 40-60. Internet:
http://www.mitpressjournals.org/doi/abs/10.1162/0148926054094396.

Ben-Tal, O. and J. Berger. 2004. “Creative Aspects of Sonification.” Leonardo Music Journal 37(3):
229-232.

Berg, P. 2009. “Composing Sound Structures with Rules.” Contemporary Music Review 28(1): 75-87.

Biles, J. A. 2003. “GenJam in Perspective: A Tentative Taxonomy for GA Music and Art
Systems.” Leonardo 36(1): 43-45.

Cope, D. 1992. “Computer Modeling of Musical Intelligence in EMI.” Computer Music Journal
16(2): 69-83.

Ebcioglu, K. 1988. “An Expert System for Harmonizing Four-part Chorales.” Computer Music
Journal 12(3): 43-51.

Hiller, L. and L. Isaacson. 1958. “Musical Composition with a High-Speed Digital Computer.”
Journal of the Audio Engineering Society 6(3): 154-160.

Hoffman, P. 2000. “A New GENDYN Program.” Computer Music Journal 24(2): 31-38.

Koenig, G. M. 1971. “The Use of Computer Programs in Creating Music.” In Music and Technology
(Proceedings of the Stockholm Meeting organized by UNESCO). Paris: La Revue Musicale. 93-115.
Internet: http://www.koenigproject.nl/Computer_in_Creating_Music.pdf.

Koenig, G. M. 1983. “Aesthetic Integration of Computer-Composed Scores.” Computer Music
Journal 7(4): 27-32.

Magnus, C. 2004. “Evolving electroacoustic music: the application of genetic algorithms to time-
domain waveforms.” In Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association. 173-176.

Marino, G. and M. Serra, J. Raczinski. 1993. “The UPIC System: Origins and Innovations.”
Perspectives of New Music 31(1): 258-269.

Mason, S. and M. Saffle. 1994. “L-Systems, Melodies and Musical Structure.” Leonardo Music
Journal 4: 31-38.

Miranda, E. R. 2003. “On the Music of Emergent Behavior: What Can Evolutionary
Computation Bring to the Musician?.” Leonardo 36(1): 55-59.

12

Riskin, J. 2003. “The Defecating Duck, or, the Ambiguous Origins of Artificial Life.” Critical

Inquiry 29(4): 599-633.

Roads, C. 1988. “Introduction to Granular Synthesis.” Computer Music Journal 12(2): 11-13.

Rowe, R. 1992. “Machine Listening and Composing with Cypher.” Computer Music Journal 16(1):

43-63.

Serra, M. 1993. “Stochastic Composition and Stochastic Timbre: GENDY3 by Iannis Xenakis.”

Perspectives of New Music 31(1): 236-257.

Soldier, D. 2002. “Eine Kleine Naughtmusik: How Nefarious Nonartists Cleverly Imitate Music.”

Leonardo Music Journal 12: 53-58.

Sturm, B. L. 2006. “Adaptive Concatenative Sound Synthesis and Its Application to

Micromontage Composition.” Computer Music Journal 30(4): 46-66.

Voss, R. F. and J. Clarke. 1978. “1/f Noise in Music: Music from 1/f Noise.” Journal of the

Acoustical Society of America 63(1): 258-263.

Xenakis, I. 1971. “Free stochastic Music.” In Cybernetics, art and ideas. J. Reichardt, ed. Greenwich:

New York Graphic Society. 124-142.

Xenakis, I. 1987. “Xenakis on Xenakis.” Perspectives of New Music 25(1-2): 16-63.

1.23. 21M.380: Assignments: Listening

•	 Reading notation and scores not required

•	 Take notes when you listen

•	 What to listen for: duration, instrumentation, method of production, recording or performance
context, notable sonic events, form, temporal design and proportions, aesthetic or historical
contexts, and/or critical and subjective responses

1.24. 21M.380: Assignments: Discussion Leaders

•	 Students are assigned to cover each reading and listening assignments for each class

•	 Must be available to lead discussion, answer questions, and provide a resource to class

•	 Must post minimal notes in the class website forum: Reading and Listening Notes

13

1.25. 21M.380: Assignments: Musical Design Report

•	 An original sonic sketch or musical work, lasting from two to five minutes, realized in notation,
MIDI, digital audio, or code, and based on approaches, techniques, and/or models presented for
each assignment

•	 Includes a very short written report describing approaches and design

•	 A group of 3 to 4 students will be selected to present their projects to the class during Workshop
sessions

•	 Three spaced evenly throughout the semester

1.26. 21M.380: Assignments: Sonic System Project and Presentation

•	 An original sonic system that functions as either a generative instrument with or without a
performance interface or as a static or dynamic musical work employing techniques and/or tools
of algorithmic composition.

•	 May explore any software or hardware system or interface; can extend class examples or produce
completely original works

•	 Includes a short written report describing approaches and design

•	 Draft workshop meeting: 27 April

•	 Final presentations: 11 and 13 May

1.27. 21M.380: Assignments: Submission

•	 All assignments are submitted digitally via email attachment (or as Forum posts)

•	 All assignments, except as noted, are due at 11:59:59 PM on due date

•	 Late within 1 week: 20% reduction; no assignments accepted after 1 week

1.28. 21M.380: Attendance

•	 Mandatory and essential

•	 More than one unexcused absence incurs a 3% grade reduction

1.29. 21M.380: Exams and Quizzes

•	 Quizzes will be announced, and frequent

14

• All short written answers

• Quizzes will be based on reading, listening, and course content

• No final exam

1.30. 21M.380: Grading

• Reading and Listening Discussion Leader: 20%

• Musical Design Report (3): 30%

• Sonic System Project and Presentation: 20%

• Sonic System Project Draft: 5%

• Quizzes: 15%

• Participation: 10%

1.31. 21M.380: Additional Policies

• Read entire syllabus

• Common courtesies

• Computers in class

• Academic integrity

1.32. 21M.380: Contact

• Always feel free to contact me with any problem or concern with this class

1.33. Us

• Backgrounds, experiences, goals

15

1.34. For Next Class

• Download and read entire syllabus

• Respond to my email questionnaire

• Bring computers

[pp. 17-19 deleted from these notes, due to privacy considerations]

16

Chapter 2. Meeting 2, Foundations: Musical Parameters,
Mappings, and Tools

2.1. Announcements

•	 If you have not downloaded and installed Python and PD-Extended, please do so now

•	 Download: most recent athenaCL

http://code.google.com/p/athenacl

2.2. Overview

•	 Events

•	 Parameters

•	 Containers

•	 Instruments

•	 Generative software tools

•	 athenaCL and Python

•	 Digital Audio Workstations

2.3. Musical Events

•	 The event is the fundamental unit of music

•	 An event can be single sample lasting 0.0000227 seconds

•	 An event can be a note

•	 An event can be a continuous sound encompassing a complete work

•	 The minimum definition of an event is a start and end time

20

http://code.google.com/p/athenacl

2.4. Events and Parameters

• An event can be described as with one or more parameters

• Parameters may be duration, pitch, amplitude, or any other collection of specifiers

• Parameters may be coordinated or independent

• Human musical production often coordinates parameters

• Independent musical paramerers can make interest musical structures

• The parameterization of musical events has been critical to the development of modern music

2.5. Event Lists

• Events, defined by an array of parameters, can be collected in a list

• Musical data is stored in various arrangements of event lists

2.6. Fundamental Musical Parameters

• Duration and rhythm

• Frequency and pitch

• Amplitude and dynamics

2.7. Parameters: Duration and Rhythm

• Can be measured in absolute or relative values

• Absolute values: seconds, milliseconds

• Relative values

• Notation: quarter, sixteenth, whole

• Pulse triples: (divisor, multiplier, accent)

• Relative values proportional to a beat rate (tempo)

• Tempi are often thought of in beats per minute (BPM)

• A range of durations at different tempi [py/demo/parameterDuration.py]

21

2.8. Parameters: Frequency and Pitch

•	 Pitch is a human interpretation of frequency

•	 Pitch asserts the octave as referential unit of equivalence

•	 An octave is 12 half steps, 8 diatonic steps (white notes on the piano), and a 2:1 frequency ratio

•	 Numerous other distances between pitches (intervals) have names: fifths, thirds, 13ths, quarter
tones

22

• Pitch names can carry octave designation, where C4 is middle C

• MIDI pitch values place C4 at 60, use 1 as a half step, and range from 0 to 127

• athenaCL pitch space values place C4 at 0 and use 1 as a half step

• A range of fundamental pitches [py/demo/parameterPitch.py]

• The (ideal) audible frequency range: 20 Hz (MIDI 16, E0) to 20000 Hz (MIDI 135, D#10)

• Top three octaves (from 3-6k, 6-12k, 12-24k) contain spectral frequencies

2.9. Parameters: Amplitude and Dynamics

• Bits: discrete digital audio amplitude levels

• dB SPL: acoustic power

• dBv: voltage amplitude

• Unit interval spacings: between 0 and 1

• Notation: from ppp to fff

23

• MIDI velocity values from 0 to 127

• A range of amplitude levels [py/demo/parameterAmplitude.py]

2.10. Storing Event Lists in Containers

• Events can be streamed in real-time or stored in containers

• Western notation (scores, MusicXML)

• Musical Insturment Digital Interface (MIDI)

• Open sound control (OSC)

• Digital audio files

2.11. Containers: Western Notation

• Events are organized around notes that specify pitch and duration

• Parameter values are limited (mostly) to symbols

• Parameters are isolated for instruments by staves

• Parallel staves express simultaneous events

• Timbral specification relies mostly on instrument assignments

24

•	 MusicXML offers a standard for encoding notation

•	 Software permits opening, editing, and playing MusicXML files

•	 Finale and Sibelius

•	 Finale reader

http://www.finalemusic.com/Reader

2.12. Containers: MIDI

•	 A binary representation of musical parameters

•	 Parameter values are often 7 bit, or 128 discrete values

•	 Parameters are isolated by numerical tags, called channels

•	 Timbral specification relies mostly on instrument assignments (programs)

•	 Software permits performing MIDI files

•	 QuickTime and Windows Media Player

•	 Virtual instruments

2.13. Containers: OSC

•	 A hierarchical representation of musical parameters

•	 Parameter values can be numbers or strings

•	 Parameters are organized hierarchically with URL-like syntax

•	 Timbral specification relies mostly on receiving device

•	 Sending and receiving OSC data

•	 Hardware controllers

•	 Software controllers

2.14. Containers: Digital Audio

•	 A micro mono-parameter representation

•	 Store amplitude values within a dynamic range taken at a sampling rate

25

http://www.finalemusic.com/Reader

•	 Signals can be mixed or stored in isolated channels

•	 Digital audio is a timbral specification

•	 Software permits playing and editing digital audio

•	 QuickTime and Windows Media Player

•	 Audacity

http://audacity.sourceforge.net

•	 Digital Audio Workstations

2.15. Synthesizers, Samplers, and Virtual Instruments

•	 Acoustic instruments translate parameters into acoustic sound

•	 Electronic instruments synthesize tones with oscillators or stored samples

•	 Digital electronic instruments are built by combining basic software components

•	 Virtual instruments are software synthesizers or samplers that respond to MIDI or OSC
parameters

2.16. Digital Synthesizers

•	 Built from combing fundamental signal generators and processors (unit generators or Ugens)

•	 Can be designed to accept any number of initial event parameters

•	 Can be designed to accept dynamic parameters over the course of an event

2.17. Digital Synthesis Languages: Csound

•	 Developed in part from the first synthesis language Music 1 in 1957 (Roads 1980)

•	 Extended and ported by Barry Vercoe at MIT (1986)

•	 A huge library of processors and instrument models (Boulanger 2000)

•	 A low-level language for defining instruments

•	 A flat list of data for event lists

26

http://audacity.sourceforge.net

2.18. Digital Synthesis Languages: PureData

•	 Over 20 years of development in synthesis, sampling, and a visual programming envrionment

•	 Numerous related alternatives: Max/MSP, jMax, Open Sound World (OSW)

•	 Developed by Miller Puckette, creator of the first Max (Puckette 1985, 1988, 1997, 2002)

2.19. Digital Synthesis Languages: SuperCollider

•	 An extension of Csound archetypes into a modern language and network archetype

•	 First released in 1996 by James McCartney (McCartney 1996; McCartney 1998)

•	 A complete object-oriented language: create objects, manipulate, and reuse code

•	 A server-based architecture: SynthDefs live on a server and send and receive messages and signals

•	 Designed for real-time performance and experimentation

2.20. Virtual Instruments

•	 Software plug-ins that can receive MIDI or OSC messages

•	 Distributed as VST, AU, or other plug-in formats

•	 Can employ any internal software and synthesis model

2.21. Algorithmic Composition and Generative Music Systems

•	 May be built within a synthesis language

•	 May be stand-alone systems

•	 Numerous systems support multiple output formats from a single interface

•	 athenaCL

http://code.google.com/p/athenacl

•	 AC Toolbox: Lisp based Macintosh application/environment

http://www.koncon.nl/downloads/ACToolbox/

•	 Open Music: Lisp based visual programming language

27

http://code.google.com/p/athenacl
http://www.koncon.nl/downloads/ACToolbox/

http://recherche.ircam.fr/equipes/repmus/OpenMusic/

•	 Common Music: Lisp based programming language

http://commonmusic.sourceforge.net

2.22. A Brief History of athenaCL

•	 Started as a way of automating the production of Csound scores in 2001

•	 Originally attempted to integrate a variety of post-tonal music theory tools

•	 Gradually became a more general tool for composition

•	 A way to test and deploy modular approaches to generating music parameters and structures

•	 Support for output in MIDI, SuperCollider, and other formats incrementally added

•	 Version 2 strips away post-tonal music theory tools, focuses on compositional tasks

•	 Present alpha releases may have bugs: please report any problems to me immediately

2.23. Installing and Running athenaCL

•	 Download the most-recent version

•	 A distribution from Google Code

http://code.google.com/p/athenacl

•	 Via SVN command-line argument:

svn checkout http://athenacl.googlecode.com/svn/trunk/ athenacl-read-only

•	 Install in Python’s site packages

•	 Windows: run athenaCL.exe installer

•	 Others: extract athenaCL.tar.gz

With terminal, cd to athenaCL directory

Enter: python setup.py install

If permissions error, try: sudo python setup.py install

•	 Start Python

28

http://recherche.ircam.fr/equipes/repmus/OpenMusic/
http://commonmusic.sourceforge.net
http://code.google.com/p/athenacl
http://athenacl.googlecode.com/svn/trunk/

•	 Windows: run python.exe or IDLE.py

•	 Others: open terminal, enter: python

•	 Start athenaCL

•	 From within Python, enter: from athenaCL import athenacl

•	 Others: open terminal, enter: python

Enter: from athenaCL import athenacl

2.24. Running athenaCL Without Installing

•	 Download athenaCL (as above)

•	 Launch the file athenaCL/athenacl.py with Python

2.25. athenaCL: System Overview

•	 Create and edit Textures (TextureInstances) and Paths (PathInstances)

•	 Paths are static pitch collections

•	 Textures are dynamic variable parameter event list generators

•	 TextureModules define various approaches to create Textures

•	 ParameterObjects are used to configure and generate parameters within Textures

•	 EventModes define orchestras of instruments and available output formats

•	 EventOutputs are output formats, some available with all EventModes, others available from only
one

•	 EventLists can be created, rendered, and heard

2.26. Interactive athenaCL Commands

•	 athenaCL as an interactive command line program

•	 Commands can be provided with space delimited arguments, or the user can be prompted for all
necessary arguments

•	 Acronyms are always accepted for arguments

29

• cmd: view all commands

• ?: get help for any command

• EMo: select EventMode midiPercussion

• EMi: list available instruments

• TIn: create a new TextureInstance (provide name and instrument number)

• ELn: create a new EventList

• ELh: hear (or open) a new EventList

• Commands with full arguments and sample output

pi{}ti{} :: emo mp

EventMode mode set to: midiPercussion.

pi{}ti{} :: tin a 50

TI a created.

pi{auto-highTom}ti{a} :: eln

command.py: temporary file: /Volumes/xdisc/_scratch/ath2010.02.04.09.45.48.xml

EventList ath2010.02.04.09.45.48 complete:

/Volumes/xdisc/_scratch/ath2010.02.04.09.45.48.mid

/Volumes/xdisc/_scratch/ath2010.02.04.09.45.48.xml

pi{auto-highTom}ti{a} :: elh

EventList hear initiated: /volumes/xdisc/_scratch/ath2010.02.04.09.48.11.mid

• Setting the scratch directory to "/Volumes/xdisc/_scratch"

pi{}ti{} :: apdir x /Volumes/xdisc/_scratch

user fpScratchDir directory set to /volumes/xdisc/_scratch.

• Editing the Texture’s temp with a WaveSine generator (space divisions matter)

pi{auto-highTom}ti{a} :: tie b ws,t,10,0,40,400

TI a: parameter bpm updated.

pi{auto-highTom}ti{a} :: eln; elh

2.27. Automating athenaCL Commands with Python

• athenaCL command can be scripted and controlled in Python script

• Permits reuse and extensions

• Must create an athenaCL Interpreter object and send string commands

• Creating a Python script file

• Windows: use IDLE.py or another text editor

30

•	 Others: use emacs, vi, or other text editor

•	 Mac: use TextWranger (free)

http://www.barebones.com/products/TextWrangler

•	 Automating the production of one Texture: create file 02a.py and run with python [02a.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

ath.cmd('tin a 45')

ath.cmd('tie b ws,t,10,0,40,400')

ath.cmd('eln')

ath.cmd('elh')

•	 If Python cannot find the athenaCL directory (because you were not able to do an install) you
must provide to python the file path to the directory containing athenaCL

import sys

sys.path.append(“/path/to/dir/that/contains/athenacl”)

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

ath.cmd('tin a 45')

ath.cmd('tie b ws,t,10,0,40,400')

ath.cmd('eln')

ath.cmd('elh')

•	 Automating the production of three Textures [02b.py]

from athenaCL.libATH import athenaObj

import random

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

for x in [45, 51, 75]:

ath.cmd('tin t%s %s' % (x, x))

ath.cmd('tie t %s,%s' % (random.choice(range(0,10)),

random.choice(range(20,30))))

ath.cmd(“tie b ws,t,10,0,40,400”)

ath.cmd('eln')

ath.cmd('elh')

•	 If you have trouble running a Python script on Windows, visit:

http://www.python.org/doc/faq/windows/

31

http://www.barebones.com/products/TextWrangler
http://www.python.org/doc/faq/windows/

Chapter 3. Meeting 3, Approaches: Distributions and
Stochastics

3.1. Announcements

•	 Download: most recent athenaCL

http://code.google.com/p/athenacl

3.2. Reading: Ames: A Catalog of Statistical Distributions

•	 Ames, C. 1991. “A Catalog of Statistical Distributions: Techniques for Transforming Random,
Determinate and Chaotic Sequences.” Leonardo Music Journal 1(1): 55-70.

•	 What does Ames mean by balance, and that there can be a balance that is not fair?

•	 What is meant by a weight? Why is this term preferable to alternatives?

•	 The use of statistics here might be considered outside of the discipline of statistics: why?

•	 Which musical parameters are better suited for discrete values? Which for continuous values?

•	 Are any distributions dependent on past occurrences?

•	 Why might the Law of Large Numbers make working with distributions difficult in musical
contexts?

•	 In terms of the distribution output, what are time domain and frequency domain graphs?

•	 What is the relationship between the Poisson distribution and the Exponential distribution?

•	 Ames notes that, when working with some distributions, values may have to be discarded: why?
What does this say about working with distributions?

3.3. ParameterObjects

•	 Reusable value selectors and generators

32

http://code.google.com/p/athenacl

•	 Can be created and controlled with strings of comma-separated lists

•	 Values in ParameterObjects can be strings (without quotes), numbers, or lists (delimited by
parenthesis or brackets)

•	 In some cases ParameterObjects, enclosed as a list, can be used inside of other ParameterObjects
to generate values

•	 Three types of ParameterObjects

•	 Generator: produce values based on arguments alone

•	 Rhythm: specialized for rhythm creation

•	 Filter: specialized for transforming values produced from a Texture

•	 Complete documentation for ParameterObjects, and samples, can be found here:

http://www.flexatone.net/athenaDocs/www/ax03.htm

•	 ParameterObject names and string values can always be provided with acronyms

•	 Trailing arguments, when not provided, are automatically supplied

3.4. ParameterObjects: Viewing Arguments and Output

•	 TPls: view a list of all available ParameterObjects

•	 TPv: vie detailed documentation for one or more ParameterObjects

pi{}ti{} :: tpv ru

Generator ParameterObject

{name,documentation}

RandomUniform randomUniform, min, max

 Description: Provides random numbers between 0 and 1 within an

uniform distribution.

 This value is scaled within the range designated by min and max;

min and max may be

 specified with ParameterObjects. Note: values are evenly

distributed between min and

 max. Arguments: (1) name, (2) min, (3) max

•	 TPmap: create a graphical output providing a number of values and a ParameterObject name

Note that, when providing arguments from the command-line, spaces cannot be used between
ParameterObject arguments

pi{}ti{} :: tpmap 100 ru,3,8

randomUniform, (constant, 3), (constant, 8)

TPmap display complete.

33

http://www.flexatone.net/athenaDocs/www/ax03.htm

•	 With a nested ParameterObject for the maximum value

pi{}ti{} :: tpmap 100 ru,3,(ru,8,15)

randomUniform, (constant, 3), (randomUniform, (constant, 8), (constant, 15))

TPmap display complete.

3.5. Configuring Graphical Outputs in athenaCL

•	 athenaCL supports numerous types of graphical outputs, some with various dependencies

•	 Output formats:

•	 JPG, PNG: requires working installation of the Python Imaging Library (PIL)

Windows: http://www.pythonware.com/products/pil

Others: not so easy for Python 2.6 (easier for Python 2.5)

•	 TK: uses the TK GUI system that ships with Python

Works for full installs of Python 2.6 on Windows, Mac, Others

•	 EPS: works on all Pythons on all platforms

•	 APgfx: set graphical output preferences

pi{}ti{} :: apgfx

active graphics format: png.

select text, eps, tk, jpg, png. (t, e, k, j, or p): p

graphics format changed to png.

•	 Use APea to set the imageViewer and psViewer applications if not already set properly

34

http://www.pythonware.com/products/pil

3.6. The Constant ParameterObject

• The most simple ParameterObject

pi{}ti{} :: tpv constant

Generator ParameterObject

{name,documentation}

Constant constant, value

 Description: Return a constant string or numeric value.

Arguments: (1) name, (2)

value

3.7. Continuous and Discrete Stochastic Distributions as
ParameterObjects

• Discrete

• BasketGen

• Continuous POs put through the Quantize PO or other POs

• Continuous

• RandomUniform

• RandomGauss

• RandomBeta

• RandomExponential and RandomInverseExponential

• Many others...

3.8. Discrete Stochastic Distributions as ParameterObjects

• BasketGen: the ball and urn (or basket) paradigm

• Documentation with TPv

35

:: tpv bg

Generator ParameterObject

{name,documentation}

BasketGen basketGen, selectionString, valueList

 Description: Chooses values from a user-supplied list

(valueList). Values can be strings or numbers. Values are

 chosen from this list using the selector specified by the

selectionString argument. Arguments: (1) name, (2)

selectionString {'randomChoice', 'randomWalk',

'randomPermutate', 'orderedCyclic',

 'orderedCyclicRetrograde', 'orderedOscillate'}, (3)

valueList

• Selection methods

• randomChoice: random selection with replacement

pi{}ti{} :: tpmap 100 bg,rc,(0,.2,.4,.6,.8,1)

basketGen, randomChoice, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

• randomPermutate: random selection without replacement

pi{}ti{} :: tpmap 100 bg,rp,(0,.2,.4,.6,.8,1)

basketGen, randomPermutate, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

• randomWalk: random up/down movement along order of list, with wrapping

pi{}ti{} :: tpmap 100 bg,rw,(0,.2,.4,.6,.8,1)

basketGen, randomChoice, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

36

•	 orderedCyclic: looping

pi{}ti{} :: tpmap 100 bg,oc,(0,.2,.4,.6,.8,1)

basketGen, orderedCyclic, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

•	 orderedOscillate: oscillating

pi{}ti{} :: tpmap 100 bg,oo,(0,.2,.4,.6,.8,1)

basketGen, orderedOscillate, (0,0.2,0.4,0.6,0.8,1)

TPmap display complete.

•	 By configuring the values drawn from, discrete uniform, Bernoulli, and binomial distributions can
be modeled

3.9. Continuous Stochastic Distributions as ParameterObjects

•	 RandomUniform: continuous uniform distribution

scaled between 0 and 10

37

pi{}ti{} :: tpmap 100 ru,0,10

randomUniform, (constant, 0), (constant, 10)

TPmap display complete.

• RandomGauss: normal distribution, arguments mu and sigma

• mu: center of distribution, between 0 and 1

• sigma: deviation around center, where .001 is little deviation

• mu at .3, sigma at .01, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rg,.3,.01,0,10

randomGauss, 0.3, 0.01, (constant, 0), (constant, 10)

TPmap display complete.

• mu at .7, sigma at .2, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rg,.7,.2,0,10

randomGauss, 0.7, 0.2, (constant, 0), (constant, 10)

TPmap display complete.

38

• RandomBeta: arguments alpha and beta

• This implementation is different than Ames (1991)

• alpha and beta: low values increase draw to boundaries

• alpha and beta: large values approach a uniform distribution

• alpha at .1, beta at .1, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rb,0.1,0.1,0,10

randomBeta, 0.1, 0.1, (constant, 0), (constant, 10)

TPmap display complete.

• alpha at .3, beta at .3, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rb,.3,.3,0,10

randomBeta, 0.3, 0.3, (constant, 0), (constant, 10)

TPmap display complete.

• RandomExponential and RandomInverseExponential

• lambda: larger values create a tighter pull to to one boundary

• exponential, lambda at 5, scaled between 0 and 10

pi{}ti{} :: tpmap 100 re,5,0,10

randomExponential, 5.0, (constant, 0), (constant, 10)

TPmap display complete.

39

•	 inverse exponential, lambda at 20, scaled between 0 and 10

pi{}ti{} :: tpmap 100 rie,20,0,10

randomInverseExponential, 20.0, (constant, 0), (constant, 10)

TPmap display complete.

•	 For all generators min and max can be embedded POs

3.10. Working with athenaCL

•	 Often best to use interactive mode for testing values, quick sketches, setting preferences

•	 Best to use a Python script for composing or other work

•	 Same preferences used in interactive mode are used in scripts

•	 For examples, the presence of the command prompt designates that athenaCL is in interactive
mode

pi{}ti{} ::

3.11. Configuring Amplitudes

•	 Amplitudes in athenaCL are represented within the unit interval (0, 1)

•	 After creating texture, we can edit the amplitude with the TIe command

•	 The TIe command needs an argument for what Texture parameter to edit: enter “a” is for
amplitude

40

• Parameter abbreviations can be found with the TIv command

• Setting the amplitude to a RandomUniform value between 0 and 1 [03a.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

create a new texture with instrument 45

ath.cmd('tin a 45')

edit the amplitude of the texture to be RandomUniform between .1 and 1

ath.cmd('tie a ru,.1,1')

ath.cmd('eln')

ath.cmd('elh')

• Two parts, one with RandomUniform amplitudes, another with RandomExponential [03b.py]

Note that textures have to have different names

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

create a new texture with instrument 45

ath.cmd('tin a 45')

ath.cmd('tie a ru,.1,1')

create a new texture with instrument 65

texture must have a different name

ath.cmd('tin b 65')

ath.cmd('tie a re,15,.2,1')

ath.cmd('eln')

ath.cmd('elh')

• Three parts, RandomUniform, RandomExponential, and RandomBeta amplitudes [03c.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd('emo mp')

create a new texture with instrument 45

ath.cmd('tin a 45')

ath.cmd('tie a ru,.1,1')

create a new texture with instrument 65

ath.cmd('tin b 65')

ath.cmd('tie a re,15,.2,1')

create a new texture with instrument 53

ath.cmd('tin c 53')

ath.cmd('tie a rb,.1,.1,.3,.7')

ath.cmd('eln')

ath.cmd('elh')

41

3.12. Duration and Sustain

•	 Duration

•	 The temporal space of an event

•	 If events are packed end to end, the time of the next event

•	 If a notated event, the written rhythm

•	 Sustain

•	 The sounding (actual) time of the event

•	 A scalar applied to the duration

•	 A scalar of 0.2 would suggest a staccato (shortened) event

•	 A scalar of 1.2 would create overlapping events

3.13. The Pulse Triple

•	 athenaCL supports both absolute and relative rhythm values

•	 The PulseTriple is relative to the beat-defining tempo and made of three values

•	 Divisor: divides the tempo beat duration

•	 Multiplier: scales the value divided

•	 Accent: a rhythm-specific amplitude value, between 0 (o) and 1 (+) (or with symbolic
dynamics: mp, mf, etc)

•	 Conventional rhythms can be easily expressed

•	 (4,1,1): 1/4th of a beat (if the beat is a quarter, a sixteenth note)

•	 (4,3,1): 3/4ths of a beat (if the beat is a quarter, a dotted eighth note)

•	 (1,4,1): 4 beats (if the beat is a quarter, a whole note)

•	 (3,1,1): 1/3rd of a beat (if the beat is a quarter, a triplet eighth)

•	 (5,8,1): 8/5ths of a beat

•	 Representational redundancy may be useful

•	 (4,2,1) is the same as (2,1,1)

42

• (1,5,1) is the same as (4,20,1)

3.14. Basic Rhythm ParameterObjects

• PulseTriple: create PulseTriples from embedded ParameterObjects

pi{}ti{} :: tpv pulsetriple

Rhythm Generator ParameterObject

{name,documentation}

PulseTriple pulseTriple, parameterObject, parameterObject, parameterObject,

parameterObject

 Description: Produces Pulse sequences with four Generator

ParameterObjects that

 directly specify Pulse triple values and a sustain scalar. The

Generators specify

 Pulse divisor, multiplier, accent, and sustain scalar. Floating-

point divisor and

 multiplier values are treated as probabilistic weightings. Note:

divisor and

 multiplier values of 0 are not permitted and are replaced by 1;

the absolute value

 is taken of all values. Arguments: (1) name, (2) parameterObject

{pulse divisor},

 (3) parameterObject {pulse multiplier}, (4) parameterObject

{accent value between 0

and 1}, (5) parameterObject {sustain scalar greater than 0}

• ConvertSecond: create durations form values in seconds

pi{}ti{} :: tpv cs

Rhythm Generator ParameterObject

{name,documentation}

ConvertSecond convertSecond, parameterObject

Description: Allows the use of a Generator ParameterObject to

create rhythm

 durations. Values from this ParameterObject are interpreted as

equal Pulse duration

and sustain values in seconds. Accent values are fixed at 1.

Note: when using this

Rhythm Generator, tempo information (bpm) has no effect on event

timing. Arguments:

 (1) name, (2) parameterObject {duration values in seconds}

3.15. Configuring Rhythms

• After creating texture, we can edit the rhythm with the TIe command

• The TIe command needs an argument for what Texture parameter to edit: enter “r” for rhythm

• Using basketGen to control the multiplier [03d.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

43

ath.cmd(“tie a rb,.3,.3,.5,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

•	 Using two basketGens to control multiplier and divisor independently [03e.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

ath.cmd(“tie a rb,.3,.3,.4,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“tin b 65”)

ath.cmd(“tie a re,15,.3,1”)

ath.cmd(“tie r pt,(bg,rp,(2,1,1,1)),(c,1),(c,1)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

•	 Using two basketGens to control multiplier and divisor independently [03f.py]

from athenaCL.libATH import athenaObj

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

ath.cmd(“tie a rb,.3,.3,.4,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“tin b 65”)

ath.cmd(“tie a re,15,.3,1”)

ath.cmd(“tie r pt,(bg,rp,(2,1,1,1)),(c,1),(c,1)”)

ath.cmd(“tin c 67”)

ath.cmd(“tie a rb,.1,.1,.4,.6”)

ath.cmd(“tie r cs,(rb,.2,.2,.01,1.5)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

3.16. Configuring Time Range

•	 After creating texture, we can edit the time range with the TIe command

•	 The TIe command needs an argument for what Texture parameter to edit: enter “t” for time
range

•	 Enter two values in seconds separated by a comma

•	 Staggering the entrances of three parts [03g.py]

from athenaCL.libATH import athenaObj

44

ath = athenaObj.Interpreter()

ath.cmd(“emo mp”)

ath.cmd(“tin a 45”)

ath.cmd(“tie t 0,20”)

ath.cmd(“tie a rb,.3,.3,.4,.8”)

ath.cmd(“tie r pt,(c,4),(bg,oc,(3,3,2)),(c,1)”)

ath.cmd(“tin b 65”)

ath.cmd(“tie t 10,20”)

ath.cmd(“tie a re,15,.3,1”)

ath.cmd(“tie r pt,(bg,rp,(2,1,1,1)),(c,1),(c,1)”)

ath.cmd(“tin c 67”)

ath.cmd(“tie t 15,25”)

ath.cmd(“tie a rb,.1,.1,.4,.6”)

ath.cmd(“tie r cs,(rb,.2,.2,.01,1.5)”)

ath.cmd(“eln”)

ath.cmd(“elh”)

3.17. Musical Design Report 1

• Must be primarily rhythmic in nature

• Must employ at least 4 different timbre sources

• Should have at least an AB or ABA form

• Must prominently feature both the beta and exponential distributions

• Can be composed with athenaCL, athenaCL and other tools, or other tools alone

• See syllabus for details on other aspects

3.18. Digital Audio Workstations

• The merger of software for editing MIDI and notation with software for editing digital audio

• Numerous commercial varieties: ProTools, Digital Performer, Cubase, FL, Logic, GarageBand

• Inexpensive varieties: Reaper

• Free varieties: Ardour, Rosegarden

• Having access to a DAW with virtual instruments will greatly assist your projects in this class

3.19. Digital Audio Workstations: Importing and Mixing Digital Audio

• Create tracks to store audio

45

• Drag and drop digital audio into a track

• Adjust levels, process, and edit

• Bounce to disc to mix down to a single audio file

3.20. Digital Audio Workstations: Importing MIDI and Rendering
Digital Audio

• Create tracks to store MIDI or for virtual instruments

• Drag and drop MIDI into a track

• Render, freeze, or bounce realization of virtual instrument

46

Chapter 4. Meeting 4, Foundations: Historical and Categorical
Perspectives

4.1. Announcements

•	 Musical Design Report 1 due Tuesday, 23 February

4.2. Reading: Ames: Automated Composition in Retrospect: 1956-1986

•	 Ames, C. 1987. “Automated Composition in Retrospect: 1956-1986.” Leonardo 20(2): 169-185.

•	 Is it surprising that Ames writes: “it is therefore not surprising that these developments have met
with continuing -- and often virulent -- resistance” (1987, p. 169)?

•	 How was the DATATRON used to generate a melody?

•	 How was MUSICOMP different from the work on the Illiac Suite?

•	 How does Ames isolate the contribution of Koenig and Xenkakis as contributing to modularity in
system design?

•	 What trends does Ames describe in systems that were contemporary to his article?

4.3. Reading: Ariza: Navigating the Landscape of Computer-Aided
Algorithmic Composition Systems: A Definition, Seven Descriptors,
and a Lexicon of Systems and Research

•	 Ariza, C. 2005b. “Navigating the Landscape of Computer-Aided Algorithmic Composition
Systems: A Definition, Seven Descriptors, and a Lexicon of Systems and Research.” In Proceedings
of the International Computer Music Conference. San Francisco: International Computer Music
Association. 765-772. Internet: http://www.flexatone.net/docs/nlcaacs.pdf.

•	 What is the definition of CAAC proposed in this article?

•	 Why does the definition of CAAC exclude notation software and DAWs?

•	 What are the seven descriptors proposed, and which seem the most important?

47

http://www.flexatone.net/docs/nlcaacs.pdf

Chapter 5. Meeting 5, History: Serialism, Loops, Tiling, and
Phasing

5.1. Announcements

• Musical Design Report 1 due Tuesday, 23 February

• Review readings from last class

5.2. Trigonometric Functions and Break-Point Graphs as
ParameterObjects

• WaveSine: A scalable sine oscillator controlled by seconds or events per cycle

pi{}ti{} :: tpmap 100 ws,e,20,0,0,10

waveSine, event, (constant, 20), 0, (constant, 0), (constant, 10)

TPmap display complete.

• BreakPointLinear: Break point segments defined by seconds or events

pi{}ti{} :: tpmap 100 bpl,e,l,((0,.5),(8,0),(16,1),(24,.75),(32,.9),(40,.5))

breakPointLinear, event, loop, ((0,0.5),(8,0),(16,1),(24,0.75),(32,0.9),(40,0.5))

TPmap display complete.

48

•	 Numerous alternative trigonometric function generators exist as ParameterObjects: WaveCosine,
WavePulse, WaveSawDown, WaveSine, WaveTriangle

•	 Numerous alternative break-point function generators exist as ParameterObjects: BreakPointFlat,
BreakPointHalfCosine, BreakPointLinear, BreakPointPower

5.3. Configuring Tempo

•	 The TIe command can be use to edit tempo by specifying “b” for BPM

•	 Tempo can be controlled by any ParameterObject

5.4. Approaches to Composing Time

•	 Creating overlapping repeats of the same material

•	 Creating overlapping repeats of transformed material

•	 Creating ordered material that is then transformed in ways that retain order

5.5. Canons and Tiling

•	 Create an initial line and repeat it with staggered entrances

•	 An approach to polyphony

•	 The initial line can be temporally shifted and temporally transformed

•	 Can be seen as an approach to musical tiling

5.6. Listening: Andriessen

•	 Louis Andriessen (1939-)

•	 Dutch composer notable for combining American Minimalism with (at times) more diverse
harmonic language

•	 Andriessen: “Hout” (1991)

49

5.7. Building a Basic Beat

•	 Kick, snare, and hats

•	 Command sequence:

•	 emo mp

•	 tin a 36

•	 tie r pt,(c,2),(bg,oc,(7,5,2,1,1)),(c,1)

•	 tin b 37

•	 tie r pt,(c,2),(bg,oc,(3,5)),(bg,oc,(0,1))

•	 tin c 42

•	 tie r pt,(c,2),(c,1),(bg,oc,(0,1))

•	 eln; elh

5.8. A Basic Beat with More Complex Snare Part

•	 Continued command sequence:

•	 tio b

•	 tie r pt,(c,4),(bg,rp,(3,3,5,4,1)),(bg,oc,(0,1,1))

•	 eln; elh

5.9. Adding Canonic Snare Imitation: Texture Copying

•	 Copying a texture creates a new, independent, and dynamic part

•	 While having identically configured ParameterObjects, if randomness is employed, unique
structures will be created

•	 Continued command sequence:

•	 tio b

•	 ticp b b1

•	 tie t .25, 20.25

50

• tie i 76

• ticp b b2

• tie t .5, 20.5

• tie i 77

• eln; elh

5.10. Saving and Loading the AthenaObject

• An athenaCL XML file can be loaded in to athenaCL to restore Textures

• These XML files can be automatically created whenever an event list is created

• Continued command sequence:

• eoo xao

• eln

5.11. Building an Extended Rhythmic Line with Canonic Imitation

• Using different length ordered cyclic generators will create complex but non-random sequences

• Command sequence:

• aorm confirm

• emo mp

• tin a 77

• tie r pt,(c,1),(c,1),(c,1)

• tin b 67

• tie r pt,(bg,oc,(2,4,1)),(bg,oc,(3,5,1,7,1,3)),(c,1)

• ticp b b1

• tie t 0.125,20.125

• tie i 60

• ticp b b2

51

• tie t 0.25,20.25

• tie i 68

• eln; elh

5.12. Creating Mensural Canons

• Mensural canons use ratio-base time signatures for each part

• Continued command sequence:

• tio b1

• tie b c,90

• tio b2

• tie b c,180

• eln; elh

5.13. Extensions

• We can generate complex, deterministic patterns by combining cycles at high ratios

• The same musical rhythm at different (low ratio related) rates produces interesting musical results

5.14. Tonal, Atonal, and Post-Tonal

• Tonal music employs functional harmony

• Harmonies (chords) have a trajectory, expectation, and a resolution

• One (or two) chords are more than others

• Atonal music does not employ functional harmony

• The expectations and priorities of chords are removed

• Ideally, no pitch is more important than any other

• Post-tonal refers approaches to harmony other than tonal

• May be atonal, or may employ other approaches to pitch

• Pitch centers may be developed and exploited

52

5.15. Serialism

•	 An approach to atonality that serialized (ordered) elements of musical parameters, developed by
Arnold Schoenberg

•	 An alternative approach to atonality employed chords that completed the aggregate (all 12
pitches), developed by Josef Matthias Haur

•	 By serializing the order of all 12-tone pitches, all get equal usage

•	 Pitch groups smaller than 12 can be used

•	 A series of all 12 tones is used as a motivic origin

•	 The series can be transposed to any of 12 pitch levels: prime

•	 The series can be reversed: retrograde

•	 The series can be inverted ((12-n) % 12): inversion

•	 The inverted series can be reversed: retrograde inversion

•	 The 12 x 4 possible rows can be presented in a matrix

Generated with Python tools in music21: http://code.google.com/p/music21/

from music21 import serial

p = [8,1,7,9,0,2,3,5,4,11,6,10]

print serial.rowToMatrix(p)

 0 5 11 1 4 6 7 9 8 3 10 2

 7 0 6 8 11 1 2 4 3 10 5 9

 1 6 0 2 5 7 8 10 9 4 11 3

 11 4 10 0 3 5 6 8 7 2 9 1

 8 1 7 9 0 2 3 5 4 11 6 10

 6 11 5 7 10 0 1 3 2 9 4 8

 5 10 4 6 9 11 0 2 1 8 3 7

 3 8 2 4 7 9 10 0 11 6 1 5

 4 9 3 5 8 10 11 1 0 7 2 6

 9 2 8 10 1 3 4 6 5 0 7 11

 2 7 1 3 6 8 9 11 10 5 0 4

10 3 9 11 2 4 5 7 6 1 8 0

•	 Milton Babbitt and Pierre Boulez extended serial techniques to new parameters and alternative
organizations

•	 Karlheinz Stockhausen and others attempted to employ serial techniques to organize parameters
in the early Electronic Music studio

•	 Total serialism orders amplitudes, rhythms, and other musical parameters

53

http://code.google.com/p/music21/

5.16. Listening: Boulez

•	 Pierre Boulez (1925-)

•	 Post WWII and total serialism

•	 Boulez: “Structures, Book I” (1952)

5.17. Extensions

•	 The algorithmic opportunities of serialism led many composers to generalize such techniques with
the computer

•	 athenaCL features Paths as a way for Textures to share source Pitch data

•	 One Path might be shared by multiple Textures, each transposing, reversing, and inverting this
Path to create serial arrangements

•	 While some have tried (Babbitt 1958), serial rhythm techniques have not been widely embraced

5.18. Phasing

•	 Musical material shifting in and out of time, or moving at different rates

•	 Developed out of manipulations to recording reels: flanging and phasing

54

•	 Can be used as a canon-like technique

5.19. Listening: Reich

•	 Steve Reich (1936-)

•	 Influenced by techniques of minimalism based in part on music of Terry Riley, La Monte Young,
and others

•	 Reich: “It’s gonna rain” (1965)

•	 “Scorification” of a technological process for acoustic instruments

•	 Reich: “Piano Phase” (1967)

5.20. Phasing with athenaCL Python Libraries

•	 pianoPhase.py

import os

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

OUTDIR = '/Volumes/xdisc/_scratch'

BEATDUR = rhythm.bpmToBeatTime(225) # provide bpm value

def getInstName(nameMatch):

for name, pgm in generalMidi.gmProgramNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

return None

def getSource(repeat):

"""get source melody and rhythm"""

pitchSequence = ['E4','F#4','B4','C#5','D5','F#4',

'E4','C#5','B4','F#4','D5','C#5']

rhythmSequence = [.5, .5, .5, .5, .5]

ampGen = parameter.factory(['ws','e',14,0,90,120]) # sine osc b/n 90 and 120

55

 score = []

 tStart = 0.0

for i in range(len(pitchSequence) * repeat):

ps = pitchTools.psNameToPs(pitchSequence[i%len(pitchSequence)])

pitch = pitchTools.psToMidi(ps)

dur = BEATDUR * rhythmSequence[i%len(rhythmSequence)]

amp = int(round(ampGen(0)))

pan = 30

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score, len(pitchSequence)

def transformSource(score, srcLength):

"""transform source, srcLength is size of each melodic unit

"""

post = []

 octaveShift = -1

panShift = 60

shiftUnit = BEATDUR / 16.

 eCount = 0

 repCount = 0 # starting at zero means first cycle will be in phase

for event in score:

 if eCount % srcLength == 0:

 shift = shiftUnit * repCount

repCount = repCount + 1 # increment after using

 newEvent = [event[0]+shift, event[1], event[2],

event[3]+(octaveShift*12), (event[4]+panShift)%128]

post.append(newEvent)

eCount = eCount + 1 # increment for each event

 return post

def main():

repeat = 33

partA, seqLen = getSource(repeat)

partB = transformSource(partA, seqLen)

 trackList = [('part-a', getInstName('piano'), None, partA),

('part-b', getInstName('piano'), None, partB),]

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

mObj.write(path)

osTools.openMedia(path)

if __name__ == '__main__':

main()

5.21. Beats with athenaCL Python Libraries

• basicBeat.py

import os, random

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

56

OUTDIR = '/Volumes/xdisc/_scratch' # provide output directory

BEATDUR = rhythm.bpmToBeatTime(160) # provide bpm value

def getInstPitch(nameMatch):

for name, pgm in generalMidi.gmPercussionNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

raise NameError('bad pitch name')

def getKickSnare(repeat):

rhythmA = [1, 1.5, .5, 1]

rhythmB = [1.5, .5, 1.5, .5]

rhythmC = [1.75, .25, 1.5, .125, .125, .125, .125]

instA = ['acousticBassDrum','sideStick']

instB = ['sideStick']

ampGen = parameter.factory(['rb',.2,.2,110,127])

score = []

tStart = 0.0

 for q in range(repeat):

if q % 3 == 0:

rhythmSequence = rhythmB

instSequence = instA

elif q % 11 == 10:

rhythmSequence = rhythmC

instSequence = instB

random.shuffle(rhythmSequence)

else:

 rhythmSequence = rhythmA

instSequence = instA

 for i in range(len(rhythmSequence)):

inst = instSequence[i % len(instSequence)]

pitch = getInstPitch(inst)

dur = BEATDUR * rhythmSequence[i % len(rhythmSequence)]

amp = int(round(ampGen(0)))

pan = 63

 event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score, len(rhythmSequence)

def getHats(repeat):

rhythmSequence = [.5, .5, .25, .25, .5, .5, .5, .5]

instSequence = ['closedHiHat','closedHiHat',

'closedHiHat','closedHiHat',

'closedHiHat','openHiHat']

ampGen = parameter.factory(['rb',.2,.2,50,80])

score = []

tStart = 0.0

 for q in range(repeat):

for i in range(len(rhythmSequence)):

inst = instSequence[i % len(instSequence)]

pitch = getInstPitch(inst)

dur = BEATDUR * rhythmSequence[i % len(rhythmSequence)]

amp = int(round(ampGen(0)))

pan = 63

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score, len(rhythmSequence)

57

def main():

repeat = 33

partA, seqLen = getKickSnare(repeat)

partB, seqLen = getHats(repeat)

 trackList = [('part-a', 0, 10, partA),

 ('part-b', 0, 10, partB),]

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

mObj.write(path) # writes in cwd

osTools.openMedia(path)

if __name__ == '__main__':

main()

5.22. Building an Extended Rhythmic Line with Fixed Tempo Phasing

• Using different tempi will create shifting rhythmic patterns

• Command sequence:

• aorm confirm

• emo mp

• tin a 70

• tie r pt,(bg,oc,(2,4,4)),(bg,oc,(4,1,1,2,1)),(c,1)

• tie t 0,60

• ticp a a1

• tie b c,124

• ticp a a2

• tie b c,128

• eln; elh

5.23. Building an Extended Rhythmic Line with Dynamic Tempo
Phasing

• Oscillating the tempo at different rates will create dynamic changes

• Command sequence:

• aorm confirm

58

•	 emo mp

•	 tin a 64

•	 tie r pt,(bg,oc,(2,4,4)),(bg,oc,(4,1,1,2,1)),(c,1)

•	 tie t 0,60

•	 ticp a a1

•	 tie i 60

•	 tie b ws,t,20,0,115,125

•	 ticp a a2

•	 tie i 69

•	 tie b ws,t,30,0,100,140

•	 eln; elh

5.24. Extensions

•	 Many works have been built with slow and gradual tempo changes

•	 Tempos might slowly deviate with a BreakPointLinear or similar generator

•	 Tempos might be randomly perturbed by adding in randomness: PO OperatorAdd can sum two
ParameterObjects

pi{}ti{} :: tpmap 100 oa,(ws,e,20,0,0,10),(ru,-2,2)

operatorAdd, (waveSine, event, (constant, 20), 0, (constant, 0), (constant, 10)),

(randomUniform,

(constant, -2), (constant, 2))

TPmap display complete.

59

Chapter 6. Meeting 6, Workshop

6.1. Announcements

•	 Musical Design Report 1 due Today, 23 February

•	 Quiz on Thursday

•	 Download Martingale:

http://code.google.com/p/martingale/

6.2. Workshop: Musical Design Report 1

•	 Four students will present their reports today

6.3. Installing and Configuring Csound

•	 Download and install most recent Csound 5

http://sourceforge.net/projects/csound/files/

•	 Test installation

•	 Windows: run Csound.exe

•	 Others: open a terminal, enter: csound

6.4. Testing Csound in athenaCL

•	 athenaCL can write separate score and orchestra files, or a combined .scd file; depends on
EventOutput settings (select csd with EOo)

•	 athenaCL may need to have a user preference set for where the Csound binary is located (use the
APea command)

•	 athenaCL will create a batch file (.bat) to automate rendering of Csound files to audio

•	 The audio file, after rendering, will be stored and named in the same location as other output files

•	 Command sequence:

60

http://code.google.com/p/martingale/
http://sourceforge.net/projects/csound/files/

•	 emo cn

•	 tin a 82

•	 tie x6 ws,e,14,0,200,16000

•	 eln

•	 elr

•	 elh

•	 With the ELauto command, rendering (ELr) and hearing (ELh) can be automatically executed
following the use of ELn

6.5. Testing PD and Martingale

•	 Download and install PD-Extended

http://puredata.info/downloads

•	 Download Martingale manually:

http://code.google.com/p/martingale/

•	 Place martingale anywhere on your file system

•	 Add the “martingale/pd/lib” directory to Preferences > Path; this permits loading abstractions
from the martingale library

•	 Open pd/demo/earLimits.pd

•	 Make sure “compute audio” is on, click check boxes, and select frequencies

61

http://puredata.info/downloads
http://code.google.com/p/martingale/

Chapter 7. Meeting 7, History: Gottfried Michael Koenig

7.1. Announcements

•	 Test direct rendering of CSD files with Csound if ELr is not working

•	 Make sure you have PD-extended installed and Martingale on your system

7.2. Quiz

•	 10 Minutes

7.3. Gottfried Michael Koenig

•	 Gottfried Michael Koenig (1926-)

•	 1954-1964: Worked with Stockhausen and others at West German Radio in Cologne

•	 Composed for tape and acoustic instruments

•	 1963-1964: Studied programming, began developing software for CAAC

•	 1964-1986: Director of the Institute of Sonology in the Netherlands

•	 Employed CAAC at three different levels

•	 Symbolic: output from computer used to transcribe notation

•	 Control: create sequences of control voltage mapped to synthesis parameters

•	 Direct: employed direct creation of waveforms to create non-standard synthesis techniques

7.4. Reading: Koenig: The Use of Computer Programs in Creating
Music

•	 Koenig, G. M. 1971. “The Use of Computer Programs in Creating Music.” In Music and Technology
(Proceedings of the Stockholm Meeting organized by UNESCO). Paris: La Revue Musicale. 93-115.
Internet: http://www.koenigproject.nl/Computer_in_Creating_Music.pdf.

•	 Koenig states that the use of the computer does not herald a new musical epoch: instead, what
does he see the computer as offering?

•	 Koenig describes a variable function generator: what is this?

62

http://www.koenigproject.nl/Computer_in_Creating_Music.pdf

•	 Koenig sees work in the electronic music studio as suggesting some of the practices of
algorithmic composition: how so?

•	 Koenig introduces the term composition theory: what might this mean?

•	 What role did Koenig imagine for the computer in the work of composers and music students?

•	 Koenig describes a technique of “sound production”: what is this?

7.5. Koenig: CAAC for Acoustic Instruments

•	 Two early software systems

•	 1964: Project 1 (PR1)

•	 1969: Project 2 (PR2)

•	 Favored discrete value generation and selection

7.6. PR1: Concepts

•	 1964: Project 1 (PR1): Programmed in Fortran for the IBM 7090

•	 A closed system, providing output based on user parameters

•	 A user specified six tempo values, twenty-eight entry delays (rhythmic values), a random generator
seed value, and the length of the composition

•	 Materials were algorithmically selected

•	 Series: random permutations, selection without replacement

•	 Alea: random selection

•	 Koenig saw series generation as an abstraction of twelve-tone techniques: “the need for variation
is satisfied without there having to be the pretense that somewhere deep inside the work the
twenty-fifth permutation is still being systematically derived from an original series” (1970a, p.
34).

•	 At a larger level, 12-tone rows are created and deployed and three-note aggregate completing
trichords are created.

•	 A seven-section formal structure controls the large-scale form, defining a position in a range from
regular/periodic to irregular/aperiodic.

•	 Output is provided for six parameters: (1) timbre (instrument or instrument group), (2) rhythm,
(3) pitch, (4) sequence, (5) octave register, and (6) dynamic.

63

•	 Sequence is spare parameter, applied to chord formation or timbre component within a timbre
group

•	 All parameters are independent

7.7. PR2: Concepts

•	 1969: Project 2 (PR2): Algol, then Fortran for the PDP-15

•	 A closed system, but more general and user-configurable

•	 Eight parameters are generated: (1) instrument, (2) harmony, (3) register, (4) entry delay, (5)
duration, (6) rest, (7) dynamics, and (8) mode of performance.

•	 Expanded tools for algorithmic selection

•	 Series

•	 Alea

•	 Ratio: weighted random selection

•	 Group: repetition of values

•	 Sequence: ordered selection

•	 Tendency: random selection within dynamic boundaries

7.8. PR2: The List-Table-Ensemble Principle

•	 Selection procedures can be used on user-specified numeric or symbolic values (lists, stockpiles,
or tables), or new, algorithmically generated expansions of user-specified numeric or symbolic
values (ensembles).

•	 Lists: raw stockpiles of data (assigned index values for access)

•	 Tables: user-organized collection of indexes pointing to data in Lists

•	 Ensembles: selection methods are used to create intermediary groups of data that are then drawn
from to produce parameter values

•	 A techniques of meta-selection that constrains values within distinct representations (distributions
and orderings)

•	 IterateHold: a rough analogy to the list-table-ensemble principle: select a number values from a
PO, employ these for a number of times, and then regenerate a new selection

:: tpmap 120 ih,(ru,0,1),(bg,oc,(2,4,13)),(bg,oc,(10,15))

64

iterateHold, (randomUniform, (constant, 0), (constant, 1)), (basketGen,

orderedCyclic, (2,4,13)), (basketGen, orderedCyclic, (10,15)), orderedCyclic

TPmap display complete.

7.9. Listening: Koenig

• Three Asko Pieces

• Koenig: Three Asko Pieces (1982)

7.10. PR2 Selection Principles: Ratio

• Weighted randomness can be achieved by configuration of BasketGen values

• More control can obtained by configuring a zero-order Markov chain, to be discussed later

7.11. Controlling Pitch in athenaCL

• Paths provide ordered collections of pitch groups (Multisets) with proportional durations

65

•	 A Texture is assigned a Path based on the last-created Path, an assigned Path, or an automatically
created Path (if none exist)

•	 The default Path is a single pitch, C4

•	 A Texture can transform the Path with ParameterObjects assigned to the field (transposition) and
octave (register shift) parameters

•	 Different TextureModules can deploy Paths in very diverse ways

7.12. PR2 Selection Principles: Group

•	 IterateGroup: Two POs, one generating values, the other selecting how many times those values
are repeated before a new selection is made

:: tpmap 100 ig,(bg,oc,(0,5,10)),(bg,rc,(3,5,7))

iterateGroup, (basketGen, orderedCyclic, (0,5,10)), (basketGen, randomChoice,

(3,5,7))

TPmap display complete.

•	 Create a collection of values, select a value, and then repeat a selected number of times

•	 Command sequence:

•	 emo m

•	 tin a 6

•	 tie r cs,(rb,.2,.2,.02,.25)

•	 tie f ig,(bg,rc,(2,4,7,9,11)),(bg,rp,(2,3,5,8,13))

•	 tie o ig,(bg,oc,(-2,-1,0,1)),(ru,20,30)

•	 ticp a b c d

•	 eln; elh

66

7.13. PR2 Selection Principles: Tendency Mask

•	 Random values selected from within dynamic minimum and maximum value range

•	 Can be implemented with any Generator PO that has min/max parameter

•	 Boundaries can be controlled by BreakPoint, Wave, or similar ParameterObjects

•	 A powerful technique for creating long range behavior

•	 Here, a break-point function and a wave sine generator form the boundaries of a random beta
selection to control pitch

•	 Command sequence:

•	 emo m

•	 tin a 15

•	 tie r cs,(ig,(ru,.01,.25),(ru,4,12))

•	 tie a ru,.2,(cg,u,.3,.9,.005)

•	 tie f rb,.2,.2,(bpl,t,l,((0,-12),(30,12))),(ws,t,29,0,0,24)

•	 eln; elh

•	 A powerful technique for creating long range behavior

•	 Here, random octave values are chosen between two wave triangle generators

•	 Command sequence:

•	 emo m

•	 pin a d,e,g,a,b

•	 tin a 107

•	 tie r pt,(c,16),(ig,(bg,rc,(1,2,3,5,7)),(bg,rc,(3,6,9,12))),(c,1)

•	 tie o ru,(wt,t,25,0,-2,4),(wt,t,20,0,-3,1)

•	 eln; elh

67

7.14. Reading: Koenig: Aesthetic Integration of Computer-Composed
Scores

•	 Koenig, G. M. 1983. “Aesthetic Integration of Computer-Composed Scores.” Computer Music
Journal 7(4): 27-32.

•	 Koenig states that “... to react functionally means ... to refrain from imitation of a particular
production mode in another medium”: what is he suggesting?

•	 What is Koenig suggesting about the use of histograms, where the composer supplies histograms
and the computer program takes care of the data connections?

•	 What is the process of transcription that Koenig describes? How is this different than
conventional transcription?

•	 What is aesthetic integration? Does Koenig suggest that this step can also be automated?

•	 Koenig talks about composer having a sense of responsibility for the aesthetic result: why is this
significant?

7.15. Koenig: CAAC for Voltage Control

•	 Used PR1 to generate events that were encoded in voltage control data

•	 Voltage control data processed and translated to various musical parameters at different speeds

•	 Used “variable function generator” (1966) to set and deploy values from the control rate to the
audio rate

68

69

•	 Produced Funktion pieces with this method: Funktion Grün (1967), Funktion Gelb (1968),
Funktion Orange (1968), Funktion Rot (1968), Funktion Blau (1969), Funktion Indigo (1969),
Funktion Violett (1969), Funktion Grau (1969)

•	 Similar methods will be employed by outputting athenaCL generators to PD Arrays

7.16. Listening: Koenig

•	 Employed techniques of Funktion pieces

•	 Koenig: “Terminus X” (1967)

70

7.17. Alternative Approaches to Grouping and Masking

•	 BasketSelect: Select values form a list using another PO providing values within the unit interval

:: tpmap 100 bs,(-3,-2,
-
1,0,1,2,3),(ru,(bpl,e,l,((0,.5),(100,1))),(bpl,e,l,((0,.5),(100,0))))

basketSelect, (-3,-2,-1,0,1,2,3), (randomUniform, (breakPointLinear, event,

loop, ((0,0.5),(100,1))), (breakPointLinear, event, loop, ((0,0.5),(100,0)))),

TPmap display complete.

•	 IterateWindow: Select from a list of POs, and then draw a selected number of values from that
PO

:: tpmap 100 iw,((ru,.2,.8),(re,15,0,1),(ws,e,12,0,0,1)),(bg,rp,(14,20,26)),oc

iterateWindow, ((randomUniform, (constant, 0.2), (constant, 0.8)),

(randomExponential, 15.0, (constant, 0), (constant, 1)), (waveSine, event,

(constant, 12), 0, (constant, 0), (constant, 1))), (basketGen, randomPermutate,

(14,20,26)), orderedCyclic

TPmap display complete.

71

Chapter 8. Meeting 8, Approaches: Permutations, Generators,
and Chaos

8.1. Announcements

• KIOKU concert this Friday, 6:30, in the MIT Lewis Music Library

• Musical Design Report 2 due 11 March: details to follow

• Sonic System Project Draft due 27 April: start thinking

8.2. A Line Segment Generator

• Often we need to vary a parameter linearly over time or events

• Break point functions require defining individual points

• LineSegment: A dynamic line generator between minimum and maximum values over a duration

:: tpmap 100 ls,e,30,0,1

lineSegment, (constant, 30), (constant, 0), (constant, 1)

TPmap display complete.

:: tpmap 100 ls,e,(bg,oc,(3,6,9)),(ru,0,.7),(ru,.3,1)

lineSegment, (basketGen, orderedCyclic, (3,6,9)), (randomUniform, (constant, 0),

(constant, 0.7)), (randomUniform, (constant, 0.3), (constant, 1))

TPmap display complete.

72

8.3. Large Scale Amplitude Behavior with Operators

•	 By multiplying or summing multiple behaviors, dynamic large-scale shapes are possible

•	 Multiplying amplitudes by zero can create periods of inactivity

•	 Techniques derived from modular synthesis

•	 OperatorMultiply used to scale LineSegment and WavePulse

:: tpmap 120 om,(ls,e,9,(ru,.2,1),(ru,.2,1)),(wp,e,23,0,0,1)

operatorMultiply, (lineSegment, (constant, 9), (randomUniform, (constant, 0.2),

(constant, 1)), (randomUniform, (constant, 0.2), (constant, 1))), (wavePulse,

event, (constant, 23), 0, (constant, 0), (constant, 1))

TPmap display complete.

•	 Command sequence:

•	 emo mp

•	 tin a 64

•	 tie r pt,(bg,rp,(16,16,8)),(bg,rp,(2,2,1,4)),(c,1)

•	 tie a om,(ls,e,9,(ru,.2,1),(ru,.2,1)),(wp,e,23,0,0,1)

•	 eln; elh

•	 Related ParameterObjects: OperatorAdd, OperatorMultiply, OperatorDivide, OperatorPower,
OperatorSubtract, OperatorCongruence

8.4. Reading: Ames. A Catalog of Sequence Generators: Accounting for
Proximity, Pattern, Exclusion, Balance and/or Randomness

•	 Ames, C. 1992. “A Catalog of Sequence Generators: Accounting for Proximity, Pattern,
Exclusion, Balance and/or Randomness.” Leonardo Music Journal 2(1): 55-72.

•	 What does ames mean by dependence, exclusion, and balance

73

•	 Why does Ames have so many varieties of random uniform generators, such as LEHMER,
SPREAD, FILL, and others?

•	 How is Brownian motion related to random walks?

•	 How does Ames characterize the artistic opportunities of using 1/f noise?

•	 What are the characteristics of output provided by chaotic generators such as LOGISTIC and
BAKER

•	 What is the idea of a chaos knob?

8.5. Continuous Random Walks

•	 We can use BasketGen for discrete random walks

•	 We can use Accumulator for continuous random walks

•	 Accumulator

:: tpmap 100 a,.5,(ru,-.1,.1)

accumulator, 0.5, (randomUniform, (constant, -0.1), (constant, 0.1))

TPmap display complete.

8.6. Chaos and the Logistic Map

•	 Complex dynamical systems

•	 Deterministic systems that exhibit complex behavior

•	 Most employ iterative processing and result in sensitivity to initial conditions (butterfly effect)

•	 The logistic map was developed as a model of population growth by Pierre Verhulst

x
n+1

 = rx
n
(1 - x

n
)

r is a positive number between 0 and 4 that represents a combined rate for reproduction and
starvation

74

• States produces constant outputs, oscillating behavior, and complex behavior

Public domain image (Wikipedia)

•	 LogisticMap: most interesting output available from p (or r, lambda, or chaos knob) between 2.75
and 4

:: tpmap 100 lm,.5,(ls,e,100,2.75,4),0,1

logisticMap, 0.5, (lineSegment, (constant, 100), (constant, 2.75), (constant,

4)), (constant, 0), (constant, 1)

TPmap display complete.

• Related ParameterObjects: henonBasket, lorenzBasket

75

8.7. Reading: Voss and Clarke. 1/f Noise in Music: Music from 1/f
Noise

•	 Voss, R. F. and J. Clarke. 1978. “1/f Noise in Music: Music from 1/f Noise.” Journal of the
Acoustical Society of America 63(1): 258-263.

•	 What is a 1/f noise, and what is the variations of noise from 1/f0, 1/f1, 1/f2, 1/f3?

•	 The sound and shape of correlated noise: [noiseColors.pd]

•	 What technique did Voss and Clarke use to analyze music?

•	 What sort of data did Voss and Clarke collect?

•	 Extracting an amplitude envelope from an audio signal: [vossClarke.pd]

•	 What conclusions do Voss and Clarke make about 1/f spectral densities?

•	 Is music (or the averaged spectral analysis of amplitude envelopes) intelligent behavior

•	 What technique did Voss and Clarke use to generate melodies? Is this technique parallel to the
analysis technique?

•	 What conclusions did they draw from human evaluation of their generated melodies? Were these
conclusions based on the 1/f noise source?

8.8. 1/f Noise

•	 Rather than just one type of 1/f noise, use many

•	 Gamma can move between 0 (white), 1 (pink), 2 (brown), 3 (black)

•	 1/f noise: gamma == 1

:: tpmap 100 n,100,1,0,1

noise, 100, (constant, 1), (constant, 0), (constant, 1)

TPmap display complete.

• 1/f noise: gamma == 2

76

:: tpmap 100 n,100,2,0,1

noise, 100, (constant, 2), (constant, 0), (constant, 1)

TPmap display complete.

• 1/f noise: gamma == 3

:: tpmap 100 n,100,3,0,1

noise, 100, (constant, 3), (constant, 0), (constant, 1)

TPmap display complete.

• Noise: dynamically varying the gamma

:: tpmap 100 n,100,(ls,e,100,0,3),0,1

noise, 100, (lineSegment, (constant, 100), (constant, 0), (constant, 3)),

(constant, 0), (constant, 1)

TPmap display complete.

8.9. 1/f Noise in Melodic Generation: LineGroove

• Using BasketSelect to select discrete values from a continuous generator

:: tpmap 100 bs,(2,4,7,9,11,14,16,19,21,23),(n,100,1,0,1)

basketSelect, (2,4,7,9,11,14,16,19,21,23), (noise, 100, (constant, 1),

77

(constant, 0), (constant, 1)),

TPmap display complete.

• Command sequence using TM LineGroove:

• emo m

• tmo lg

• tin a 108

• tie r cs,(ls,e,10,(ru,.01,.2),(ru,.01,.2))

• tie f bs,(2,4,7,9,11,14,16,19,21,23),(n,100,1,0,1)

• eln; elh

8.10. 1/f Noise in Melodic Generation: HarmonicAssembly

• Command sequence using TM Harmonic Assembly:

• emo m

• pin a d3,e3,g3,a3,b3,d4,e4,g4,a4,b4,d5,e5,g5,a5,b5

• tmo ha

• tin a 27

• tie r pt,(c,16),(ig,(bg,rc,(1,2,3,5,7)),(bg,rc,(3,6,9,12))),(c,1)

• tie a om,(ls,e,9,(ru,.2,1),(ru,.2,1)),(wp,e,23,0,0,1)

• tie d0 c,0

• tie d1 n,100,2,0,14

• tie d2 c,1

• tie d3 c,1

78

•	 eln; elh

•	 Continued command sequence: with chord size generation between 1 through 4

•	 tie d3 ru,1,4

•	 eln; elh

8.11. Tutorial: PD Arrays as Parameters: Filtered Noise

•	 [mgEnvlMtAr] creates a mono-triggered, attack-release envelope

[mgEnvlMtAr] arguments: attack time, release time, duration

[mgEnvlMtAr] trigger: a floating point value that sets the peak amp

8.12. Tutorial: PD Arrays as Parameters: Cyclical Amplitude Values

•	 Looping through an array with amplitude values with [counter]

[pow 4] provides non-linear to linear amplitude scaling

79

8.13. Tutorial: PD Arrays as Parameters: Cyclical Cutoff Frequency
Values

•	 Looping through an array if values scaled to MIDI pitch values (60-140) with [mgScaleMap]

MIDI pitch values are scaled to frequency values with [mtof]

Data values are converted to signals with [mtof] and [lop~ 30]

[moog~] provides a signal controlled low pass filter with variable resonance

80

8.14. Tutorial: PD Arrays as Parameters: Cyclical Pulse Multipliers

•	 [metro] provides regularly spaced triggers

[counter] and [sel 1] are used to select the first of each cycle

An array of values is scaled to pulse multipliers with [mgScaleMap]

The [counter] max value is dynamically set after reading and mapping a value from the array

81

Chapter 9. Meeting 9, History: Lejaren Hiller

9.1. Announcements

•	 Musical Design Report 2 due 11 March: details to follow

•	 Sonic System Project Draft due 27 April: start thinking

9.2. Musical Design Report 2

•	 May be primarily rhythmic or melodic, or neither

•	 Must have, in at least one section, 6 active timbre sources

•	 Must have, in at least one section, a feeling of time without regular pulse

•	 Should have at least an AB or ABA form

•	 Must feature 1/f noise and Markov-chains in some manner

•	 Can be composed with athenaCL, athenaCL and other tools, or other tools alone

9.3. Chronology: Early Experiments in Algorithmic Composition with a
Computer

•	 late 1955: Caplin and Prinz: Mozart Contradance Dice Game

•	 July 1956: Klein and Bolitho: Push Button Bertha

•	 August (movement 1) and November (complete) 1956: Hiller and Isaacson: Illiac Suite

•	 1964, 1969: Koenig’s PR1 and PR2

9.4. Hiller and Isaacson

•	 Lejaren Hiller (1924-): research chemist for du Pont, worked at University of Illinois, explored
applications of computers to chemical problems; studied music theory and composition after
Illiac work

Isaacson (1930-): applications of computers to chemical problems, worked for Standard Oil in
California; no musical training

82

Photo of L. A. Hiller and L. M. Isaacson removed due to copyright restrictions.

•	 Used University of Illinois ILLIAC (ILLInois Automated Computer)

1952: ILLIAC, the first computer built and owned entirely by an educational institution

83

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

•	 Created four movements of a string quartet: Illiac Suite

•	 Hiller describes the Illiac Suite as a “… presentation of sample results … in the form of a four-
movement transcription for string quartet” (1956, p. 248).

•	 Published a complete book on the process: Hiller, L. and L. Isaacson. 1959. Experimental Music.
New York: McGraw-Hill.

•	 Hiller went to continue to explore techniques of computer composition, including work with
John Cage

9.5. Reading: Hiller, L. and L. Isaacson. Musical Composition with a
High-Speed Digital Computer

•	 Hiller, L. and L. Isaacson. 1958. “Musical Composition with a High-Speed Digital Computer.”
Journal of the Audio Engineering Society 6(3): 154-160.

84

http://ocw.mit.edu/fairuse

• Why do HIller and Isaacson think that music is well suited for this sort of computer experiment?

• Did Hiller and Isaacson see their work as an experiment, or as a work of art?

• What social and critical context is suggested by the discussion question, at the end of the article?

9.6. Hiller and Isaacson: Illiac Suite I and II

• Strict counterpoint in the model of 18th century treatise Gradus ad Parnassum

• Monte-carlo technique: random generative pitches and filter through rules

• Borrowed programming models from previous work in chemistry

• Generated only pitch; registration, instrumentation, dynamics, and rhythm manually applied

• Flow chart of strict counterpoint

85

•

Audio: Hiller: Illiac Suite, Experiment 1 and Experiment 2 (1956)

86

Courtesy of MIT Press. Used with permission. From Hiller, L., and L. Isaacson.
"Musical Composition with a High-Speed Digital Computer." In Machine Models
of Music. Edited by S. Schwanauer and D. Levitt. MIT Press, 1993.

9.7. Monte Carlo: Concepts

•	 Monte-Carlo: a wealthy quarter of the city-state Principality of Monaco, and host to European
Formula One racing, resorts, and gambling

•	 1940s: John von Neuman and Stanislas Ulam: used to study problems of neutron diffusion at Los
Alamos in research relating to the hydrogen bomb

•	 Random generation of values that are tested and then kept or discarded

•	 Only feasible with the use of computers

•	 Brute-force solutions

•	 Good for problems where attributes of the answer are known, but how to get the answer is not

•	 Also called statistical sampling; related to constraint satisfaction problems

9.8. Monte Carlo Melodic Generation with athenaCL Python Libraries

•	 Produce a melody using 14 diatonic pitches, where intervals between steps are limited between
two values provided with command-line arguments

•	 monteCarlo.py

import os, random, sys

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

OUTDIR = '/Volumes/xdisc/_scratch'

BEATDUR = rhythm.bpmToBeatTime(128) # provide bpm value

def getInstName(nameMatch):

 for name, pgm in generalMidi.gmProgramNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

return None

def convertPitch(pitch, octShift=0):

midiPs = pitchTools.psToMidi(pitchTools.psNameToPs(pitch))

midiPs = midiPs + (12*octShift)

return midiPs

def genScore(minStep=1, maxStep=3):

pitchScale = {1:'C4', 2:'D4', 3:'E4', 4:'F4', 5:'G4', 6:'A4', 7:'B4',

8:'C5', 9:'D5',10:'E5',11:'F5',12:'G5',13:'A5',14:'B5',

}

melodyLength = 36

melody = []

while True:

 if len(melody) == melodyLength:

87

 break

 elif len(melody) == 0:

melody.append(1)

continue

 else:

 pitchLast = melody[-1]

while True:

 pitchNew = random.choice(pitchScale.keys())

 interval = abs(pitchNew - pitchLast)

if interval >= minStep and interval <= maxStep:

melody.append(pitchNew)

break

 else:

 continue

score = []

tStart = 0.0

 for i in range(melodyLength):

pitch = convertPitch(pitchScale[melody[i]])

dur = BEATDUR * .5

 amp = 90

pan = 63

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart = tStart + dur

 return score

def main(minStep, maxStep):

trackList = []

score = genScore(minStep, maxStep)

 trackList.append(['part-a', getInstName('piano'), None, score])

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

 mObj.write(path)

osTools.openMedia(path)

if __name__ == '__main__':

if len(sys.argv) != 3:

 print('required command-line arguments: minStep maxStep')

else:

 main(int(sys.argv[1]), int(sys.argv[2]))

9.9. Hiller and Isaacson: Illiac Suite III

• Constrained chromatic music

• Generated pitch, rhythm, amplitude, and performance articulation

• Audio: Hiller: Illiac Suite, Experiment 3 (1956)

88

© Carl Fischer, LLC. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

9.10. Hiller and Isaacson: Illiac Suite IV

• Markov chains (zero and first order) for interval and harmony selection
89

http://ocw.mit.edu/fairuse

•	 Models from music theory (Schenker)

•	 Only movement not produced from a combination of outputs

•	 Tempo, meter, dynamics added manually

•	 Audio: Hiller: Illiac Suite, Experiment 4 (1956)

9.11. Hiller and Isaacson: Issues and Responses

•	 Cony, E. 1956. “Canny Computers: Machines Write Music, Play Checkers, Tackle New Tasks in
Industry.” Wall Street Journal 148(56)

90

© Wall Street Journal. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

91

http://ocw.mit.edu/fairuse

• Brower, B. 1961. “Why ‘Thinking Machines’ Cannot Think.” New York Times February 19: 213.

•	 “And finally -- to stretch the point as far as some of the computer people have done -- machines
are presumably capable of ‘creating works of art.’ in any case, Lejaren A Hiller Jr. and L. M.
Isaacson hold a copyright for their ‘Illiac Suite for String Quartet’ ...”

Image and text quotes © New York Times. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

92

http://ocw.mit.edu/fairuse

“this rather ludicrous extension of the machine-brain equation to artistic creativity perhaps best
illustrates its limitations. No machine is every really likely to contain the artist within its electro-
physics, and to a greater or lesser degree, it is unlikely that machine equivalents will be
constructed for the highest of human attributes.”

“it is best to view the electronic brains as instruments of human calculation, which achieve results
that lie beyond human time and precision, but not beyond human intelligence”

9.12. Zero Order Markov Chains as ParameterObjects

• A zero order Markov chain is weighted random selection

• MarkovValue ParameterObject

:: tpv mv

Generator ParameterObject

{name,documentation}

MarkovValue markovValue, transitionString, parameterObject

Description: Produces values by means of a Markov transition

string specification and a dynamic transition order

generator. Markov transition order is specified by a

 ParameterObject that produces values between 0 and the

maximum order available in the Markov transition string. If

 generated-orders are greater than those available, the

 largest available transition order will be used. Floating-

point order values are treated as probabilistic weightings:

for example, a transition of 1.5 offers equal probability of

 first or second order selection. Arguments: (1) name, (2)

transitionString, (3) parameterObject {order value}

• The transition string

• Two parts: symbol definitions and weights

• Symbol definition: a{3}b{345}c{23.54}

• Zero order weights: :{a=3|b=1|c=34}

• MarkovValue: zero order with equal weighting

:: tpmap 100 mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=1|c=1|d=1|e=1}

markovValue, a{2}b{4}c{7}d{9}e{11}:{a=1|b=1|c=1|d=1|e=1}, (constant, 0)

TPmap display complete.

93

• MarkovValue: zero order with stronger weightings on two values

:: tpmap 100 mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=6|c=1|d=9|e=1}

markovValue, a{2}b{4}c{7}d{9}e{11}:{a=1|b=6|c=1|d=9|e=1}, (constant, 0)

TPmap display complete.

9.13. Building a Self-Similar Melody

• Self similar Markovian melody generation and transposition

• Command sequence:

• emo m

• tin a 24

• using 1/f noise for durations with ConvertSecond and Noise

tie r cs,(n,100,1.5,.100,.180)

• a more dynamic timing offset

tie r cs,(om,(n,100,1.5,.100,.180),(ws,t,8,0,.5,1))

• Markov weighted pitch transposition

tie f mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=6|c=1|d=9|e=1}

• self-similar pitch transposition combing a grouped version of the same Markov generator with OperatorAdd

tie f oa,(mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}),

(ig,(mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}),(ru,10,20))

• Markov based octave shifting

tie o mv,a{-2}b{0}c{-2}d{0}e{-1}:{a=1|b=3|c=1|d=3|e=1}

• A widening beta distribution

tie a rb,.2,.5,(ls,e,(ru,3,20),.5,1)

94

• Modulated with a pulse wave (and random frequency modulation on the PulseWave)

tie a om,(rb,.2,.5,(ls,e,(ru,3,20),.5,1)),(wp,e,(ru,25,30),0,0,1)

• tie t 0,120

• eln; elh

9.14. Resuming PD Tutorial

• PD Tutorial

95

Chapter 10. Meeting 10, Approaches: Probability and Markov
Chains

10.1. Announcements

•	 Musical Design Report 2 due this Thursday, 11 March

•	 Thursday we will work in PD and Csound

•	 Quiz next Tuesday

10.2. Half-Period Oscillators as ParameterObjects

•	 Continuously varying the seconds per cycle (frequency) of an oscillator results in complex
periodicities; random or discrete frequency variation results in complexity

:: tpmap 100 ws,e,(ls,e,50,10,30),0,0,10

waveSine, event, (lineSegment, (constant, 50), (constant, 10), (constant, 30)),

0, (constant, 0), (constant, 10)

TPmap display complete.

:: tpmap 100 ws,e,(ru,19,21),0,0,10

waveSine, event, (randomUniform, (constant, 19), (constant, 21)), 0, (constant,

0), (constant, 10)

TPmap display complete.

• An alternative is an oscillator that only updates seconds per half cycle (half frequency) once per
half-period

96

WaveHalfPeriodSine, WaveHalfPeriodTriangle, WaveHalfPeriodPulse, WaveHalfPeriodCosine

:: tpmap 100 whps,e,(bg,rp,(2,6,10,14,18)),0,0,10

waveHalfPeriodSine, event, (basketGen, randomPermutate, (2,6,10,14,18)), 0,

(constant, 0), (constant, 10)

TPmap display complete.

:: tpmap 100 whpt,e,(bg,rp,(2,6,10,14,18)),0,0,10

waveHalfPeriodTriangle, event, (basketGen, randomPermutate, (2,6,10,14,18)), 0,

(constant, 0), (constant, 10)

TPmap display complete.

:: tpmap 100 whpp,e,(bg,rp,(2,6,10,14,18)),0,0,10

waveHalfPeriodPulse, event, (basketGen, randomPermutate, (2,6,10,14,18)), 0,

(constant, 0), (constant, 10)

TPmap display complete.

10.3. Markov Analysis and Generation: Basics

• Examine an ordered sequence states

• Given an event at n-1, what is the probability of any state (of all possible states) at n?

97

•	 Look at all possible n-1 states, and find how often they move to each state at n

•	 Use these probabilities to re-generate new sequences (where more frequent states result in
proportionally weighted randomness)

10.4. Markov Analysis and Generation: Orders

•	 Zeroth order: examine 0 past states; given all possible states, generate n based on the distribution
of all states.

•	 First order: examine 1 past state; generate n based on the probability of n-1 moving to each state.

•	 Second order: examine 2 past states; generate n based on the probability of n-2 and n-1 moving to
each state.

•	 Second order: examine 3 past states; generate n based on the probability of n-3, n-2 and n-1
moving to each state.

•	 The greater the order, the more the past is taken into account in determining the next state

•	 The greater the order, the more the output is similar to the source

10.5. Reading: Ames: The Markov Process as a Compositional Model:
A Survey and Tutorial

•	 Ames, C. 1989. “The Markov Process as a Compositional Model: A Survey and Tutorial.”
Leonardo 22(2): 175-187.

•	 What does Ames refer to by stationary probabilities

•	 What does Ames claim as the greatest strength of Markov chains?

•	 What technique does Ames suggests as a way to create large-scale behavior out of Markov chains?

10.6. Markov Chains: History

•	 1906: Andrey Andreyevich Markov, Russian mathematician

Used Markov chains to show tendencies in written Russian in a text by Pushkin

•	 1949: Claude E. Shannon and Warren Weaver: A Mathematical Theory of Communication; associated
with information theory

•	 Demonstrate using stochastic processes to generate English sentences

•	 Suggest application to any sequence of symbols, including music

98

10.7. Markov Chains: History: Early Musical Applications

• The “Banal Tune-Maker” of Richard C. Pinkerton (1956)

© Scientific American, Inc. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

99

http://ocw.mit.edu/fairuse

© Scientific American, Inc. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

• John F. Sowa with a Geniac “Electronic Brain Kit” (1957)

100

http://ocw.mit.edu/fairuse

© Oliver Garfield Co., Inc. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

101

http://ocw.mit.edu/fairuse

© Oliver Garfield Co., Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

102

http://ocw.mit.edu/fairuse

Courtesy of John F. Sowa. Used with permission.

103

•	 1961: Harry Olson and Herbert Belar build a sophisticated electronic machine that produced and
synthesized melodices based on Markovian pitch and rhythm analysis of eleven Stephen Collins
Foster songs (1961)

104

Source: Olson, H. F., and H. Belar. "Aid to Music Composition Employing a Random Probability System."
J. Acoust. Soc. Am. 33, no. 9 (1961): 1163-1170.
© Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

105

Source: Olson, H. F., and H. Belar. "Aid to Music Composition Employing a Random Probability System."
J. Acoust. Soc. Am. 33, no. 9 (1961): 1163-1170.
© Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

• David Zicarelli’s Jam Factory and Joel Chadabe and Zicarelli’s M (1987)

106

Source: Olson, H. F., and H. Belar. "Aid to Music Composition Employing a Random Probability System."
J. Acoust. Soc. Am. 33, no. 9 (1961): 1163-1170.
© Acoustical Society of America. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Courtesy of Cycling '74. Used with permission.

107

10.8. Markov Chains: Example: Shakespear

• Hamlet Act 3, Scene 1, Soliloquy

YouTube (http://www.youtube.com/watch?v=-JD6gOrARk4)

• Shakespear: Hamlet: “To be or not to be”

To be, or not to be- that is the question:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous fortune

Or to take arms against a sea of troubles,

And by opposing end them. To die- to sleep-

No more; and by a sleep to say we end

The heartache, and the thousand natural shocks

That flesh is heir to. ’Tis a consummation

Devoutly to be wish’d. To die- to sleep.

To sleep- perchance to dream: ay, there’s the rub!

For in that sleep of death what dreams may come

When we have shuffled off this mortal coil,

Must give us pause. There’s the respect

That makes calamity of so long life.

For who would bear the whips and scorns of time,

Th’ oppressor’s wrong, the proud man’s contumely,

The pangs of despis’d love, the law’s delay,

The insolence of office, and the spurns

That patient merit of th’ unworthy takes,

When he himself might his quietus make

With a bare bodkin? Who would these fardels bear,

To grunt and sweat under a weary life,

But that the dread of something after death-

The undiscover’d country, from whose bourn

No traveller returns- puzzles the will,

And makes us rather bear those ills we have

Than fly to others that we know not of?

Thus conscience does make cowards of us all,

And thus the native hue of resolution

Is sicklied o'er with the pale cast of thought,

And enterprises of great pith and moment

With this regard their currents turn awry

And lose the name of action.- Soft you now!

The fair Ophelia!- Nymph, in thy orisons

Be all my sins rememb'red.

• 0-order Markov re-generation

wish’d. contumely, Be contumely, the Devoutly thus pangs by thy of fardels makes name
consummation pale Who we to respect coil, the to be and To Nymph, Th’ That No ’Tis There’s
And the cowards of that When the weary or To a against wrong, And name With th’ we thought,
the sins That To my wrong, off perchance those Be scorns To his a that With others The quietus
currents fly wrong, weary that To traveller time, When have scorns wrong, pale traveller against of
make scorns quietus of delay, sleep. awry With to currents in and With cast coil, But have may
arms Th’ take arrows and The those their to regard the end we coil, fortune take

• 1-order Markov re-generation

108

http://www.youtube.com/watch?v=-JD6gOrARk4

die to others that is the name of so long life. For in the will, And enterprises of great pith and
scorns of thought, And enterprises of thought, And lose the proud man’s contumely, The
undiscover’d country, from whose bourn No more; and the whips and moment With this regard
their currents turn awry And lose the proud man’s contumely, The slings and sweat under a sleep
perchance to dream: ay, there’s the whips and scorns of office, and arrows of great pith and
scorns of something after death what dreams may come When he himself might his quietus make
With this regard their currents turn awry And makes us pause. There’s the law’s delay, The
heartache, and arrows of

• 2-order Markov re-generation

To be, or not to be wish’d. To die to sleep No more; and by a sleep to say we end The heartache,
and the thousand natural shocks That flesh is heir to. ’Tis a consummation Devoutly to be wish’d.
To die to sleep No more; and by a sleep to say we end The heartache, and the thousand natural
shocks That flesh is heir to. ’Tis a consummation Devoutly to be wish’d. To die to sleep No
more; and by a sleep to say we end The heartache, and the thousand natural shocks That flesh is
heir to. ’Tis a consummation Devoutly to be that is the question: Whether ’tis nobler in the mind
to suffer The slings and

• 3-order Markov re-generation

the name of action. Soft you now! The fair Ophelia! Nymph, in thy orisons Be all my sins
rememb'red. To be, or not to be wish’d. To die to sleep No more; and by a sleep to say we end
The heartache, and the thousand natural shocks That flesh is heir to. ’Tis a consummation
Devoutly to be that is the question: Whether ’tis nobler in the mind to suffer The slings and
arrows of outrageous fortune Or to take arms against a sea of troubles, And by opposing end
them. To die to sleep No more; and by a sleep to say we end The heartache, and the spurns That
patient merit of th’ unworthy takes, When he himself

• 4-order Markov re-generation

those ills we have Than fly to others that we know not of? Thus conscience does make cowards
of us all, And thus the native hue of resolution Is sicklied o'er with the pale cast of thought, And
enterprises of great pith and moment With this regard their currents turn awry And lose the name
of action. Soft you now! The fair Ophelia! Nymph, in thy orisons Be all my sins rememb'red. To
be, or not to be wish’d. To die to sleep No more; and by a sleep to say we end The heartache, and
the thousand natural shocks That flesh is heir to. ’Tis a consummation Devoutly to be that is the
question: Whether ’tis nobler in the

• 5-order Markov re-generation

we have shuffled off this mortal coil, Must give us pause. There’s the respect That makes calamity
of so long life. For who would bear the whips and scorns of time, Th’ oppressor’s wrong, the
proud man’s contumely, The pangs of despis’d love, the law’s delay, The insolence of office, and
the spurns That patient merit of th’ unworthy takes, When he himself might his quietus make
With a bare bodkin? Who would these fardels bear, To grunt and sweat under a weary life, But
that the dread of something after death The undiscover’d country, from whose bourn No

109

traveller returns puzzles the will, And makes us rather bear those ills we have Than fly to others
that we know

10.9. Markov Chains: Example: Mozart Symphony 40

• Audio: Mozart: Symphony 40

• Pitch and rhythm based Markov regeneration at various orders

• Markov-generated examples [markovMozart.py]

10.10. Markov Analysis and Generation with athenaCL Python
Libraries: Text

• Use the athenaCL Markov module

• Create a markov.Transition instances to do analysis

• Example: string data [markovShakespear.py]

import random

from athenaCL.libATH import markov

src = """To be, or not to be- that is the question:

Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune

Or to take arms against a sea of troubles,

And by opposing end them. To die- to sleep-

No more; and by a sleep to say we end

The heartache, and the thousand natural shocks

That flesh is heir to. 'Tis a consummation

Devoutly to be wish'd. To die- to sleep.

To sleep- perchance to dream: ay, there’s the rub!

For in that sleep of death what dreams may come

When we have shuffled off this mortal coil,

Must give us pause. There’s the respect

That makes calamity of so long life.

For who would bear the whips and scorns of time,

Th' oppressor’s wrong, the proud man’s contumely,

The pangs of despis'd love, the law’s delay,

The insolence of office, and the spurns

That patient merit of th' unworthy takes,

When he himself might his quietus make

With a bare bodkin? Who would these fardels bear,

To grunt and sweat under a weary life,

But that the dread of something after death-

The undiscover'd country, from whose bourn

No traveller returns- puzzles the will,

And makes us rather bear those ills we have

Than fly to others that we know not of?

110

Thus conscience does make cowards of us all,

And thus the native hue of resolution

Is sicklied o'er with the pale cast of thought,

And enterprises of great pith and moment

With this regard their currents turn awry

And lose the name of action.- Soft you now!

The fair Ophelia!- Nymph, in thy orisons

Be all my sins rememb'red."""

orderMax = 2 # large numbers here will take time!

mkObj = markov.Transition()

mkObj.loadString(src, orderMax) # source and max order1

for order in range(0, orderMax+1):

print('requested order: ' + order)

msg = []

for x in range(120):

val = random.random()

msg.append(mkObj.next(val, msg, order))

 print(' '.join(msg) + '\n')

10.11. Markov Analysis and Generation with athenaCL Python
Libraries: MIDI

• Example: pitch and rhythm data [markovMozart.py]

import os, random, sys

from athenaCL.libATH import midiTools

from athenaCL.libATH import osTools

from athenaCL.libATH import pitchTools

from athenaCL.libATH import rhythm

from athenaCL.libATH import markov

from athenaCL.libATH.libOrc import generalMidi

from athenaCL.libATH.libPmtr import parameter

from athenaCL.libATH.libPmtr import basePmtr

OUTDIR = '/Volumes/xdisc/_scratch'

BEATDUR = rhythm.bpmToBeatTime(128) # provide bpm value

def getInstName(nameMatch):

for name, pgm in generalMidi.gmProgramNames.items():

if name.lower().startswith(nameMatch.lower()):

return pgm # an integer

return None

def convertPitch(src, octShift):

post = []

for pitch in src:

 midiPs = pitchTools.psToMidi(pitchTools.psNameToPs(pitch))

midiPs = midiPs + (12*octShift)

post.append(midiPs)

return post # a list of integers

def convertRhythm(src, scale):

post = []

for rhythm in src:

post.append(rhythm*scale)

 return post # a list of integers

def mozartMarkov(events, order, octaveShift, rhythmScale):

pitchSequence = [

111

 'E$5','D5','D5','E$5','D5','D5','E$5','D5','D5',

 'B$5','B$5','A5','G5','G5','F5','E$5','E$5','D5','C5','C5',

 'D5','C5','C5', 'D5','C5','C5', 'D5','C5','C5',

 'A5','A5','G5','G$5','G$5','E$5','D5','D5','C5','B$4','B$4',

'B$5','A5','A5','C6','G$5','A5','G5','D5',

 'B$5','A5','A5','C6','G$5','A5','G5','B$5','A5','G5','F5','E$5',

 'D5','D$5','D5',

 'D4','D4','D4', 'D4','D4','D4',

'D4','D4','D4', 'D4','D4','D4', 'D4','D4','D4']

rhtyhmSequence = [

.5, .5, 1, .5, .5, 1, .5, .5, 1, 1,

 .5, .5, 1, .5, .5, 1, .5, .5, 1, 2,

 .5, .5, 1, .5, .5, 1, .5, .5, 1,

 2, .5, .5, 1, .5, .5, 1, .5, .5, 1, 2,

 .5, .5, 1, 1, 1, 1, 1, 2,

 .5, .5, 1, 1, 1, 1, 1, 1, .5, .5, .5, .5,

 4, 4, 3,

 .5, .5, 3, .5, .5, 3,

.5, .5, 1, .5, .5, 1, .5, .5, 1]

 mkPitch = markov.Transition()

 mkRhythm = markov.Transition()

mkPitch.loadList(convertPitch(pitchSequence, octaveShift), order)

mkRhythm.loadList(convertRhythm(rhtyhmSequence, rhythmScale), order)

 pitchHistory = []

rhythmHistory = []

 ampGen = parameter.factory(['ws','e',4,0,100,120]) # sine osc b/n 90 and 120

f = random.choice(range(50,70))

phase = random.random()

panGen = parameter.factory(['ws','e',f,phase,20,107])

score = []

tStart = 0.0

 for i in range(events):

pitch = mkPitch.next(random.random(), pitchHistory, order)

pitchHistory.append(pitch)

rhythm = mkRhythm.next(random.random(), rhythmHistory, order)

rhythmHistory.append(rhythm)

 dur = BEATDUR * rhythm

 amp = int(round(ampGen(0)))

pan = int(round(panGen(0)))

event = [tStart, dur, amp, pitch, pan]

score.append(event)

tStart += dur

 return score

def main(order):

trackList = []

 score = mozartMarkov(100, order, -1, 1)

 trackList.append(['part-a', getInstName('piano'), None, score])

path = os.path.join(OUTDIR, 'test.midi')

mObj = midiTools.MidiScore(trackList)

mObj.write(path) # writes in cwd

osTools.openMedia(path)

if __name__ == '__main__':

if len(sys.argv) != 2:

print(“args: order”)

else:

 main(int(sys.argv[1]))

112

10.12. Reading: Ariza: Beyond the Transition Matrix: A Language-
Independent, String-Based Input Notation for Incomplete, Multiple-
Order, Static Markov Transition Values

•	 Ariza, C. 2006. “Beyond the Transition Matrix: A Language-Independent, String-Based Input
Notation for Incomplete, Multiple-Order, Static Markov Transition Values.” Internet:
http://www.flexatone.net/docs/btmimosmtv.pdf.

•	 What are some potential advantages of the transition string over the transition matrix?

•	 Why might modulating Markov order be desirable?

10.13. Utility Markov Analysis and Generation within athenaCL

•	 AUma command can be used to get an analysis string for an space-separated sequence

:: auma

maximum analysis order: 1

enter space-separated string: 0 1 1 1 1 0 1 2 3 4 0 0 2 1 3 2 4 0 0

AthenaUtility Markov Analysis

a{0}b{1}c{2}d{3}e{4}:{a=6|b=6|c=3|d=2|e=2}a:{a=3|b=2|c=1}b:{a=1|b=3|c=1|d=1}c:{b=1|d

=1|e=1}d:{c=1|e=1}e:{a=2}

•	 AUmg command can be used to use a transition string to generate values

:: aumg

number of generations: 20

desired order: 1

enter Markov transition string:

a{0}b{1}c{2}d{3}e{4}:{a=6|b=6|c=3|d=2|e=2}a:{a=3|b=2|c=1}b:{a=1|b=3|c=1|d=1}c:{b=1|d

=1|e=1}d:{c=1|e=1}e:{a=2}

AthenaUtility Markov Generator

4,0,1,1,1,1,1,3,2,1,1,1,1,1,2,4,0,0,1,0

10.14. Markov-Based Proportional Rhythm Generation

•	 The MarkovPulse Generator permits specifying proportional rhythms (pulse truples) as Markov
states

:: tpv markovpulse

Rhythm Generator ParameterObject

{name,documentation}

MarkovPulse markovPulse, transitionString, parameterObject

Description: Produces Pulse sequences by means of a Markov

 transition string specification and a dynamic transition

order generator. The Markov transition string must define

symbols that specify valid Pulses. Markov transition order

is specified by a ParameterObject that produces values

between 0 and the maximum order available in the Markov

 transition string. If generated-orders are greater than

those available, the largest available transition order will

 be used. Floating-point order values are treated as

probabilistic weightings: for example, a transition of 1.5

113

http://www.flexatone.net/docs/btmimosmtv.pdf

 offers equal probability of first or second order selection.

Arguments: (1) name, (2) transitionString, (3)

parameterObject {order value}

•	 Command sequence:

•	 emo mp

•	 tin a 64

•	 simple zero-order selection

tie r mp,a{4,1}b{4,3}c{4,5}d{4,7}:{a=4|b=3|c=2|d=1}

•	 first order generation that encourages movement toward the shortest duration

tie r mp,a{8,1}b{4,3}c{4,7}d{4,13}a:{a=9|d=1}b:{a=5|c=1}c:{b=1}d:{c=1},(c,1)

•	 eln; elh

10.15. Markov-Based Value Generation

•	 The MarkovValue Generator permits specifying any value as Markov states, and dynamically
moving between different Markov orders

:: tpv mv

Generator ParameterObject

{name,documentation}

MarkovValue markovValue, transitionString, parameterObject

Description: Produces values by means of a Markov transition

string specification and a dynamic transition order

generator. Markov transition order is specified by a

 ParameterObject that produces values between 0 and the

maximum order available in the Markov transition string. If

 generated-orders are greater than those available, the

 largest available transition order will be used. Floating-

point order values are treated as probabilistic weightings:

for example, a transition of 1.5 offers equal probability of

 first or second order selection. Arguments: (1) name, (2)

transitionString, (3) parameterObject {order value}

:: tpmap 100

mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d=1}d:{c=

3|e=1}e:{d=1},(c,1)

markovValue, a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:

{b=3|d=1}d:{c=3|e=1}e:{d=1}, (constant, 1)

TPmap display complete.

114

• The modulating the order of the Markov chain can create dynamic long-range behavior

:: tpmap 100

mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d=1}d:{c=

3|e=1}e:{d=1},(wp,e,50,0,1,0)

markovValue, a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:

{b=3|d=1}d:{c=3|e=1}e:{d=1},

TPmap display complete.

• Command sequence:

• emo m

• tin a 26

• rhythm generated with absolute values via ConvertSecond and a dynamic WaveHalfPeriodSine generator

tie r cs,(whps,e,(bg,rp,(5,10,15,20)),0,.200,.050)

• first-order selection

tie f
mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d
=1}d:{c=3|e=1}e:{d=1},(c,1)

• dynamic first and zero order selection

tie f
mv,a{2}b{4}c{7}d{9}e{11}:{a=1|b=3|c=1|d=3|e=1}a:{a=9|e=1}b:{a=3|c=1}c:{b=3|d
=1}d:{c=3|e=1}e:{d=1},(wp,e,100,0,1,0)

• zero-order Markov amplitude values

115

tie a mv,a{.4}b{.6}c{.8}d{1}:{a=6|b=4|c=3|d=1}

•	 amplitude values scaled by a dynamic WaveHalfPeriodPulse

tie a om,(mv,a{.4}b{.6}c{.8}d{1}:{a=6|b=4|c=3|d=1}),(whpp,e,(bg,rp,(5,15,10)))

•	 octave values are provided by a first-order Markov chain

tie o mv,a{0}b{-1}c{-2}d{-3}a:{a=9|d=1}b:{a=3|b=1}c:{b=3|c=1}d:{c=1},(c,1)

•	 tie t 0,60

•	 eln; elh

10.16. Markov-Based Combined Analysis and Generation

•	 The MarkovGeneratorAnalysis Generator permits using the output of a ParameterObject as the
source for Markov analysis

:: tpv mga

Generator ParameterObject

{name,documentation}

MarkovGeneratorAnalysis markovGeneratorAnalysis, parameterObject, valueCount,

maxAnalysisOrder, parameterObject

Description: Produces values by means of a Markov

 analysis of values provided by a source Generator

ParameterObject; the analysis of these values is used

with a dynamic transition order Generator to produce new

values. The number of values drawn from the source

 Generator is specified with the valueCount argument. The

maximum order of analysis is specified with the

maxAnalysisOrder argument. Markov transition order is

specified by a ParameterObject that produces values

between 0 and the maximum order available in the Markov

 transition string. If generated-orders are greater than

those available, the largest available transition order

 will be used. Floating-point order values are treated as

probabilistic weightings: for example, a transition of

1.5 offers equal probability of first or second order

selection. Arguments: (1) name, (2) parameterObject

{source Generator}, (3) valueCount, (4)

 maxAnalysisOrder, (5) parameterObject {output order

value}

•	 First order analysis and regeneration of a sine oscillation

:: tpmap 100 mga,(ws,e,30),30,2,(c,1)

markovGeneratorAnalysis, (waveSine, event, (constant, 30), 0, (constant, 0),

(constant, 1)), 30, 2, (constant, 1)

TPmap display complete.

116

• Analysis and regeneration of a sine oscillation with dynamic orders from 0.5 to 1.5

Floating-point orders are treated as probabilistic weightings toward nearest integers

:: tpmap 100 mga,(ws,e,30),30,2,(ws,e,50,0,0.5,1.5)

markovGeneratorAnalysis, (waveSine, event, (constant, 30), 0, (constant, 0),

(constant, 1)), 30, 2, (waveSine, event, (constant, 50), 0, (constant, 0.5),

(constant, 1.5))

TPmap display complete.

10.17. Resuming PD Tutorial

• PD Tutorial

117

Chapter 11. Meeting 11, Workshop

11.1. Announcements

•	 Musical Design Report 2 due today, 11 March

•	 Quiz next Tuesday

•	 Next week, and after spring break: make appointments with me to talk about sonic system
projects.

11.2. Workshop: Musical Design Report 2

•	 Three students presenting today

11.3. Configuring Event Outputs

•	 For each EventMode, some output is always created (in EventMode midiPercussion, a midi file is
always created)

•	 Some outputs are independent of any EventMode (an xmlAthenaObject can be always generated)

•	 A list of desired outputs (EventOutputs) is always consulted to determine what required and what
optional outputs are created when creating an EventList

•	 The EOls command can be used to see what EventOutputs are active

:: eols

EventOutput active:

{name}

acToolbox

audioFile

csoundBatch

csoundData

csoundOrchestra

csoundScore

midiFile

 pureDataArray

superColliderTask

textSpace

textTab

xmlAthenaObject

•	 When working with Csound, it is always desirable to have csoundData selected, as this causes the
creation of integrated CSD files (combined orchestra and score files). Use the EOo to select
active EventOutputs.

118

:: eoo cd

EventOutput formats: csoundData.

:: eols

EventOutput active:

{name}

acToolbox

audioFile

csoundBatch

+ csoundData

csoundOrchestra

csoundScore

midiFile

pureDataArray

superColliderTask

textSpace

textTab

xmlAthenaObject

•	 It is desirable to write an AthenaObject XML file (xmlAthenaObject) when creating an EventList
to premit reloading an athenaCL session.

:: eoo xao

EventOutput formats: csoundData, xmlAthenaObject.

:: eols

EventOutput active:

{name}

acToolbox

audioFile

csoundBatch

+ csoundData

csoundOrchestra

csoundScore

midiFile

pureDataArray

superColliderTask

textSpace

 textTab

+ xmlAthenaObject

11.4. A Noise Instrument

•	 Csound instruments add auxiliary parameter fields to Textures

•	 Such parameter fields permit control of synthesis parameters

•	 Command sequence:

•	 emo cn

•	 tin a 13

•	 tie r cs,(whps,e,(bg,rp,(5,10,15,20)),0,.200,.050)

•	 set initial low-pass filter cutoff frequency

119

tie x2 whps,e,(bg,rp,(5,10,20,2,10)),0,400,18000

• set final low-pass filter cutoff frequency

tie x3 whps,e,(bg,rp,(5,10,20,2,10)),0,400,18000

• panning controlled by fractional noise with infrequent zero-order Markov controlled jumps out of 1/f2 to 1/f0

tie n n,100,(mv,a{2}b{0}:{a=12|b=1}),0,1

• eln; elh

11.5. A Sample Playback Instrument

• Csound instruments add auxiliary parameter fields to Textures

• Such parameter fields permit control of synthesis parameters

• Command sequence:

• emo cn

• tin a 32

• set a file path to an audio file

tie x6 cf,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio/29561.aif

• line segment absolute rhythm durations

tie r cs,(ls,e,(ru,5,30),(ru,.03,.15),(ru,.03,.15))

• start position within audio file in seconds

tie x5 ru,0,40

• tie a ls,e,(bg,rc,(3,5,20)),.1,1

• tie x2 whps,e,(bg,rp,(5,10,20,2,10)),0,100,10000

• eln; elh

11.6. A Sample Playback Instrument with Variable Playback Rate

• Csound instruments add auxiliary parameter fields to Textures

• Such parameter fields permit control of synthesis parameters

120

• Command sequence:

• emo cn

• tin a 230

• set a file path to an audio file

tie x6 cf,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio/32673.aif

• line segment absolute rhythm durations

tie r cs,(ls,e,(ru,10,30),(ru,.05,.25),(ru,.05,.25))

• start position within audio file in seconds

tie x5 ru,0,10

• initial and final audio playback rate

tie x7 mv,a{1}b{.75}c{.5}d{.2}e{2}:{a=6|b=3|c=2|d=1|e=1}

tie x8 mv,a{1}b{.75}c{.5}d{.2}e{2}:{a=6|b=3|c=2|d=1|e=1}

• panning controlled by fractional noise with infrequent zero-order Markov controlled jumps out of 1/f2 to 1/f0

tie n n,100,(mv,a{2}b{0}:{a=12|b=1}),0,1

• two instances simultaneously

ticp a b

• eln; elh

11.7. Exporting ParameterObject output as PD Arrays

• ParameterObject outputs can be exported as PD Arrays.

• Can be used to produce control data used in PD processing

• The TPe (TextureParameter Export) command interactively

:: tpe

enter an export format: pda

number of events: 300

enter a Generator ParameterObject argument: whpt,e,(bg,rc,(5,10,15,20,30))

command.py: temporary file: /Volumes/xdisc/_scratch/ath2010.03.11.08.16.16.pd

complete: (/Volumes/xdisc/_scratch/ath2010.03.11.08.16.16.pd)

121

•	 Or as a single Command:

•	 tpe pda 300 whpt,e,(bg,rc,(5,10,15,20,30))

11.8. Using PD Arrays to Process Sound Files

•	 PD Arrays can be read at the audio rate by [tabread4~] objects

•	 The [tabread4~] object needs index values at the audio rate, best provided by a scaled [phasor~]
(provide output cyclical output between 0 and 1)

•	 Scaling the amplitude by the PD Array

122

• Providing dynamic filtering with a [moog~] filter

[writesf~] can be used to write a new audio file

123

124

Chapter 12. Meeting 12, History: Iannis Xenakis

12.1. Announcements

• Musical Design Report 3 due 6 April

• Start thinking about sonic system projects

12.2. Quiz

• 10 Minutes

12.3. Xenakis: Background

• An architect, mathematician, music theorist, and composer

• 1958: Designed Philips Pavilion for Brussels Worlds Fair as assistant of Le Corbusier (1887-1965)

© Le Corbusier; Iannis Xenakis; Edgard Varèse. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

125

http://ocw.mit.edu/fairuse

© Iannis Xenakis. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

• Early tape music: Diamorphoses (1957), Concret PH (1958), Orient Occident (1960)

• Innovative early instrumental music based on geometries and procedures

126

http://ocw.mit.edu/fairuse

Courtesy of Pendragon Press. Used with permission.

•	 Proposed models of granular synthesis after research of Gabor

•	 Proposed and developed a wide range of music technologies for creative applications

12.4. Xenakis: History

•	 Fought in Greek resistance to Nazi occupation during World War II

•	 Moved to France, began work with Le Corbusier, heard music of Schaeffer

•	 Studied composition with Olivier Messiaen

•	 1955: “The Crisis of Serial Music” (Xenakis 1955)

•	 1963: first edition of text Formalized Music

•	 1967-1972: professor at Indiana University, Bloomington

•	 1972: creates the Centre d'Etudes de Mathematiques et Automatiques Musicale (CEMAMu) near
Paris

•	 1972-1989: professor at Sorbonne University in Paris

127

128

12.5. Xenakis: Pithoprakta and Achorripsis

•	 Pithoprakta (1955-56) and Achorripsis (1956-57): composed with systems based on probability and
statistics

•	 Employed techniques of “stochastic music”: specify statistical trends, densities, and ranges rather
then all note parameters

•	 A procedural approach to composition

•	 A response to the “Crisis of Serialism” (Xenakis 1955)

•	 “But other paths also led to the same stochastic crossroads -- first of all, natural events such as
the collision of hail or rain with hard surfaces, or the song of cicadas in a summer field. These
sonic events are made out of thousands of isolated sounds; this multitude of sounds, seen as a
totality, is a new sonic event. This mass event is articulated and forms a plastic mold of time,
which itself follows aleatory and stochastic laws.” (Xenakis 1992, p. 9)

12.6. Listening: Xenakis

•	 Achorripsis, (1956-1957) [4:50 to 6:41]

12.7. Reading: Xenaxis, Xenakis on Xenakis

•	 Xenakis, I. 1987. “Xenakis on Xenakis.” Perspectives of New Music 25(1-2): 16-63.

•	 What was Xenakis’s early background in music and sound?

•	 Throughout his writings Xenakis talks about the pressures and problems of the Conservatory,
Instruments, and Solfege: what is he referring to?

•	 Xenakis has particular relationship with the visual, graphical, and drawn approaches to thinking
about music. Explain this relationship.

•	 In what ways does Xenakis imagine that technology will change the role of music in people’s
lives?

12.8. The Stochastic Music Program

• 1961: Xenakis gains access to an IBM 7090 at IBM France

Courtesy of IBM Corporate Archives. Used with permission.

• Programs the Stochastic Music Program (SMP) based on techniques used for Achorripsis

• System produces “score tables” that are transcribed into Western notation

129

• 1962: ST/10-1, 080262 (1956-1962) was premiered at IBM France

• Numerous related ST compositions were created

• 1965: Complete program, in Fortran, published and distributed (Xenakis 1965)

12.9. The Stochastic Music Program and Density

• Employed density as a compositional parameter at many levels

• Method

1. Duration of each movement is determined

2. The mean density of notes during a movement is calculated (in events per unit of time)
130

Source: Xenakis (1971). © Scott Foresman/Pearson. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

3. Percentage of events given to each timbre class is determined

Source: Xenakis (1971). © Scott Foresman/Pearson. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

4. For each event, the starting time point within the movement is calculated

5. From previously selected timbre classes, an instrument is chosen

6. A random chromatic pitch is chosen (as a shift of the instrument’s previous note)

7. The duration of the note is determined based on an instrument-specific mean

8. The events dynamic contour is selected form a list of 44 options

131

http://ocw.mit.edu/fairuse

Source: Xenakis (1971). © Scott Foresman/Pearson. All rights reserved. This content is excluded
 from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

12.10. Listening: Xenakis

• Xenakis, ST-10, 1962

• Xenakis, Atrées, 1960

132

http://ocw.mit.edu/fairuse

•	 Xenakis, ST-48, 1967

•	 Xenakis, ST-4

12.11. Reading: Xenaxis, Free Stochastic Music

•	 Xenakis, I. 1971. “Free stochastic Music.” In Cybernetics, art and ideas. J. Reichardt, ed. Greenwich:
New York Graphic Society. 124-142.

•	 Numerous publications include related/identical material

•	 Xenakis, I. 1965. “Free Stochastic Music from the Computer. Programme of Stochastic music
in Fortran.” Gravesaner Blätter 26.

•	 Xenakis, I. 1992. Formalized Music: Thought and Mathematics in Music. Indiana: Indiana University
Press.

133

•	 How does Xenakis describe the public reaction to the use of computers in music?

•	 Xenakis describes mental mechanisms: are these just rules or mathematics?

•	 Xenakis imagines two new roles for contemporary composers: what are they?

•	 What are some of the advantages that Xenakis offers through the use of electronic brains?

12.12. Composing with Densities using TM TimeFill and a Noise
Instrument

•	 TM LineGroove produces non-overlapping, linear events

•	 TM TimeFill will fill a time region with events, where position within the time span is determined
by a ParameterObject

•	 Total number of events is determined by a ParameterObject

•	 Look at TM TimeSegment for a way to divide a texture into segments, each with independent fill
densities

•	 Command sequence:

•	 emo cn

•	 tmo tf

•	 tin a 80

•	 tie t 0,30

•	 total event count is defined as static texture parameter, not a ParameterObject

tie s3 600

•	 start position within texture normalized within unit interval

tie d0 rb,.3,.3,0,1

•	 durations are independent of start time

tie r cs,(mv,a{.01}b{1.5}c{3}:{a=20|b=1|c=1})

•	 must reduce amplitudes

tie a ru,.5,.9

•	 eln; elr; elh

134

12.13. Composing with Densities using TM TimeFill and a Single
Sample

•	 Total number of events is determined by the combination of two ParameterObjects with
IterateCross

•	 Command sequence:

•	 emo cn

•	 tmo tf

•	 tin a 32

•	 set a file path to an audio file

tie x6 cf,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio/27980-high-slow.aif

•	 start position within audio file in seconds

tie x5 ru,0,1

•	 vary a low pass filter start and end frequencies

tie x2 mv,a{200}b{1000}c{10000}:{a=6|b=2|c=1}

tie x3 mv,a{200}b{1000}c{10000}:{a=6|b=2|c=1}

•	 total event count is defined as static texture parameter, not a ParameterObject

tie s3 500

•	 start position within texture normalized within unit interval

tie d0 ic,(rg,.2,.1,0,1),(rg,.7,.1,0,1),(bg,rc,(0,1))

•	 durations are independent of start time

tie r cs,(whps,e,(bg,rp,(5,10,15)),0,.010,.100)

•	 must reduce amplitudes

tie a ru,.1,.3

•	 eln; elr; elh

135

Chapter 13. Meeting 13, Approaches: Non-Standard Synthesis

13.1. Announcements

•	 Musical Design Report 3 due 6 April

•	 Start thinking about sonic system projects

13.2. The Xenakis Sieve

•	 A system (notation) for generating complex periodic integer sequences

•	 Described by Xenakis in at least six articles between 1965 and 1990

•	 Xenakis demonstrated application to pitch scales and rhythms, and suggested application to many
other parameters

•	 “the basic problem for the originator of computer music is how to distribute points on a line”
(Xenakis 1996, p. 150)

•	 “the image of a line with points on it, which is close to the musician and to the tradition of music,
is very useful” (Xenakis 1996, p. 147)

13.3. The Xenakis Sieve: Basic Components

•	 Residual Classes: integer sequences based on a modulus (period) and a shift

•	 Residual class 2@0: {..., 0, 2, 4, 6, 8, 10, 12, ...}

•	 Residual class 2@1: {..., 1, 3, 5, 7, 9, 11, 13, ...}

•	 Residual class 3@0: {..., 0, 3, 6, 9, 12, 15, ...}

•	 Sieves combine residual classes with logical operators

•	 Sieve 3@0 | 4@0 : {..., 0, 3, 4, 6, 8, 9, 12, ...}

•	 Sieve 3@0 & 4@0 : {..., 0, 12, 24, ...}

•	 Sieve {-3@2&4} | {-3@1&4@1} | {3@2&4@2} | {-3@0&4@3}: {..., 0, 2, 4, 5, 7, 9, 11, 12,
...}

•	 Notation

•	 Notations used by Xenakis:

136

• A new notation (Ariza 2005c)

Modulus number “at” shift value: 3@5

Logical operators and (&), or (|), and not (-)

Nested groups with braces: {-3@2&4}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3}

13.4. An Object Oriented Implementation of the Sieve in Python

• sieve.py: a modular, object oriented sieve implementation in Python (Ariza 2005c)

• A low level, portable interface

•

>>> from athenaCL.libATH import sieve, pitchTools

>>> a = sieve.Sieve('{-3@2&4}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3}')

>>> print a

{-3@2&4@0}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3}

>>> a.period()

12
>>> a(0, range(0,13)) # one octave segment as pitch class

[0, 2, 4, 5, 7, 9, 11, 12]

>>> a.compress()

>>> print a

6@5|12@0|12@2|12@4|12@7|12@9

>>> a.expand()

>>> print a

{-3@2&4@0}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3}

137

 ൫3௡ାଶ ת 4௡൯ ׫ ൫3௡ାଵ ת 4௡ାଵ൯ ׫ ሺ3௡ାଶ ת 4௡ାଶሻ ׫ ൫3

௡ ת 4௡ାଷ൯

ሼሺ3,2ሻ ת
׫
ሺ4,7
ሼሺ15,5
ሻ ת ሺ

ሻ
6,11
ת ሺ8,6

ሻ ת
ሻ
ሺ
ת
8,7
ሺ4,2
ሻሽ ׫
ሻሽ
ሼሺ
׫
6,9
ሼሺ6,9
ሻ ת
ሻ
ሺ
ת
15
ሺ
,18
15,19
ሻሽ
ሻሽ

ሾሺ3,2ሻ כ ሺ4,7ሻሿ ൅ ሾሺ6,9ሻ כ ሺ15,18ሻሿ

>>> a(0, range(0,12), 'wid')

[2, 2, 1, 2, 2, 2]

>>> a(0, range(0,12), 'bin')

[1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1]

>>> a(0, range(0,12), 'unit')

[0.0, 0.18181818181818182, 0.36363636363636365, 0.45454545454545453,

0.63636363636363635, 0.81818181818181823, 1.0]

>>> [pitchTools.psToNoteName(x) for x in a(0, range(49))]

['C4', 'D4', 'E4', 'F4', 'G4', 'A4', 'B4', 'C5', 'D5', 'E5', 'F5', 'G5', 'A5', 'B5',

'C6', 'D6', 'E6', 'F6', 'G6', 'A6', 'B6', 'C7', 'D7', 'E7', 'F7', 'G7', 'A7', 'B7',

'C8']

•	 sieve.py: SievePitch objects specialized for pitch space usage

>>> from athenaCL.libATH import sieve

>>> a = sieve.SievePitch('6@5|12@0|12@2|12@4|12@7|12@9,c2,c4')

>>> a()

[-24, -22, -20, -19, -17, -15, -13, -12, -10, -8, -7, -5, -3, -1, 0]

>>> [x + 60 for x in a()]

[36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60]

•	 athenaObj.py: can create an athenaCL Interpreter object to automate athenaCL commands

>>> from athenaCL.libATH import athenaObj

>>> ath = athenaObj.Interpreter()

>>> ath.cmd('tmo da')

>>> ath.cmd('pin a 5@3|7@2,c3,c8 4@2|6@3,c2,c4')

>>> ath.cmd('pih')

13.5. The Sieve in athenaCL: Interactive Command Line

•	 Using the interactive command-line, pitch sieves can be created, viewed, and deployed

•	 Comma-separated arguments for complete specification: sieveString, lowerBoundaryPitch,
upperBoundaryPitch, originPitch, unitSpacing

•	 Example:

PIn a 5@3|7@2,c2,c4,c2,1

•	 Multiple sieve-based multisets can be defined

•	 Example:

PIn b 5@3|7@2,c2,c4,c2,.5 5@1|7@8,c3,c6,c2,.5

13.6. Avoiding Octave Redundancy

•	 Pitch sieves with large periods (or not a divisor or multiple of 12) are desirable

•	 Can be achieved simply through the union of two or more moduli with a high LCMs

>>> a = sieve.Sieve('3@0|4@0')Æ

138

12
>>> a.period()

>>> a = sieve.Sieve('3@0|5@0|7@0')

>>> a.period()

105

139

143

•	 Can be achieved through the use of moduli deviating from octave multiples (11, 13, 23, 25, 35,
37)

>>> a = sieve.Sieve('11@0|13@0')

>>> a.period()

>>> a = sieve.Sieve('11@1|13@2|23@5|25@6')

>>> a.period()

82225

13.7. Deploying Pitch Sieves with HarmonicAssembly

•	 Provide complete sieve over seven octaves

•	 TM HarmonicAssembly used to create chords

•	 Chord size randomly selected between 2 and 3

•	 Rhythms and rests created with zero-order Markov chains

•	 Command sequence:

•	 emo m

140

• pin a 11@1|13@2|23@5|25@6,c1,c7

• tmo ha

• tin a 0

• tie t 0,30

• tie a rb,.2,.2,.6,1

• tie b c,120

• zero-order Markov chains building pulse triples

tie r pt,(c,4),(mv,a{1}b{3}:{a=12|b=1}),(mv,a{1}b{0}:{a=9|b=1}),(c,.8)

• index position of multiset: there is only one at zero

tie d0 c,0

• selecting pitches from the multiset (indices 0-15) with a tendency mask

tie d1 ru,(bpl,t,l,[(0,0),(30,12)]),(bpl,t,l,[(0,3),(30,15)])

• repetitions of each chord

tie d2 c,1

• chord size

tie d3 bg,rc,(2,3)

• eln; elh

13.8. Reading: Berg. Composing Sound Structures with Rules

• Berg, P. 2009. “Composing Sound Structures with Rules.” Contemporary Music Review 28(1): 75-87.

• How did the PDP-15 affect what techniques were explored at the Institute of Sonology

• Given the music, find the rules: how is this different than analytical approaches?

• What is non standard about non-standard synthesis?

• What is the relationship of Berg’s ASP to PILE

141

13.9. Non-Standard Synthesis: Xenakis and Koenig

•	 Both began with techniques for creating score tables

•	 Both explored apply this techniques to sound construction

•	 Both rejected acoustic models of sound creation

•	 Both employed techniques of dynamic, algorithmic waveform generation

13.10. Tutorial: a Dynamic Stochastic Wavetable

•	 Looping through an array at the audio rate creates a wave table

[tabread4~] interpolates between points for any [phasor~] rate

•	 Randomly place points within the table at a variable rate controlled by a [metro]

[tabwrite] lets us specify index position, value to write to

Can only be done at the event rate (1 ms updates)

142

•	 Randomly draw line segments instead of points

[until] will send out as many bangs as provided as an argument

[counter] can receive a new minimum to designate start index for each segment generation

143

•	 Randomly draw line segments instead of points

Use [wrap] to ensure points stay within table

Set max of [counter] table

Record output to a new file with [writesf~]

144

13.11. Non-Standard Synthesis: Xenakis and Koenig

•	 Both began with techniques for creating score tables

•	 Both explored apply this techniques to sound construction

•	 Both rejected acoustic models of sound creation

•	 Both employed techniques of dynamic, algorithmic waveform generation

13.12. Koenig: SSP

•	 Application of Koenig’s selection principles to waveforms

•	 Proposed in 1972, implemented in 1977

•	 Given a collection of discrete time and amplitude values, select from these to create waveform
break points

•	 Program was conversational, interactive

145

•	 Use of tendency masks to control segment generation produced directly audible results (Berg
2009, p. 84)

13.13. Xenakis: GENDYN

•	 Dynamic Stochastic Synthesis

•	 Explored by Xenakis over many years, starting in the 1970s

•	 Not based on natural or acoustical models of sound

•	 Algorithmically create waveforms by generating time and amplitude coordinates with second
order random walks, then interpolating to create wave forms

13.14. Reading: Hoffman. A New GENDYN Porgram

•	 Hoffman, P. 2000. “A New GENDYN Program.” Computer Music Journal 24(2): 31-38.

•	 Hoffman describes GENDYN as a “rigrous algorithmic composition procedure”; what does he
mean? Is he correct?

•	 How did Xenakis compose, at the largest scale, with GENDYN?

•	 What does Hoffman say about Xenakis’s programming style?

13.15. Second-Order Random Walks as ParameterObjects

•	 Accumulator: permit consecutively summing values based on an initial value and the output of a
ParameterObject

:: tpmap 100 a,0,(ru,-1,1)

accumulator, 0, (randomUniform, (constant, -1), (constant, 1))

TPmap display complete.

• Mask:Êconstrain the output of a ParameterObject within boundaries created by two
ParameterObjects; boundaries can be limit, wrap, or reflect

146

:: tpmap 100 mask,reflect,(c,-1),(c,1),(a,0,(ru,-.5,.5))

mask, reflect, (constant, -1), (constant, 1), (accumulator, 0, (randomUniform,

(constant, -0.5), (constant, 0.5)))

TPmap display complete.

•	 Second order random walk: use (discrete) random walks to control the step size of another
random walk

:: tpmap 100 m,r,(c,-1),(c,1),(a,0,(ru,(bg,rw,(-.1,-.2,-.3,-.4,
-
.5)),(bg,rw,(.1,.2,.3,.4,.5))))

mask, reflect, (constant, -1), (constant, 1), (accumulator, 0, (randomUniform,

(basketGen, randomWalk, (-0.1,-0.2,-0.3,-0.4,-0.5)), (basketGen, randomWalk,

(0.1,0.2,0.3,0.4,0.5))))

TPmap display complete.

•	 Second order random walk: use (continuous) random walk to control the step size of another
random walk

:: tpmap 200 m,r,(c,-1),(c,1),(a,0,(ru,(m,r,(c,-.5),(c,0),(a,0,(ru,-

.5,0))),(m,r,(c,0),(c,.5),(a,0,(ru,0,.5)))))

mask, reflect, (constant, -1), (constant, 1), (accumulator, 0, (randomUniform,

(mask, reflect, (constant, -0.5), (constant, 0), (accumulator, 0,

(randomUniform, (constant, -0.5), (constant, 0)))), (mask, reflect, (constant,

0), (constant, 0.5), (accumulator, 0, (randomUniform, (constant, 0), (constant,

0.5))))))

TPmap display complete.

147

13.16. Listening: Xenakis

•	 Audio: S.709

•	 BBC interview with Xenakis on S.709

•	 “Music is not a language. Every musical piece is like a highly complex rock with ridges and
designs engraved wtihin and without, that can be interpreted in a thousand ways without a single
one being the best or the most true.” (Xenakis 1987, p. 32)

13.17. iGendyn: Gendyn as iPhone / iPod touch App

•	 Created by Nick Collins

148

Courtesy of Nick Collins. Used with permission.

149

Courtesy of Nick Collins. Used with permission.

150

Courtesy of Nick Collins. Used with permission.

151

Chapter 14. Meeting 14, Approaches: Granular and
Concatenative Synthesis

14.1. Announcements

•	 Musical Design Report 3 due 6 April

•	 Sonic system draft due: 27 April

•	 Next couple of weeks: need to meet with me to talk about sonic system projects

•	 Quiz on Thursday

14.2. Musical Design Report 3

•	 Must be primarily built with rendered digital audio, such as output from Csound, PD, or related
tools

•	 Density, and contrasts in density, must be a significant compositional parameter

•	 Must feature granular, concatenative, or sound montage synthesis techniques in some manner

•	 Should have at least one transition between disparate material that is a gradual morph, fade, or
dove-tail

•	 Can be composed with athenaCL, athenaCL and other tools, or other tools alone

•	 Mixing audio obtained from PD and/or athenaCL/Csound in Audacity or a DAW is highly
recommended.

14.3. Listening: Vaggione

•	 Listening: Horacio Vaggione, 24 Variations, 2002

152

14.4. Reading: Roads, Introduction to Granular Synthesis

• Roads, C. 1988. “Introduction to Granular Synthesis.” Computer Music Journal 12(2): 11-13.

• What are some common duration ranges and grains per second used in granular synthesis?

• Gabor’s quanta

• Xenakis’s screens and books of screens

153

Content removed due to copyright restrictions. Opening paragraphs of Gabor, D. "Acoustical Quanta and the
Theory of Hearing." Nature 159 (1947): 591-594. http://dx.doi.org/10.1038/159591a0

http://dx.doi.org/10.1038/159591a0

Courtesy of Pendragon Press. Used with permission.

• What were some parameters that Roads employs in his implementation?

154

Courtesy of Pendragon Press. Used with permission.

•	 What are some other applications of granular synthesis?

•	 What are the visual or animation analogues of granular synthesis?

•	 Is granular synthesis algorithmic composition?

14.5. Simple Sine Grains in PD

•	 Enveloped sine tines

•	 A [phasor~] is used to trigger multiple [samphold~] processes that grab parameter values once
per event envelope

•	 Random parameter values are generated by [noise~] scaled between minimum and maximum
values with [mgScaleMinMax~]

•	 Event envelopes are provided by the hanning array and read with [tabread4~]

•	 martingale/pd/demo/granularSineVoice.pd

14.6. Polyphonic Sine Grains in PD

•	 Numerous instances of [mgGranularSine_v.pd] can be controlled together to produce multiple
streams of grains

•	 Due to use of random parameter ranges, each voice will be independent

155

• martingale/pd/demo/granularSinePoly4.pd

• martingale/pd/demo/granularSinePoly8.pd

14.7. Large-Scale Parameter Behavior of Polyphonic Sine Grains in PD

•	 Use the TPe (TextureParameter Export) command with the PureDataArray format to create array
structures

•	 tpe pda 300 whpt,e,(bg,rp,(5,10,20,40)),0,(ls,e,300,0,.8),1

•	 tpe pda 300 whps,e,(bg,rp,(5,10,20,40)),0,0,(ls,e,300,1,.1)

•	 Reading parameter values from multiple [tabread] at different rates

156

• Reading parameter values from multiple [tabread] and multiple tables at different rates

157

14.8. Polyphonic Sine Grains in athenaCL: LineGroove

• Can approach granular synthesis by using extremely small durations and/or fast tempi

• Command sequence using TM LineGroove:

• emo cn

• tmo LineGroove

• tin a 4

• set a event time between 60 and 120 ms

tie r cs,(ru,.060,.120)

• smooth envelope shapes

tie x0 c,.1; tie x1 c,.5

• set field with a tendency mask converging on a single pitch after 15 seconds

tie f ru,(ls,t,15,-24,0),(ls,t,15,24,0)

158

•	 set random panning

tie n ru,0,1

•	 create a few more instances

ticp a b c d e f

•	 eln; elr; elh

14.9. Polyphonic Sine Grains in athenaCL: DroneArticulate

•	 TM DroneArticulate realizes each component of the path as a separate lines, writing an
independent voice for each pitch one at a time for the entire duration

•	 Command sequence using TM DroneArticulate:

•	 emo cn

•	 tmo DroneArticulate

•	 a very large pitch collection made from a Xenakis sieve

pin a 5@2|7@6,c1,c9

•	 tin a 4

•	 set a event time between 60 and 120 ms

tie r cs,(ru,.060,.120)

•	 smooth envelope shapes

tie x0 c,.1; tie x1 c,.5

•	 set random panning

tie n ru,0,1

•	 reduce amplitudes

tie a ru,.6,.8

•	 eln; elr; elh

14.10. Simple Sample Grains in PD

•	 Enveloped sampled audio files

159

•	 Press [bang] to trigger [openpanel] to select an audio file

•	 Parameters: playback speed min/max, start time min/max (within unit interval), end time
min/max, pan min/max, phasor fq min/max, control phasor

•	 martingale/pd/demo/granularSampleVoice.pd

14.11. Polyphonic Sample Grains in PD

•	 Numerous instances of [mgGranularSample_v.pd] can be controlled together to produce multiple
streams of grains

•	 martingale/pd/demo/granularSamplePoly4.pd

160

14.12. Large-Scale Parameter Behavior of Polyphonic Sample Grains in
PD

•	 Use the TPe (TextureParameter Export) command with the PureDataArray format to create array
structures

•	 tpe pda 300 whpt,e,(bg,rp,(5,10,20,40)),0,(ls,e,300,0,.8),1

•	 tpe pda 300 whps,e,(bg,rp,(5,10,20,40)),0,0,(ls,e,300,1,.1)

•	 Reading parameter values from multiple [tabread] and multiple tables at different rates

14.13. Polyphonic Sample Grains in athenaCL from a Single Audio File:
LineGroove

•	 Read segments from an audio file by specifying the audio file (with the ConstantFile PO) and a
start time

•	 Command sequence:

•	 emo cn

•	 tmo LineGroove

•	 instrument 32 is a fixed playback rate sample player

161

tin a 32

•	 set a file path to an audio file

tie x6 cf,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio/32673.aif

•	 set a event time between 60 and 120 ms

tie r cs,(ru,.060,.120)

•	 smooth envelope shapes

tie x0 c,.01; tie x1 c,.5

•	 start position within audio file in seconds

tie x5 ru,0,10

•	 set random panning

tie n ru,0,1

•	 create a few more instances

ticp a b c d e f

•	 eln; elr; elh

14.14. Polyphonic Sample Grains in athenaCL from a Multiple Audio
Files: LineGroove

•	 Read segments from an audio file by specifying the audio file (with the DirectorySelect PO) and a
start time

•	 Command sequence:

•	 emo cn

•	 tmo LineGroove

•	 instrument 32 is a fixed playback rate sample player

tin a 32

•	 set a file path to an directory, a file extension, and a selection method

tie x6 ds,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio,.aif,rp

•	 set a event time between 60 and 120 ms

162

tie r cs,(ru,.060,.120)

• smooth envelope shapes

tie x0 c,.01; tie x1 c,.5

• start position within audio file in seconds

tie x5 ru,0,10

• set random panning

tie n ru,0,1

• control a variety of amplitudes

tie a ru,.2,.4

• create a few more instances

ticp a b c

• eln; elr; elh

14.15. Polyphonic Sample Grains in athenaCL from Multiple Audio
Files: TimeFill

• Use TimeFill to create dynamic changes in the density of sampled files

• Command sequence:

• emo cn

• tmo TimeFill

• instrument 32 is a fixed playback rate sample player

tin a 32

• set a file path to an directory, a file extension, and a selection method

tie x6 ds,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio,.aif,rp

• set a event time between 60 and 120 ms

tie r cs,(ru,.030,.090)

• smooth envelope shapes

163

tie x0 c,.01; tie x1 c,.5

•	 start position within audio file in seconds

tie x5 ru,0,10

•	 set random panning

tie n ru,0,1

•	 control a variety of amplitudes

tie a ru,.1,.2

•	 set number of events

tie s3 1000

•	 start position within texture normalized within unit interval

tie d0 rb,.3,.3,0,1

•	 eln; elr; elh

14.16. Reading: Sturm, Adaptive Concatenative Sound Synthesis

•	 Sturm, B. L. 2006. “Adaptive Concatenative Sound Synthesis and Its Application to
Micromontage Composition.” Computer Music Journal 30(4): 46-66.

•	 Sound examples

http://www.mat.ucsb.edu/~b.sturm/CMJ2006/MATConcat.html

•	 What are some practical applications of concatenative sound synthesis?

•	 How is adaptive concatenative sound synthesis a type of analysis and resynthesis, similar to
Markov analysis and generation?

•	 What are some common sonic features used to select source audio?

•	 Is concatenative sound synthesis algorithmic composition?

164

http://www.mat.ucsb.edu/~b.sturm/CMJ2006/MATConcat.html

Chapter 15. Meeting 15, Approaches: Mapping, Sonification,
and Data Bending

15.1. Announcements

•	 Musical Design Report 3 due 6 April

•	 Schedule meetings with me over the next two weeks

•	 Sonic system draft due: 27 April

15.2. Quiz

•	 10 Minutes

15.3. Mapping

•	 Mapping is the conversion of one form or range of data to another

•	 Most mappings are one to one, and may involve scaling

•	 Some mappings may be dynamic or procedural

•	 Sonification refers to mappings of data to musical parameters where perception of the original
data is valued

•	 Data bending refers to mappings of data to musical parameters where the musical output is most
valued

•	 Mappings are often more important than what is being mapped

15.4. Reading: Ben-Tal, O. and J. Berger, Creative Aspects of
Sonification

•	 Ben-Tal, O. and J. Berger. 2004. “Creative Aspects of Sonification.” Leonardo Music Journal 37(3):
229-232.

•	 How do the authors describe the difference between musical listening and sonification listening?

•	 What data sources, and what parameters, do they describe using as source material?

•	 What arguments support the use of vowel-like synthesized tones? Specifically, how do they
parameterize these sounds?

165

• What advantages do sonification, as type of auditory display, have over visual displays?

15.5. Data Bending

• Mapping of arbitrary data to musical parameters

• Data sonification

• Macro: can be applied to note-level parameters

• Micro: can be applied at the sample level

• Always requires some sort of mapping

15.6. Macro Data Bending: Joseph Schillinger

• Joseph Schillinger (1895-1943): Russian immigrant to the US

• Schillinger, J. 1941. The Schillinger System of Musical Composition. New York: Carl Fischer.

• Schillinger, J. 1948. The Mathematical Basis of the Arts. New York: Carl Fischer.

• Explored relationships of musical composition to mathematics

• Explored approaches to generating musical parameters

166

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

15.7. Macro Data Bending: Natural Data

•	 Audio: Charles Dodge: “Earth’s Magnetic Fields”, 1970

•	 Musical setting of values produced by an index of the effect of the sun’s radiation on the magnetic
field that surrounds the Earth

•	 Larry Austin: Canadian Coastlines

•	 Tracings of outlines of Canadian bodies of water to choose musical parameters such as pitch,
rhythm, timbre, and duration

167

http://ocw.mit.edu/fairuse

Courtesy of Larry Austin. Used with permission.

15.8. Macro Data Bending: Natural Data

•	 DNA, amino acid sequences in protein, and other natural data sets have frequently been used as a
source material for procedural compositions

•	 Often, claims of aesthetic value are attributed due only to the source data; mapping is incorrectly
treated as neutral

•	 Mary Ann Clark

Numerous examples created with ArtWonk software from Algorithmic Arts

http://www.whozoo.org/mac/Music/samples.htm

•	 Linda Long: Music of the Plants

168

http://www.whozoo.org/mac/Music/samples.htm

http://www.molecularmusic.com

15.9. Micro Data Bending

•	 Mapping non-musical data to audio-rate data

•	 Can map to an arbitrary binary data representation

•	 Can map to positions of individual amplitude points

15.10. Micro Data Bending: Arbitrary Data as Audio File

•	 Read images other file types as audio data: UPIC, MetaSynth

•	 Import arbitrary data as audio data

•	 Audacity: Project: Import Raw Data...

Example: AN0008-amesRetrospect.pdf

15.11. UPIC

•	 Unité Polyagogique Informatique du CEMAMu (UPIC),

•	 Users draw waveforms, envelopes, and textures

•	 Integrated hardware system

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

169

http://ocw.mit.edu/fairuse
http://www.molecularmusic.com

© Iannis Xenakis. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

•	 Audio: “Mycenae-Alpha,” 1978

•	 Mycenae-Alpha visualization synchronized to the score

Video: YouTube (http://www.youtube.com/watch?v=yztoaNakKok)

•	 “Children may draw a fish or a house and listen to what they have made and correct it. They can
learn, progressively through designing, to think musical composition without being tormented by
solfège or by incomplete mastery of a musical instrument.... But as they are led to construct
rhythms, scales, and more complex things, they are also forced to combine arithmetic and
geometric forms: music. From whence comes an interdisciplinary pedagogy through playing."
 (Xenakis 1985).

170

http://ocw.mit.edu/fairuse
http://www.youtube.com/watch?v=yztoaNakKok

15.12. Reading: Marino, G. and M. Serra, J. Raczinski, The UPIC
System: Origins and Innovations

•	 Marino, G. and M. Serra, J. Raczinski. 1993. “The UPIC System: Origins and Innovations.”
Perspectives of New Music 31(1): 258-269.

•	 Evaluate this idea and claim: “Another idea was to let the composer control and create all aspects
of the composition: sound, symbols, syntax, and so forth. This means that the system should not
impose predefined sounds, predefined compositional process, predefined structures, and so on. It
is essential for the creative mind that ideas not go through theories or limitations that might not
suit the composer.”

•	 What are some of the technical features of this version of UPIC?

•	 Where (on what machine components) does the signal processing occur?

•	 What opportunities exist for non-sinusoidal sounds?

15.13. Contemporary UPIC Variants

•	 MetaSynth (Mac; commercial)

171

© U&I Software. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://www.uisoftware.com/MetaSynth

•	 HighC: (Windows, Mac, Unix; commercial)

http://highc.org

•	 SPEAR (Windows, Mac; free)

Designed for audio analysis and resynthesis; permits drawing spectra

http://www.klingbeil.com/spear/

•	 HyperScore: Anyone Can Compose Music

A note-event (not synthesis) approach to writing common practice (tonal, pitched) music

http://www.hyperscore.com

172

http://www.uisoftware.com/MetaSynth
http://highc.org
http://www.klingbeil.com/spear/
http://www.hyperscore.com
http://ocw.mit.edu/fairuse

Chapter 16. Meeting 16, Workshop

16.1. Announcements

• Musical Design Report 3 due Today

• Schedule meetings with me over this and next week

• Sonic system draft due: 27 April

• Next Quiz: Thursday, 15 April (inclusive)

16.2. Quiz Review

• ?

16.3. Workshop: Musical Design Report 3

• Three students give their reports today

173

Chapter 17. Meeting 17, Approaches: Cellular Automata

17.1. Announcements

•	 Schedule meetings with me over this week

•	 Sonic system draft due: 27 April

•	 Next Quiz: Thursday, 15 April (inclusive)

17.2. Cellular Automata

•	 The iterative application of a rule on a set of states

•	 States are organized in a lattice of cells in one or more dimensions

•	 To determine the n state of the lattice, apply a rule that maps n-1 to n based on contiguous
sections of cells (a neighborhood)

•	 A rule set contains numerous individual rules for each neighborhood

174

•	 CA are commonly described as having four types of behavior (after Wolfram): stable
homogeneous, oscillating or patterned, chaotic, complex

17.3. CA History

•	 1966: John von Neimann demonstrates a 2D, 29-state CA capable of universal computation

•	 1971: Edwin Roger Bank demonstrates 2D binary state CA

•	 2004: Matthew Cook demonstrates 1D binary state, rule 110 CA

17.4. CA in Music

•	 First published studies: Chareyron (1988, 1990) and Beyls (1989)

•	 Chareyron: applied CA to waveforms

•	 Beyls: numerous studies applied to conventional parameters

•	 Xenakis: employed CA in Horos (1986)
175

© Wikipedia user:Kyber and Wikimedia Foundation. License CC BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Mapped CA to a large scale and used active cells to select pitches

17.5. The caSpec

•	 String-based notation of CA forms

•	 Key-value pairs: key{value}

17.6. CA Types

•	 Standard: f{s}

Discrete cell values, rules match cell formations (neighborhoods)

:: auca f{s} 380 0

f{s}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

:: auca f{s} 379 0

f{s}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

176

•	 Totalistic: f{t}

Discrete cell values, rules match the sum of the neighborhood

:: auca f{t} 37 0

f{t}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

177

:: auca f{t} 39 0

f{t}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

178

•	 Continuous: f{c}

Real-number cell values within unit interval, rules specify values added to the average of previous
cell formation

:: auca f{c} .8523 0

f{c}k{0}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

•	 Float: f{f}

Like continuous, but implemented with floats (it makes a difference)

:: auca f{f} .254 0

f{f}k{0}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

179

17.7. Possible Cell States

• For f{s,t}: the k value provides the number of possible values

• For f{c,f}: the k value is zero

• The k value can be set for discrete CA

:: auca f{s}k{4} 3841 0

f{s}k{4}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

180

17.8. Rules Neighorhood

• The r number defines the number of cell states taken into account

• For 1D CA, the neighborhood is 2r+1

• Half integer fractional values are permitted

• An r{3} CA

:: auca f{s}r{3} 380 0

f{s}k{2}r{3}i{center}x{91}y{135}w{91}c{0}s{0}

181

17.9. Size, Orientation, and Presentation

• 1D often present 1 horizontal row that wraps, unbound but finite space

• A table, with cell sites on x axis, time on y values

• A cylinder

• Size is given with x, number of evolutions specified with y

:: auca f{s}x{9}y{200} 380 0

f{s}k{2}r{1}i{center}x{9}y{200}w{9}c{0}s{0}

182

:: auca f{s}x{400}y{400} 380 0

f{s}k{2}r{1}i{center}x{400}y{400}w{400}c{0}s{0}

183

•	 Can specify a sub-table with a width and a center independent of x axis, time on y values

Width, w{}, is the number of exposed cells

Center, c{}, is center position from which cells are extracted

Skip, s{}, is the number of rows neither displayed nor counter in y.

•	 Example: a width is not the same as

:: auca f{s}x{91}y{200}w{4} 381 0

f{s}k{2}r{1}i{center}x{91}y{200}w{4}c{0}s{0}

184

:: auca f{s}x{4}y{200} 381 0

f{s}k{2}r{1}i{center}x{4}y{200}w{4}c{0}s{0}

185

17.10. The Initial Row

• The init can be specified with an i{} parameter

• Strings like center (i{c}) and random (i{r}) are permitted

:: auca f{f}i{r} .0201 0

f{f}k{0}r{1}i{random}x{91}y{135}w{91}c{0}s{0}

186

:: auca f{t}i{r} 201 0

f{t}k{2}r{1}i{random}x{91}y{135}w{91}c{0}s{0}

187

•	 Numerical sequences of initial values repeated across a row

:: auca f{t}i{010010010} 201 0

f{t}k{2}r{1}i{010010010}x{91}y{135}w{91}c{0}s{0}

17.11. Dynamic Parameters: Rule and Mutation

•	 Rule: a floating or integer value

Wolfram offers standard encoding of rules as integers

Out of range rule values are resolved by modulus of total number of rules

•	 PO applied to the rule value of CA

:: auca f{s} ig,(bg,rp,(380,533)),(bg,rp,(10,20)) 0

f{s}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

188

• Mutation: a unit interval probability

• PO applied to the mutation of a CA

:: auca f{s} 533 whpt,e,(bg,rp,(8,16,32,64)),0,.01

f{s}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}

189

17.12. Reading: Ariza: Automata Bending: Applications of Dynamic
Mutation and Dynamic Rules in Modular One-Dimensional Cellular
Automata

•	 Ariza, C. 2007a. “Automata Bending: Applications of Dynamic Mutation and Dynamic Rules in
Modular One-Dimensional Cellular Automata.” Computer Music Journal 31(1): 29-49. Internet:
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.1.29.

•	 What is automata bending? Why has this not been previously explored?

•	 What are the benefits of automata bending for creative applications?

•	 “The utility and diversity of CA are frequently overstated”: is this statement warranted?

•	 What are some of the problems of using CA that do exhibit emergent

•	 What does Wolfram think of float CA. Is he right?

•	 Hoffman claims that Xenakis’s use of CA demonstrated “the strength and limitation of universal
computation in music composition”; is this possible?

17.13. Bent Automata

•	 Examples

190

http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.1.29

:: auca f{s}x{81}y{80}k{2}r{1} 109 0.003

:: auca f{t}x{81}y{80}k{3}r{1} 1842 bpl,e,l,((0,0),(80,.02))

:: auca f{s}x{81}y{80}k{2}r{1}i{r} 90.5 0

:: auca f{t}y{80}x{81}r{1}k{4}i{r}s{20} mv,a{195735784}b{846484}:{a=3|b=1} 0

17.14. Mapping Tables to Single Value Data Streams

•	 Combinations of type, axis, source, filter, 60 total possibilities

17.15. The CA as ParameterObject

•	 All underlying tools for automata are found in automata.py

•	 CaList and CaValue provide high level ParameterObject interfaces

•	 CaList returns raw CA values (processed by table extraction) that can be selected from using
common selectors; CaValue normalizes within unit interval and provides dynamic min and max
values

17.16. The CA as a Generator of Melodies

•	 Probably the most common approach: use active cell index positions to indicate active positions
of a scale

•	 CaList with rule 90 and flatRowIndexActive; a smaller x is used to reduce index values

:: tpmap 100 cl,f{s}x{20},90,0,fria,oc

caList, f{s}k{2}r{1}i{center}x{20}y{135}w{20}c{0}s{0}, (constant, 90),

(constant, 0), flatRowIndexActive, orderedCyclic

TPmap display complete.

191

© MIT Press. All rights reserved. This content is excluded from our Creative Co
For more information, see http://ocw.mit.edu/fairuse.
Source: Ariza, C. Computer Music Journal 31, no. 1 (2007): 29-49.

mmons license.

http://ocw.mit.edu/fairuse

•	 Command sequence using TM Harmonic Assembly:

•	 emo m

•	 create a single, large Multiset using a sieve

pin a 5@0|7@2,c2,c7

•	 tmo ha

•	 tin a 27

•	 tie r pt,(c,8),(ig,(bg,rc,(2,3)),(bg,rc,(3,6,9))),(c,1)

•	 tie a ls,e,9,(ru,.2,1),(ru,.2,1)

•	 select only Multiset 0

tie d0 c,0

•	 select pitches from Multiset using CaList

tie d1 cl,f{s}x{20},90,0,fria,oc

•	 create only 1 simultaneity from each multiset

tie d2 c,1

•	 create only 1-element simultaneities

tie d3 c,1

•	 eln; elh

•	 CaList with rule 90 and flatRowIndexActive; a smaller x is used to reduce index values; adding
mutation

:: tpmap 100 cl,f{s}x{20},90,(ls,e,16,0,.05),fria,oc

caList, f{s}k{2}r{1}i{center}x{20}y{135}w{20}c{0}s{0}, (constant, 90), (lineSegment,

(constant, 16), (constant, 0), (constant, 0.05)),

flatRowIndexActive, orderedCyclic

TPmap display complete.

192

•	 CaList with a mixture of rule 90 and rule 42 and flatRowIndexActive; a smaller x is used to reduce
index values; adding mutation

:: tpmap 100 cl,f{s}x{20},(ig,(bg,rp,(90,42)),(bg,rp,(2,3))),0,fria,oc

caList, f{s}k{2}r{1}i{center}x{20}y{135}w{20}c{0}s{0}, (iterateGroup, (basketGen,

randomPermutate, (90,42)), (basketGen, randomPermutate, (2,3))),

(constant, 0), flatRowIndexActive, orderedCyclic

TPmap display complete.

17.17. The CA as a Generator of Rhythms

•	 Narrow regions of bent CA offer interesting variation of few values

•	 A a narrow width of a CA

:: auca f{s}k{2}r{1}x{81}y{120}w{6}c{0}s{0} 109 0

f{s}k{2}r{1}i{center}x{81}y{120}w{6}c{0}s{0}

193

• A a narrow width of a CA with a small constant mutation

:: auca f{s}k{2}r{1}x{81}y{120}w{6}c{0}s{0} 109 .05

f{s}k{2}r{1}i{center}x{81}y{120}w{6}c{0}s{0}

• Using CaTable and sumRowActive, we can get a dynamic collection of small integer values

194

:: tpmap 100 cl,f{s}k{2}r{1}x{81}y{120}w{6}c{0}s{0},109,.05,sumRowActive,oc

caList, f{s}k{2}r{1}i{center}x{81}y{120}w{6}c{0}s{0}, (constant, 109), (constant,

0.05), sumRowActive, orderedCyclic

TPmap display complete.

•	 Using CaValue and sumRowActive with a different center, we can get a dynamic collection of
floating point values

:: tpmap 100 cv,f{s}k{2}r{1}x{81}y{120}w{6}c{8}s{0},109,.05,sumRowActive,.2,1

caValue, f{s}k{2}r{1}i{center}x{81}y{120}w{6}c{8}s{0}, (constant, 109), (constant,

0.05), sumRowActive, (constant, 0.2), (constant, 1),

orderedCyclic

TPmap display complete.

•	 Command sequence using TM Harmonic Assembly:

•	 emo mp

•	 tin a 47

•	 set the multiplier to the integer output of CaList

tie r pt,(c,4),(cl,f{s}k{2}r{1}x{81}y{120}w{6}c{0}s{0},109,.05,sumRowActive,oc),(c,1)

•	 set the amplitude to the floating potin output of CaValue

tie a cv,f{s}k{2}r{1}x{81}y{120}w{6}c{8}s{0},109,.05,sumRowActive,.2,1

•	 eln; elh

195

17.18. Reading: Miranda: On the Music of Emergent Behavior: What
Can Evolutionary Computation Bring to the Musician?

•	 Miranda, E. R. 2003. “On the Music of Emergent Behavior: What Can Evolutionary
Computation Bring to the Musician?.” Leonardo 36(1): 55-59.

•	 Miranda claims that “the computer should neither be embedded with particular models at the
outset nor learn from carefully selected examples”; is this possible, and is this achieved with his
model?

•	 What is the basic mapping of CAMUS?

•	 What is the basic mapping of Chaosynth?

•	 What does Miranda mean when he states that “none of the pieces cited above were entirely
automatically generated by the computer”; is this possible?

196

Courtesy of MIT Press. Used with permission.

Chapter 18. Meeting 18, Approaches: Genetic Algorithms

18.1. Announcements

•	 Next Quiz: Thursday, 15 April (inclusive)

•	 Sonic system draft due: 27 April

•	 No class Tuesday, 20 April

18.2. Genetic Algorithms

•	 Model states of a system (or processes) as an allele, or a fundamental unit of expression

•	 Two or more alleles form a chromosome; order of alleles generally is significant

•	 Chromosomes, representing individuals, are collected in a population

•	 Using a fitness function, each chromosome is given a fitness value

•	 Chromosomes are mated under conditions where more-fit chromosomes are more likely to mate

•	 Two chromosomes can produce two offspring (replacing themselves)

•	 Each new chromosome is created by either cloning parents or intermingling their alleles

through one or two-point crossover

•	 Each child chromosome may undergo mutation at the level of single allele changes or multiple
allele changes

•	 The population is completely replaced through mating

•	 Numerous cycles of regeneration are completed

•	 The goal is for the population to evolve the most fit chromosome

18.3. GA History and Common Applications

•	 First described in depth by John Holland in 1975

Holland, J. 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Michigan: The University of Michigan Press.

•	 Employed in tasks ranging from computational protein engineering, automatic programming, and
the modeling of economic and ecological systems.

197

• Generally best suited for solving problems that lack rigorous definition

18.4. Encoding the Alleles and Chromosomes

• Many GA designs use binary encoding: 1s and 0s encode desired parameters

• Real-value encoding uses an alphabet of many characters or real numbers

• Many GAs use fixed length chromosomes

18.5. Mutations

• Binary GAs often perform bit-level manipulations

• Bits can be flipped

• Segments of bits can be deleted, repeated, or reversed

• Domain-specific GA mutations are possible

18.6. The Fitness Function and Finding Solutions

• The fitness function is the key

• The fitness function expresses the priorities of the system

• GAs can evolve toward a local fitness yet get stuck, not reaching the maximum fitness

• Some systems have employed human-mediated fitness evaluation

18.7. A GA of Pulse Triple Chromosomes

• Project conducted in 2001-2002

Ariza, C. 2002. “Prokaryotic Groove: Rhythmic Cycles as Real-Value Encoded Genetic
Algorithms.” In Proceedings of the International Computer Music Conference. San Francisco: International
Computer Music Association. 561-567. Internet: http://www.flexatone.net/docs/pgrcrvega.pdf.

• First design for sub-system models in athenaCL, exposed through ParameterObjects

• Alleles are pulse triples

• Chromosome is a sequence of alleles where order is musically performed order

• Fitness function is based on similarity to a target chromosome

198

http://www.flexatone.net/docs/pgrcrvega.pdf

•	 Find temporal distance of note durations, rest durations, and total duration (larger values mean
greater distance)

•	 Find weighted duration of non-matched alleles (non-exact pulse triple matches, where count is
multiplied by average allele duration)

•	 Find weighted duration of non-matched duration ratios (non matching pulse triple ratios,

where count is multiplied by average allele duration)

•	 Sum of these values weighted with values found through experiment: noteDistance*1.50,

restDistance*1.50, durDistance*2.33, noMatchAlleleDistance*1.00,

noMatchValueDistance*0.66.

•	 An inverse relation: the larger the value, the greater the distance from the target

•	 Two point crossover employed in mating

•	 Mutations are specific to pulse triples

•	 Ratio equivalence: multiply or divide divisor or multiplier by 2 or 3

•	 Divisor mutate: add or subtract 1 to divisor

•	 Multiplier mutate: add or subtract 1 to multiplier

•	 Flip note/rest state

•	 Inversion: select to lic, reverse the segment with the retrograde of the segment

•	 Population is initialized through random arrangements of pulse triples found in the source

•	 For each generation, retain the chromosome that is the best fit (and is unique)

•	 After generations are complete, order best-fit chromosomes by fitness

•	 Example: python genetic.py

18.8. GA as ParameterObject

•	 The gaRhythm ParameterObject

:: tpv garhythm

Rhythm Generator ParameterObject

{name,documentation}

GaRhythm gaRhythm, pulseList, crossover, mutation, elitism,

selectionString, populationSize

Description: Uses a genetic algorithm to create rhythmic

variants of a source rhythm. Crossover rate is a percentage,

expressed within the unit interval, of genetic crossings

that undergo crossover. Mutation rate is a percentage,

expressed within the unit interval, of genetic crossings

199

 that undergo mutation. Elitism rate is a percentage,

expressed within the unit interval, of the entire population

that passes into the next population unchanged. All rhythms

in the final population are added to a list. Pulses are

chosen from this list using the selector specified by the

control argument. Arguments: (1) name, (2) pulseList {a list

 of Pulse notations}, (3) crossover, (4) mutation, (5)

elitism, (6) selectionString {“randomChoice”, “randomWalk”,

“randomPermutate”, “orderedCyclic”,

 “orderedCyclicRetrograde”, “orderedOscillate”}, (7)

populationSize

18.9. Evolving African Drum Patterns with a GA

• Slow Agbekor (Chernoff 1979)

© University of Chicago Press. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

• Command sequence 1: exploring two durations:

• emo mp

• tmo lg

200

http://ocw.mit.edu/fairuse

• tin a 61

• bell line, set to loop

tie r l,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)]

• accent the first of each articulation

tie a bg,oc,(1,.5,.5,.5,.5,.5,.5)

• tin b 68

• create genetic variations using a high mutation rate

tie r gr,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)],.7,.25,0

• tie a bg,oc,(1,.5,.5,.5,.5,.5,.5)

• eln; elh

• Command sequence 2: combinations of rests and silences

• emo mp

• tmo lg

• tin a 61

• kagan line, set to loop

tie r l,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0), (4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1)]

• accent the first of each articulation

tie a bg,oc,(.5,1,.5, .5,.5,.5, .5,.5,.5, .5,.5,.5)

• turning on silence mode will use parameters even for rests

timode s on

• tin b 68

• create genetic variations using a high crossover, no mutation

tie r gr,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0),

(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1)],1,0,0

• tie a bg,oc,(.5,1,.5, .5,.5,.5, .5,.5,.5, .5,.5,.5)

• turning on silence mode will use parameters even for rests

201

timode s on

• eln; elh

• Command sequence 3: multiple rhythmic values:

• emo mp

• tmo lg

• tin a 61

• kroboto line, set to loop

tie r l,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1),

(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)]

• accent the first of each articulation

tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)

• tin b 68

• create genetic variations using a high crossover and mutation rate and some elitism

tie r gr,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1),

(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)],.9,.25,0.1

• tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)

• eln; elh

18.10. Polyphonic African Drum Patterns with a GA

• Slow Agbekor (Chernoff 1979)

202

• Command sequence:

• emo mp

• tmo lg

• tin a 45

• tie r gr,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)],.7,.15,0

• tie a bg,oc,(1,.5,.5,.5,.5,.5,.5)

• tin b 60

• create genetic variations using a high crossover, no mutation

tie r gr,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0),
(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1)],1,0,0

• tie a bg,oc,(.5,1,.5, .5,.5,.5, .5,.5,.5, .5,.5,.5)

203

© University of Chicago Press. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

•	 turning on silence mode will use parameters even for rests

timode s on

•	 tin c 68

•	 create genetic variations using a high crossover and mutation rate and some elitism

tie r gr,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1),

(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)],.9,.25,0.1

•	 tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)

•	 eln; elh

18.11. Reading: Biles, GenJam in Perspective: A Tentative Taxonomy
for GA Music and Art Systems

•	 Biles, J. A. 2003. “GenJam in Perspective: A Tentative Taxonomy for GA Music and Art
Systems.” Leonardo 36(1): 43-45.

•	 What are the alleles and chromosomes in this study?

•	 At what level of the chromosome do the mutations operate? What types of mutations are used

•	 How is fitness measured?

•	 How does the concept of “musically meaningful mutations” deviate from conventional GAs?

•	 Which does the author suggest are more solution-rich: artistic domains or non-artistic domains?

18.12. GenJam Example

•	 Video: Demonstration created in 2003

18.13. Reading: Magnus, Evolving electroacoustic music: the
application of genetic algorithms to time-domain waveforms

•	 Magnus, C. 2004. “Evolving electroacoustic music: the application of genetic algorithms to time-
domain waveforms.” In Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association. 173-176.

204

•	 What are the alleles and chromosomes in this study?

•	 What types of mutations were explored in this study?

•	 Is there a distinction between genotype and phenotype?

•	 The author writes: “at each stage of programming, choices must be made that introduce designer
bias into the system”; it this a problem?

205

Chapter 19. Meeting 19, Approaches: Grammars and L-Systems

19.1. Announcements

• Sonic system draft due: 27 April

• No class Tuesday, 20 April

• Be sure to do reading for next class:

Riskin, J. 2003. “The Defecating Duck, or, the Ambiguous Origins of Artificial Life.” Critical

Inquiry 29(4): 599-633.

19.2. Quiz

• 10 Minutes

19.3. String Rewriting Systems

• Given an alphabet and rewrite (production) rules, transform strings

• A wide variety of formalizations and approaches

• Axel Thue: first systematic treatment

• Noam Chomsky: applied concept of re-writing to syntax of natural languages

19.4. Formal Grammars

• A set of rules for a formal language

• Formal grammars can be generative or analytic

• Generative grammars defined by

• A finite set of nonterminal symbols (variables that can be replaced)

• A finite set of terminal symbols (constants)

• An axiom, or initial state

• A finite set of production rules, replacing variables with variables or constants

• Generative grammars are iterative

206

19.5. Lindenmayer Systems

•	 Based on 1968 work of Aristid Lindenmayer

•	 Origins in model of a natural systems: “a theoretical framework for studying the development of
simple multicellular organisms”

•	 1984: began use of using computer graphics for visualization of plan structures

•	 L-systems: formal grammars where re-writing is parallel, not sequential: all symbols are
simultaneously replaced

Image: Public domain (Wikipedia)

YouTube (http://www.youtube.com/watch?v=L54SE9KTMSQ)

YouTube (http://www.youtube.com/watch?v=t-FZhw9G-RQ)

YouTube (http://www.youtube.com/watch?v=t-FZhw9G-RQ)

•	 Motivation from natural systems: idea of cell divisions of occurring at the same time

•	 L-systems can take many different forms depending on rule systems and alphabet components

207

http://www.youtube.com/watch?v=L54SE9KTMSQ
http://www.youtube.com/watch?v=t-FZhw9G-RQ
http://www.youtube.com/watch?v=t-FZhw9G-RQ

19.6. Context-Free

• Rules match one source to one or more destination

• Example:

• Originally proposed by Lindenmayer to model growth of algae

• Graphic representation Prusinkiewicz and Lindenmayer (1990)

208

Courtesy of Stelios Manousakis. Used with permission. From "Musical
L-Systems." Master's Thesis, Royal Conservatory, The Hague, 2006.

19.7. Context-Sensitive

• Rules match two or more sources to one or more destination

• 1L systems: match left or right of target source

• 2L systems: match left and right of target source

• 1L systems can be considered 2L systems with an empty (open matching) context

• Example:

209

Figure 1.3: Example of a derivation in a DOL-system.

© P. Prusinkiewicz and A. Lindenmayer (from The Algorithmic Beauty of Plants).
All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

19.8. Non-Deterministic and Table L-systems

•	 A context-sensitive or context free grammar can be deterministic

•	 If the application of rules if probabilistic, non-deterministic grammar is created

•	 Common approach: map one source to two or more destinations, with weighted probabilities for
each destination

•	 Example:

210

Courtesy of Stelios Manousakis. Used with permission. From "Musical
L-Systems." Master's Thesis, Royal Conservatory, The Hague, 2006.

•	 Alternatively, rules can be changed during production, producing a Table L-system (Manousakis
2006, p. 29)

211

Courtesy of Stelios Manousakis. Used with permission. From "Musical
L-Systems." Master's Thesis, Royal Conservatory, The Hague, 2006.

• Example:

19.9. Non-Propagative L-systems

• Where rules replace source with more than one successor, the system grows and is propagative

• If rules only encode one-value destinations, the rule system is non-propagative

212

Courtesy of Stelios Manousakis. Used with permission. From "Musical
L-Systems." Master's Thesis, Royal Conservatory, The Hague, 2006.

•	 Context-sensitive non-propagative L-systems are identical to a standard 1D CA

•	 Example:

19.10. Musical and Artistic Application of L-systems

•	 First published implementation: Prusinkiewicz

Prusinkiewicz, P. 1986. “Score Generation with L-Systems.” In Proceedings of the International
Computer Music Conference. San Francisco: International Computer Music Association. 455-457.

•	 A spatial mapping of 2D graphical output of L-system curves to pitch (vertical) and duration
(horizontal)

213

Courtesy of Stelios Manousakis. Used with permission. From "Musical
L-Systems." Master's Thesis, Royal Conservatory, The Hague, 2006.

• States determine intervals, not absolute values

• Suggest application to other parameters: tempo, amplitude, and position of sound in space

• Creative applications in the visual arts and architecture

Stiny, G. and J. Gips. 1972. “Shape Grammars and the Generative Specification of Painting and
Sculpture.” In Information Processing 71. C. V. Freiman, ed. Amsterdam: North Holland. 1460-1465.
Internet: http://www.shapegrammar.org/ifip/.

214

Courtesy of Stelios Manousakis. Used with permission. From "Musical
L-Systems." Master's Thesis, Royal Conservatory, The Hague, 2006.

http://www.shapegrammar.org/ifip/

Courtesy of George Stiny. Used with permission.

19.11. Reading: Mason and Saffle

•	 Mason, S. and M. Saffle. 1994. “L-Systems, Melodies and Musical Structure.” Leonardo Music
Journal 4: 31-38.

•	 Are deterministic CA always fractal?

•	 The basic mapping (after Prusinkiewicz)

215

© MIT Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Mason, S. and M. Saffle. "L-Systems, Melodies and Musical Structure."
Leonardo Music Journal 4 (1994): 31-38.

216

http://ocw.mit.edu/fairuse

•	 What are some alternative ways the 2D turtle graphics can be mapped and as musical values?

•	 Is it significant that “any melody can be modeled with an L-system, including the songs of
aboriginal hunters, the plainchants of the medieval christian liturgy, the themes of beethoven’s
symphonies and popular song tunes,” as the authors claim?

•	 What is the implied connection between fractals and beauty. Is this connection sufficiently
supported?

19.12. A Grammar Specification String and Python Implementation

•	 Define a grammar in two required parts: alphabet and rules

Both are specified in key{value} pairs

Rules are specified as source{destination} pairs

a{3}b{-2} @ a{b} b{a}

•	 Optionally include the axiom (one chosen at random otherwise)

a{3}b{-2} @ a{b} b{a} @ baba

•	 Permit one to many rules of any size

a{3}b{-2} @ a{ba} b{abb} @ baba

•	 Permit context sensitivity as many to one or many to many rules (not yet implemented)

a{3}b{-2} @ aa{ba} bab{abb} @ baba

•	 Match any source as pattern specified with quasi regular expressions (not yet implemented)

a{3}b{-2} @ *aa{ba} b*b{abb} bb*{abb} @ baba

•	 Configure non-deterministic destinations as two or more weighted options

Weights can be specified with a floating point or integer value following the destination

a{3}b{-2} @ a{ba|ab} b{abb=3|aa=2} @ baba

•	 Can create a grammar instance and view step-wise output

>>> from athenaCL.libATH import grammar

>>> g = grammar.Grammar()

>>> g.load('a{3}b{-2} @ a{b} b{a} @ baba')

>>> g.next(); g.getState()

'baba'

>>> g.next(); g.getState()

'abab'

>>> g.next(); g.getState()

'baba'

217

>>> g.load('a{3}b{-2} @ a{ba|ab} b{abb=3|aa=2} @ baba')

>>> g.next(); g.getState()

'abbababbba'

>>> g.next(); g.getState()

'baaaabbababbbaabbabbaaba'

>>> g.next(); g.getState()

'aaabbaabbaabbaabaabbabaaaaabbbaababbabbbaabbabbbabaabbba'

• Can translate grammar string back into a list of source values

>>> from athenaCL.libATH import grammar

>>> g = grammar.Grammar()

>>> g.load('a{3}b{-2} @ a{ba|ab} b{abb=3|aa=2} @ baba')

>>> g.next(); g.getState()

'abbababbba'

>>> g.getState(values=True)

[3.0, 3.0, 3.0, -2.0, 3.0, -2.0, -2.0, -2.0, 3.0]

19.13. Grammar as ParameterObject

• The grammarTerminus ParameterObject

:: tpv grammar

Generator ParameterObject

{name,documentation}

grammarTerminus grammarTerminus, grammarString, stepCount, selectionString

 Description: Produces values from a one-dimensional string

rewrite rule, or generative grammar. The terminus, or final

result of the number of generations of values specifed by

the stepCount parameter, is used to produce a list of

 defined values. Values are chosen from this list using the

selector specified by the selectionString argument.

Arguments: (1) name, (2) grammarString, (3) stepCount, (4)

selectionString {“randomChoice”, “randomWalk”,

“randomPermutate”, “orderedCyclic”,

“orderedCyclicRetrograde”, “orderedOscillate”}

• The Lindenmayer algae model after 10 generations

:: tpmap 100 gt,a{0}b{1}@a{ab}b{a}@b,10,oc

grammarTerminus, a{0}b{1}@a{ab}b{a}@b, 10, orderedCyclic

TPmap display complete.

• Modified Lindenmayer algae model after 10 generations with non-deterministic rule variation

:: tpmap 100 gt,a{0}b{1}@a{ab}b{a|aaa}@b,10,oc

218

grammarTerminus, a{0}b{1}@a{ab}b{a=1|aaa=1}@b, 10, orderedCyclic

TPmap display complete.

• Four state deterministic grammar

:: tpmap 100 gt,a{1}b{-1}c{2}d{-2}@a{ab}b{cd}c{aadd}d{bc}@ac,10,oc

grammarTerminus, a{1}b{-1}c{2}d{-2}@a{ab}c{aadd}b{cd}d{bc}@ac, 10,

orderedCyclic

TPmap display complete.

• Four state deterministic grammar placed in an Accumulator PO

:: tpmap 100 a,0,(gt,a{1}b{-1}c{2}d{-2}@a{ab}b{cd}c{ad}d{bc}@ac,10,oc)

accumulator, 0, (grammarTerminus, a{1}b{-1}c{2}d{-2}@a{ab}c{ad}b{cd}d{bc}@ac,

10, orderedCyclic)

TPmap display complete.

• Four state non-deterministic grammar placed in an Accumulator PO

:: tpmap 100 a,0,(gt,a{1}b{-1}c{2}d{-2}@a{ab}b{cd}c{ab|ca}d{ba|db}@ac,10,oc)

accumulator, 0, (grammarTerminus,

a{1}b{-1}c{2}d{-2}@a{ab}c{ab=1|ca=1}b{cd}d{ba=1|db=1}@ac, 10, orderedCyclic)

TPmap display complete.

219

• Alternative approaches to PO interface?

• Mappings and applications in athenaCL?

19.14. Grammar States as Accent Patterns

• Can treat the grammar alphabet as parameter values: integers, floating point values

• Command sequence:

• emo mp

• tmo lg

• tin a 60

• non deterministic binary algae generator applied to accent

tie r pt,(c,8),(c,1),(gt,a{0}b{1}@a{ab}b{a|aaa}@b,10,oc)

• tie a c,1

• four state deterministic applied to pulse multiplier

tie r pt,(c,8), (gt,a{1}b{2}c{4}d{8}@a{ab}b{cd}c{aadd}d{bc}@ac,10,oc),(c,1)

• four state deterministic applied to amplitude with different start string

tie a gt,a{.25}b{.5}c{.75}d{1}@a{ab}b{cd}c{aadd}d{bc}@bbc,6,oc

• four state deterministic applied to transposition with different start string

tie f gt,a{0}b{1}c{2}d{3}@a{ab}b{cd}c{aadd}d{bc}@dc,6,oc

• four state non-deterministic applied to transposition with different start string

tie f gt,a{0}b{1}c{2}d{3}@a{ab}b{cd|aa}c{aadd|cb}d{bc|a}@dc,6,oc

• eln; elh

220

19.15. Grammar States as Pitch Values

• Can treat the grammar alphabet as specific pitch values

• Command sequence:

• emo m

• tmo lg

• tin a 32

• four state deterministic applied to pulse multiplier

tie r pt,(c,8), (gt,a{1}b{2}c{4}d{8}@a{ab}b{cd}c{aadd}d{bc}@ac,8,oc),(c,1)

• tie o c,-2

• four state deterministic applied to transposition with different start string

tie f gt,a{0}b{7}c{8}d{2}@a{ab}b{cd}c{aadd}d{bc}@ad,6,oc

• four state deterministic applied to amplitude with different start string

tie a gt,a{.25}b{.5}c{.75}d{1}@a{ab}b{cd}c{aadd}d{bc}@bbc,6,oc

• eln; elh

19.16. Grammar States as Pitch Transpositions

• Can treat the grammar alphabet as transpositions iteratively processed through an Accumulator

• Command sequence:

• emo m

• tmo lg

• tin a 15

• four state deterministic applied to pulse multiplier

tie r pt,(c,8), (gt,a{1}b{2}c{4}d{8}@a{ab}b{cd}c{aadd}d{bc}@ac,8,oc),(c,1)

• four state deterministic applied to accumulated transposition with different start string

tie f a,0,(gt,a{1}b{-1}c{7}d{-7}@a{ab}b{cd}c{ad}d{bc}@ac,10,oc)

• four state deterministic applied to amplitude with different start string

221

tie a gt,a{.25}b{.5}c{.75}d{1}@a{ab}b{cd}c{aadd}d{bc}@bbc,6,oc

•	 eln; elh

19.17. Grammar States as Path Index Values

•	 Can treat the grammar alphabet as index values from the Path iteratively processed through an
Accumulator

•	 Command sequence:

•	 emo m

•	 create a single, large Multiset using a sieve

pin a 5@0|7@2,c2,c7

•	 tmo ha

•	 tin a 6

•	 constant rhythm

tie r pt,(c,4),(c,1),(c,1)

•	 select only Multiset 0

tie d0 c,0

•	 select pitches from Multiset using accumulated deterministic grammar starting at 12

tie d1 a,12,(gt,a{1}b{-1}c{2}d{-2}@a{ab}b{cd}c{ad}d{bc}@ac,10,oc)

•	 create only 1 simultaneity from each multiset; create only 1-element simultaneities

tie d2 c,1; tie d3 c,1

•	 four state deterministic applied to amplitude with different start string

tie a gt,a{.25}b{.5}c{.75}d{1}@a{ab}b{cd}c{aadd}d{bc}@bbc,6,oc

•	 eln; elh

222

Chapter 20. Meeting 20, History: Mechanical Musical
Automata

20.1. Announcements

• Sonic system draft due: 27 April

20.2. Quiz Review

• ?

20.3. Android

• First usage dates from 1727-51

Image from etymology dictionary removed due to copyright restrictions.

20.4. Mechanical Automata

• Jacques Vaucanson (1709-1782)

• Pierre Jaquet-Droz (1721-1790)

• Wolfgang von Kempelen (1734-1804)

• Joseph Marie Jacquard (1752-1834)

• Charles Babbage (1791-1871)

223

20.5. Automata: Background

•	 18th century mechanical theaters built within clock works

•	 Often religious scenes of Madonna and Child

•	 Inspired a wide range of automatic entertainment machines

•	 Resulted in complex machines and technological advances

•	 Example: automaton monk from 1560

YouTube (http://www.youtube.com/watch?v=Ycyj76VPOtc)

•	 Example: automaton of French engineer Isaac de Caus

224

225

Isaac de Caus's threatening owl and intimidated birds. (Public domain image)

20.6. Vaucanson: The Flute Player

• Was a Jesuit but renounced religious life for pursuit of automata (Standage 2002)

• Displayed in 1737 (Standage 2003)

• Based on a statue by Antoine Coysevox (2003, p. 613)

• A theory of sound production of the flute

• Acoustically produced sound: different flutes could be substituted

• Concerned with three parameters: air pressure, shape of aperture, length of flute (2003, p. 615)

226

227

Public domain image.

• Used studs on a cylinder to encode data

228

Image removed due to copyight restrictions.
See diagram "Fluter de Vaucanson" in Doyon, A., and L. Liaigre.
Jacques Vaucanson, mécanicien de génie. Presses Universitaires de France, 1966.

20.7. Vaucanson: Pipe and Tabor Player

•	 Displayed in 1738

•	 Vaucanson “discovered that the blowing pressure for a given note depended upon the preceding
note, so that it required more pressure to produce D after an E than after a C...” (2003, p. 616)

20.8. Vaucanson: Defecating Duck

•	 Displayed in 1738

229

A mechanical digesting duck, as imagined by a 19th century illustrator. (Public domain image)

230

Mysterious photo discovered at the Musee des Arts de Metiers in Paris, labeled "Views of
Vaucason's Duck received from Dresden." (Public domain image)

YouTube: 3:28 (http://www.youtube.com/watch?v=Pd_21_pfSRo)

•	 Powered by weight that, with gravity, drove a cylinder

•	 Part of later projects in moving anatomies: mechanical models of bodily processes such as
respiration and circulation: intended for physiological experimentation and to test medical
therapies (2003, p. 625)

20.9. Vaucanson: Automated Loom

•	 Created in 1747

231

Photo courtesy of bjepson on Flickr.

232

http://www.flickr.com/photos/bjepson/3692797233/

•	 Resulted from an analysis of what could be automated in the production of silk

•	 Did not recreate the same process used by humans

•	 Task formerly known to take intelligence (reading patterns) was demoted; process that was not
known to take intelligence (silk reeling) was promoted

20.10. Kempelen: Speaking Machine

•	 Kempelen was familiar with Vaucanson’s work (Standage 2003)

•	 Published description of speaking machine in 1791

233

234

Kempelen's speaking machine. (Public domain image)

(Public domain image)

•	 Part of a tradition of “speaking heads”; Christian Kratzenstein built models of the vocal tract in
1779

•	 Used bellows, reeds, and models of lungs and mouth: known to say “mama” and “papa”

YouTube (http://www.youtube.com/watch?v=zYRVqrfY3tQ)

•	 Kempelen “reported that he had first tried to produce each sound in a given word or phrase
independently but failed because the successive sounds needed to take their shape from one
another” (2003, p. 619)

20.11. Kempelen: The Turk

•	 Kempelen, after seeing a magician at the court of the empress of Austria-Hungary, declared that
he could do better; was given six months leave (2003)

235

• Spring of 1770 returned with the Turk

Source: Wikimedia Commons © Wikimedia User:Carafe. License CC BY-SA. This content is
excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

236

http://commons.wikimedia.org/wiki/File:Kempelen_chess1.jpg
http://ocw.mit.edu/fairuse

(Public domain image)

237

(Public domain image)

•	 Had an elaborate presentation of the inside of the machine, used a candle to show panels, turned
machine around

•	 Placed two candelabras on top of the cabinet

•	 Turned a key and made loud, mechanical noises

238

•	 Beat most opponents in less than half an hour

•	 First tour of Europe; in Paris it played Benjamin Franklin and lost to Philidor

•	 Owned and exhibited by Johann Mälzel from 1808 to 1828 in Milan, Paris, Uniter Kingdom, New
York City, Boston, Philadelphia, and Baltimore

•	 Would play chess, perform end-games (the Knight’s Tour), would answer audience questions by
point to a board

•	 Destroyed in a fire in a Philadelphia museum in 1854

•	 Documentaries and other programs

YouTube (http://www.youtube.com/watch?v=RdT4yG8wczQ)

YouTube (http://www.youtube.com/watch?v=K3U83LnwMCc)

20.12. Jaquet Droz: The Harpsichord Player

•	 Built between 1768 and 1774

•	 Henri Louis Jaquet-Droz builds a harpsichord player machine

239

• Programmed with studs on a cylinder

• Family used designs to construct prosthetic limbs (Riskin 2003, p. 625)

240

Source: Wikimedia Commons © Wikimedia User:Rama. License CC BY-SA 2.0 France.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://commons.wikimedia.org/wiki/File:Automates-Jaquet-Droz-p1030490.jpg
http://ocw.mit.edu/fairuse

•	 Part of a collection of three automata: the writer, the drawer, and the musician

YouTube (http://www.youtube.com/watch?v=Pd_21_pfSRo)

•	 Other Jaquet-Droz Devices:

Singing Bird Box:

YouTube (http://www.youtube.com/watch?v=HjLy0zausRU)

20.13. Jacquard: Automatic Loom

•	 Studied Vaucanson’s loom in Paris

•	 Built in 1801

241

© JMusee d'art et d'histoire. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

242

Photo courtesy of Douglas W. Jones at the University of Iowa.

(Public domain image)

•	 Loom operations could be stored and recalled later

•	 Multiple cards could be strung together

•	 Based on technologies of numerous inventors from the 1700s, including Jacques Vaucanson

20.14. Babbage: The Difference Engine

•	 Babbage had played chess against the Turk, but suspected it was under human control (Standage
2003)

•	 Sketched out plan for mathematical automaton in 1821, shortly after playing the Turk (Standage
2003)

•	 Produced improved design between 1847 and 1849

•	 Essentially columns that store integers; columns can add value of column n+1 to column n to
produce a new value for n

•	 Automatic calculation of polynomial functions with Newton’s method of divided differences:
finding value that must be added to obtain the next result:

243

• 25,000 parts, 15 tons, 8 feet high: never completed

• Employed rotating cylinders that stored a single digit

• 1989-1991: Difference Engine No 2 constructed and used

Source: Wikimedia Commons. © Wikimedia User:Geni. License CC BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

• A difference engine built of Lego by Andrew Carol

244

http://commons.wikimedia.org/wiki/File:Babbage_Difference_Engine.jpg
http://ocw.mit.edu/fairuse

http://acarol.woz.org

Courtesy of Andrew Carol. Used with permission.

20.15. Babbage: The Analytical Engine

• Continued working on until death in 1871

• Machine that could be programmed with punched cards

• Loops of punched cards such as those used in the Jacquard loom

• Ada Lovelace designed as program for the Analytical Engine

245

•	 Daughter of Lord Byron

•	 Translated article on the Analytical Engine by Luigi Menabrea added notes that included

algorithm

•	 Suggested in 1843: if “the fundamental relations of pitched sounds in the science of harmony
and of musical composition” could accommodate these adaptations, “the engine might
compose elaborate and scientific pieces of music of any degree of complexity or extent” (1842)

20.16. Reading: Riskin: The Defecating Duck, or, the Ambiguous
Origins of Artificial Life

•	 Riskin, J. 2003. “The Defecating Duck, or, the Ambiguous Origins of Artificial Life.” Critical
Inquiry 29(4): 599-633.

•	 Why does Riskin isolate the Defecating Duck as important?

•	 “by building a machine that played the flute and another that shat, and placing them alongside
each other, Vaucanson, rather than demonstrating the equivalence of art and shit as the products
of mechanical processes, was testing the capacity of each, the artistic and the organic product, to
distinguish the creatures that produced them from machines” (2003, p. 610)

•	 It seems that, even though some knew that The Turk was not truly autonomous, many still
appreciated its functioning: why?

•	 “not only has our understanding of what constitutes intelligence changed according to what we
have been able to make machines do but, simultaneously, our understanding of what machines
can do has altered according to what we have taken intelligence to be”

•	 Is music a sign of intelligence? How does this affect our interpretation of musical automata?

•	 How might musical automata employ similar theatrical, or fraudulent, presentations?

20.17. Musical Automata

•	 Take many forms, often encoding data on a disc or cylinder

•	 Nondeterministic musical automata often used wind

•	 The aeolian harp

246

(Public domain image)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse

.

• Various arrangements of wind bells used in East and South-East Asia

247

http://ocw.mit.edu/fairuse

• The windchime

• Mechanical models often deterministic

• Music boxes from the early 19th cenury

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

248

http://ocw.mit.edu/fairuse

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

249

http://ocw.mit.edu/fairuse

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

• Barrel organs employed a wide range of sounds sources

250

http://ocw.mit.edu/fairuse

(Public domain image)

• Reproducing and player pianos were by far the most widespread musical automata

251

© source unknown. This content is excluded from our Creative
Commons license.For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

• Some player pianos encouraged human interaction and intervention in the performance

20.18. Weinberg: Haile

• Robotic percussionist that listens and performs with live players

252

© source unknown. This content is excluded from our Creative
Commons license.For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

• Developed by Gil Weinberg at Georgia Tech (2006)

• Haile videos at http://www.cc.gatech.edu/~gilwein/Haile.htm - CNN, Jam'aa Odense Outdoor

253

Chapter 21. Meeting 21, Workshop

21.1. Announcements

• Sonic system reports due and presentations begin: 11 May

• Last quiz: Tuesday, 4 May

21.2. Workshop: Sonic System Project Drafts

• All student present their draft projects

254

Chapter 22. Meeting 22, Approaches: Agents and Ecological
Models

22.1. Announcements

• Sonic system reports due and presentations begin: 11 May

• Last quiz: Tuesday, 4 May

22.2. Workshop: Sonic System Project Drafts

• Last two students present their draft projects

22.3. Agents

• Software models of autonomous sub-systems

• Complexity and emergent behavior through the interaction of simple agents

22.4. Interactive Music Systems

• Computers that musically respond to MIDI messages (control data)

• Computers that musically respond to audio (sound through a microphone)

• Computers that accompany a human performance based on a shared score

• Computer (agents) that musically respond to each other (via audio or MIDI)

22.5. Analysis and Generation

• Interactive systems must have two basic components

• Components that “listen” to control data or audio information, and decode into musical models

• Components that generate musical responses based on analysis

22.6. Interactivity: Theatre

• Musical performance is theatre

255

•	 Appeal of technological achievement or drama of technological disaster

22.7. Applications of Multi-Parameter Feature Extraction

•	 Detect articulation, pitch, and tempo and match to a score: score following

•	 Detect articulation, pitch, and rhythms, and build musical responses: interactive systems,
installations

22.8. Multi-Parameter Feature Analysis in PD

•	 [fiddle~] object: pitch, event, and amplitude

22.9. Early Historical Examples of Interactive Music Systems

•	 1967: Gordon Mumma’s Hornpipe (1967): “an interactive live electronic work for solo hornists,
cybersonic console, and a performance space”; system analyzes sound form horn and in
performance space

256

Audio: local
(file://localhost/Volumes/xdisc/_sync/_x/eduMitCourses/21m380b/audio/mummaHornpipe.
mp3)

•	 1968: Max Mathews and F. Richard Moore develop GROOVE system at Bell Labs. Real-time
performance interface to a predetermined musical score

•	 1979: George Lewis, with a KIM-1 computer, develops interactive compositions designed to
work with improvisation

•	 1983: Felix Hess creates 40 Electronic Sound Creatures, small mobile machines with microphones
and speakers that respond to each other an the envrionment

© Felix Hess/John Stoel. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

•	 1987: Robert Rowe develops a system called Cypher, consisting of a Listener, a Player, and a
Critic, used in Flood Gate (1989)

257

http://ocw.mit.edu/fairuse

22.10. Reading: Rowe: Machine Listening and Composing with Cypher

•	 Rowe, R. 1992. “Machine Listening and Composing with Cypher.” Computer Music Journal 16(1):
43-63.

•	 What types of features are extracted during the first level of listener analysis?

•	 What types of features are extracted during the second level of analysis?

•	 How does the chord and key analysis routines work?

•	 What are the three compositional methods employed?

•	 What is the role of the critic?

•	 How is the large-scale behavior of the system varied over time?

22.11. Listening: Rowe

•	 Listening: Robert Rowe, Shells, 1993

22.12. Listening: Ariza

•	 Listening: Christopher Ariza, to leave the best untold, 2009

22.13. Alternative Agent Models

•	 Analogies to human roles

•	 Analogies to ecological models

•	 Analogies to social systems

•	 Analogies to physical systems

22.14. A Model of Particle Feedback Systems

•	 Particles in a dynamic system

258

•	 Particles

•	 Have one or more states, each state with a discrete life span

•	 Particle expired at termination of life span

•	 Life cycle:

[('a', 1), ('b', 2)]

•	 Particle Transformers

•	 Have one or more states, each state with a discrete life span

•	 Particle expired at termination of life span

•	 State determines focus of particle

•	 Focus is target state looked for in other particles; transformed with transformation map

•	 Transform map:

{'a':[(None, 3), ('a', 1)]}

•	 Related to first order Markov chain

•	 Sensor Producers

•	 Produces one type of Particle

•	 Produces one type of Particle Transformer

•	 Stores a threshold, a target value for a given state

•	 Senses the composition of a collection of Particles

•	 Stores a production count range: given difference from threshold, give a range of Particles to
produce (when below threshold) or Particle Transformers to produce (when above threshold).

•	 Production count range:

{(-30,-10): [1,2], (1,10): [1, 2], (11, 20): [1, 4], None: [1, 8]}

•	 Environment

•	 Store lists of Sensor Producers, Particles, and Particle Transformers

•	 Provides model of Sensor Producer (one for now)

•	 Provides an absolute discrete value range for sensed particle

259

• Specify number of sensors

• Can age all Particles by one or more age steps

22.15. Feedback System as ParameterObject

• The feedbackModelLibrary ParameterObject

:: tpv fml

Generator ParameterObject

{name,documentation}

FeedbackModelLibrary feedbackModelLibrary, feedbackModelName, parameterObject,

parameterObject, min, max

 Description: Produces values from a one-dimensional string

 rewrite rule, or Lindenmayer-system generative grammar. The

terminus, or final result of the number of generations of

values specifed by the stepCount parameter, is used to

produce a list of defined values. Values are chosen from

 this list using the selector specified by the

selectionString argument. Arguments: (1) name, (2)

feedbackModelName, (3) parameterObject {aging step}, (4)

parameterObject {threshold}, (5) min, (6) max

• A basic model of a Thermostat: particles as heat

:: tpmap 100 fml,t,(bg,rc,(1,1.5,2))

feedbackModelLibrary, thermostat, (basketGen, randomChoice, (1,1.5,2)),

(constant, 0.9), (constant, 0), (constant, 1)

TPmap display complete.

• Dynamic age values applied to Particles

:: tpmap 100 fml,t,(ls,e,(c,30),0,4)

feedbackModelLibrary, thermostat, (lineSegment, (constant, 30), (constant, 0),

(constant, 4)), (constant, 0.9), (constant, 0), (constant, 1)

TPmap display complete.

260

• Climate control: produce both Particles and Particle Transformers

:: tpmap 100 fml,cc,(bg,rc,(.5,1,1.5))

feedbackModelLibrary, climateControl, (basketGen, randomChoice, (0.5,1,1.5)),

(constant, 0.9), (constant, 0), (constant, 1)

TPmap display complete.

• Alternative approaches to PO interface?

22.16. Feedback System as Dynamic Contour

• Can treat the grammar alphabet as parameter values: integers, floating point values

• Command sequence:

• emo mp

• tmo lg

• tin a 66

• constant pulse

tie r pt,(c,8),(c,1),(c,1)

• amplitude controlled by Thermostat feedback

tie a fml,t,(bg,rc,(1,1.5,2))

• using convert second to set durations

261

tie r cs,(fml,t,(c,1),(c,.7),.001,.400)

• amplitude controlled by Climate Control feedback

tie a fml,cc,(bg,rc,(.5,1,1.5)),(c,.7),0,1

• eln; elh

22.17. Feedback System as Path Index Values

• Feedback system states as index values from the Path

• Command sequence:

• emo m

• create a single, large Multiset using a sieve

pin a 5@1|7@4,c2,c7

• tmo ha

• tin a 107

• constant rhythm

tie r pt,(c,4),(c,1),(c,1)

• select only Multiset 0

tie d0 c,0

• create only 1 simultaneity from each multiset; create only 1-element simultaneities

tie d2 c,1; tie d3 c,1

• select pitches from Multiset using Thermostat

tie d1 fml,t,(bg,rc,(1,1.5,2)),(c,.7),0,18

• select pitches from Multiset using Climate Control

tie d1 fml,cc,(bg,rc,(.5,1,1.5)),(c,.7),0,18

• eln; elh

262

Chapter 23. Meeting 23, Approaches: Expert Systems and Style
Emulation

23.1. Announcements

• Sonic system reports due and presentations begin: 11 May

23.2. A Model of a Particle Feedback Systems

• Review

23.3. Quiz

• 10 Minutes

23.4. Style Experts

• Style emulation

1. One of the earliest approaches to generative music

2. Often justified has offering musicological or analytical features

3. Often valued because various forms of testing are possible

• Expert systems

1. Sometimes considered a type of AI

2. Typically used to solve non-trivial problems where probabilistic recommendations are
valuable

3. Notoriously narrow

263

23.5. Reading: Ebcioglu: An Expert System for Harmonizing Four-part
Chorales

•	 Ebcioglu, K. 1988. “An Expert System for Harmonizing Four-part Chorales.” Computer Music
Journal 12(3): 43-51.

•	 What is meant by the term “analysis by synthesis'? Is such an approach broadly applicable in
music?”

•	 Why do the author’s reject the approach of coding musical rules in a programming language, and
instead offer what?

•	 The authors distinguish their approach from that of generating a random solution and testing the
results: what is different in their approach?

•	 In general terms, describe the steps used to create chorales.

•	 Did the authors find that published theory texts were sufficient to implement their generative
techniques?

•	 What are the main chorale views used?

•	 What level of results do the author’s report achieving?

•	 What hardware were the using, and how quickly could it solve harmonizations?

23.6. Recreating Works of the Past

•	 Is their historical or musicological value to recreating works of the past?

•	 Is their aesthetic or artistic value to recreating the works of the past?

•	 Listen: 21 April 2006: Radio Lab, WNYC, show #202

23.7. Reading: Cope: Computer Modeling of Musical Intelligence in
EMI

•	 Cope, D. 1992. “Computer Modeling of Musical Intelligence in EMI.” Computer Music Journal
16(2): 69-83.

•	 What are the basic steps used in the production of music with Cope’s EMI system?

264

•	 How is music represented and what parameters are taken into account?

•	 What role does the pattern matcher play? What does it match?

•	 Given Cope’s description, how does the augmented transition network (ATN) differ from
something like a Markov chain?

•	 Is Cope’s description of EMI sufficient to understand the techniques of production?

•	 Cope claims that musical intelligence is a “simulation of musical thinking”; does the EMI system
approach musical intelligence?

23.8. Listening: Bach, Virtual Bach, and Cope

•	 Listening: Cope, Three Inventions, after Bach, No. 1, 1997

•	 Compare to Bach Invention No. 6 in E Major

•	 Listening: Cope, Three Inventions, after Bach, No. 2, 1997

•	 Compare to Bach Invention No. 8 in F Major

•	 Listening: Cope, Three Inventions, after Bach, No. 3, 1997

265

[Page left blank]

266

Chapter 24. Meeting 24, Discussion: Aesthetics and
Evaluations

24.1. Announcements

• Sonic system reports due and presentations begin: 11 May

24.2. Quiz Review

• ?

24.3. The (Real) Turing Test

• Turing, A. M. 1950. “Computing Machinery and Intelligence.” Mind 59: 433-460.

267

© Oxford University Press. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

268

http://ocw.mit.edu/fairuse

• A test of human and computer indistinguishability

•	 Based on a party game in which an interrogator attempts to distinguish the gender of two human
agents

•	 Through removing biases (sound, visual presence), and focusing on language alone, can a machine
be indistinguishable from a human?

•	 Multiple tests can be averaged; after 5 minutes of conversation correct identification must be less
than 70 percent

•	 Claim only of achieving thinking, not intelligence

•	 Functional rather than structural indistinguishability (2000, p. 429)

269

Image by MIT OpenCourseWare.

?Computer

96-G2K
Computer

• Deception is permitted: mathematical questions can take longer, or fake mistakes

• Is human-like conversation the sole determinate of thinking?

24.4. The Eliza Effect

• Humans too easily associate humanity with machines

• Eliza in emacs: shift + escape; enter “xdoctor” and return

24.5. Other Tests: The John Henry Test

• The John Henry Test (JHT): a test of verifiable distinguishability between human and machine

• Other examples?

24.6. Other Tests: The Turing Hierarchy

• Steven Harnad

• Total Turing Test: full physical and sense based interaction

• T4: internal microfunctional indistinguishability

• T5: microphysical indistinguishability, real biological molecules

• t1: toy tests: subtotal fragments of our functional capacity (Harnad 2000, p. 429)

• The TT is predicated on total functional indistinguishability; anything less is a toy

24.7. A Little Turing Test

• Hofstadter, D. R. 1979. Gödel, Escher, Bach: an eternal golden braid . New York: Vintage.

• The little turing test (1979, p. 621)

270

© Vintage Books. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

271

http://ocw.mit.edu/fairuse

•	 Is this a Turing Test?

24.8. A (Kind of) Turing Test

•	 Kurzweil, R. 1990. The Age of Intelligent Machines. Cambridge: MIT Press.

•	 “The essence of the Turing Test is that the computer attempts to act like a human within the
context of an interview over terminal lines. A narrower concept of a Turing test is for a computer
to successfully imitate a human within a particular domain of human intelligence. We might call
these domain-specific Turing tests. One such domain-specific Turing test, based on a computer’s
ability to write poetry, is presented here.” (1990, p. 374)

•	 28 question “poetic Turing test” administered to 16 human judges; 48 percent correct overall

•	 Cybernetic Poet

http://www.kurzweilcyberart.com/poetry/rkcp_akindofturingtest.php

•	 “Music composed by computer is becoming increasingly successful in passing the Turing test of
believability. The era of computer success in a wide range of domain-specific Turing tests is
arriving.” (1990, p. 378)

•	 Kurzweil and Kapor Long Bet: 20,000 that a machine will pass the Turing Test by 2029

•	 Is there a narrower concept of a Turing Test?

24.9. A Musical Turing Test

•	 Compare chants created by computer and by humans

272

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

• Is this a Turing Test?

• How would this test be different if the music was performed by humans?

24.10. Musical Turing Test Archetypes

• Musical Directive Toy Test (MDtT)

• Musical Output Toy Test (MOtT)

• The problem of musical judgements

• Music is not natural language

• We have aesthetic expectations for human and computer music

• All executed tests report a win for the computer

• Does success of a MDtT or a MOtT offer a sign of system design success?

• Does aesthetic success suggest system design success?

273

http://ocw.mit.edu/fairuse

24.11. Discrimination Tests

•	 Blind comparison of musical outputs

•	 Often material used to create the music is used as part of the test

•	 All listening test are bound by musical judgements

24.12. Cope’s MOtTs

•	 Cope does not associate these test directly with the TT

•	 Compares EMI generated Mozart with Mozart

•	 1992 AAAI conference conducted a test with 2000 visitors, claiming “absolutely no scientific
value” but claims that “machine-composed music has some stylistic validity”

•	 Compares virtual music to real music in The Game

•	 Many have used Cope’s music or related tests as examples of musical TTs where the machine
wins

24.13. Machine Authorship in Generative Music Systems

•	 Is the machine responsible for the musical output?

•	 Is the test testing the machine at all?

24.14. Aesthetic Intention in Generative Music Systems

•	 The intentional fallacy: the idea that understanding the artist’s intention is necessary for evaluating
a work (Beardsley 1946)

•	 Is intention required to make music?

•	 Can authorship be given to things that do not have intention?

24.15. Listening

•	 Listening: David Soldier, “The Birth of Ganesha,” Elephonic Rhapsodies, 2004

274

•	 Elephants trained and directed in improvisation with instruments

24.16. Naughtmusik

•	 Soldier, D. 2002. “Eine Kleine Naughtmusik: How Nefarious Nonartists Cleverly Imitate Music.”
Leonardo Music Journal 12: 53-58.

•	 Genuine music requires composers with intent

•	 Naughtmusik: nonart sounds, composers without intent

•	 An Adapted Turing Test: can human judges detect naughtmusik?

•	 The Tangerine Awkestra: children 2 to 9, produce sounds using instruments they do not know
how to play, recorded in a studio; listened to free jazz of Ornette Coleman and others

•	 5 sophisticated adults: 5 of 8 trials led to correct identification: not iron-clad

•	 Thai elephant orchestra

•	 “There is something out there that looks, sounds, feels, smells like music, but isn't” (2002, p. 58)

24.17. Listening

•	 The People’s Choice Music: with Vitaly Komar and Alex Melamid

•	 Survey given to 500 Americans

•	 Survey responders had no intent; the works were created without individual intent, and thus no
creative decision making was involved

•	 Listening: David Soldier, The Peoples Choice, 2002

275

Courtesy of Dave Soldier. Used with permission.

24.18. Authorship Matters

• Humans are still ultimately responsible for machine creations

• The designation of author is a special designation, granted only by humans

276

• Authorship does not require intention: what does it require?

277

Chapter 25. Meeting 25

25.1. Announcements

•	 Sonic system reports are due tonight by midnight

25.2. A Negative Definition

•	 A CAAC system is software that facilitates the generation of new music by means other than the
manipulation of a direct music representation (Ariza 2005b)

25.3. Sonic System Presentations

•	 Half of the class presents today, half at next class

278

Chapter 26. Meeting 26

26.1. Announcements

•

26.2. Sonic System Presentations

• 2nd half of the class presents today

279

References

Ames, C. 1987. “Automated Composition in Retrospect: 1956-1986.” Leonardo 20(2): 169-185.

Ames, C. 1989. “The Markov Process as a Compositional Model: A Survey and Tutorial.” Leonardo
22(2): 175-187.

Ames, C. 1991. “A Catalog of Statistical Distributions: Techniques for Transforming Random,
Determinate and Chaotic Sequences.” Leonardo Music Journal 1(1): 55-70.

Ames, C. 1992. “A Catalog of Sequence Generators: Accounting for Proximity, Pattern, Exclusion,
Balance and/or Randomness.” Leonardo Music Journal 2(1): 55-72.

Anders, T. and E. R. Miranda. 2009. “Interfacing Manual and Machine Composition.” Contemporary
Music Review 28(2): 133-147.

Ariza, C. 2005a. An Open Design for Computer-Aided Algorithmic Music Composition: athenaCL. Ph.D.
Dissertation, New York University.

Ariza, C. 2005b. “Navigating the Landscape of Computer-Aided Algorithmic Composition Systems:
A Definition, Seven Descriptors, and a Lexicon of Systems and Research.” In Proceedings of the
International Computer Music Conference. San Francisco: International Computer Music Association.
765-772.

Ariza, C. 2005c. “The Xenakis Sieve as Object: A New Model and a Complete Implementation.”
Computer Music Journal 29(2): 40-60.

Ariza, C. 2006. “Beyond the Transition Matrix: A Language-Independent, String-Based Input
Notation for Incomplete, Multiple-Order, Static Markov Transition Values.” Internet:
http://www.flexatone.net/docs/btmimosmtv.pdf.

Ariza, C. 2007a. “Automata Bending: Applications of Dynamic Mutation and Dynamic Rules in
Modular One-Dimensional Cellular Automata.” Computer Music Journal 31(1): 29-49.

Ariza, C. 2007b. “Serial RSS Sound Installation as Open Work: The babelcast.” In Proceedings of the
International Computer Music Conference. San Francisco: International Computer Music Association.
1: 275-278.

Ariza, C. 2009a. “The Interrogator as Critic: The Turing Test and the Evaluation of Generative
Music Systems.” Computer Music Journal 33(2): 48-70.

Ariza, C. 2009b. “Pure Data Object Glossary.” Internet: http://flexatone.net/docs/pdg.

Ariza, C. 2010. “Two Experiments in the Early History of Computer-Aided Algorithmic
Composition.”

Assayag, G. and C. Rueda, M. Laurson, C. Agon, O. Delerue. 1999. “Computer-Assisted
Composition at IRCAM: From PatchWork to OpenMusic.” Computer Music Journal 23(3): 59-72.

280

Babbitt, M. 1958. “Who Cares if you Listen.” High Fidelity 8(2): 38.

Bel, B. 1998. “Migrating Musical Concepts: An Overview of the Bol Processor.” Computer Music
Journal 22(2): 56-64.

Ben-Tal, O. and J. Berger. 2004. “Creative Aspects of Sonification.” Leonardo Music Journal 37(3):
229-232.

Berg, P. and R. Rowe, D. Theriault. 1980. “SSP and Sound Description.” Computer Music Journal 4(1):
25-35.

Berg, P. 1996. “Abstracting the Future: The Search for Musical Constructs.” Computer Music Journal
20(3): 24-27.

Berg, P. 2003. Using the AC Toolbox. Den Haag: Institute of Sonology, Royal Conservatory.

Berg, P. 2009. “Composing Sound Structures with Rules.” Contemporary Music Review 28(1): 75-87.

Beyls, P. 1989. “The Musical Universe of Cellular Automata.” In Proceedings of the International
Computer Music Conference. San Francisco: International Computer Music Association. 34-41.

Boulanger, R. C. 2000. The Csound Book: Perspectives in Software Synthesis, Sound Design, Signal Processing,
and Programming. Cambridge: MIT Press.

Burt, W. 1996. “Some Parentheses Around Algorithmic Composition.” Organised Sound 1(3): 167-
172.

Chadabe, J. 1997. Electric Sound: The Past and Promise of Electronic Music. New Jersey: Prentice-Hall.

Chareyron, J. 1988. “Sound Synthesis and Processing by Means of Linear Cellular Automata.”
Unpublished poster presented at the International Computer Music Conference.

Chareyron, J. 1990. “Digital Synthesis of Self-Modifying Waveforms by Means of Linear Automata.”
Computer Music Journal 14(4): 25-41.

Chernoff, J. M. 1979. African Rhythm and African Sensibility. Chicago: University of Chicago Press.

Childs, E. 2002. “Achorripsis: A Sonification of Probability Distributions.” Proceedings of the 2002
International Conference on Auditory Display.

Collins, N. 2006. Towards Autonomous Agents for Live Computer Music: Realtime Machine Listening and
Interactive Music Systems. Ph.D. thesis, University of Cambridge.

Collins, N. 2008. “Infno: Generating Synth Pop and Electronic Dance Music On Demand.” In
Proceedings of the International Computer Music Conference. San Francisco: International Computer
Music Association.

Collins, N. 2009. “Musical Form and Algorithmic Composition.” Contemporary Music Review 28(1):
103-114.

281

Cope, D. 1992. “Computer Modeling of Musical Intelligence in EMI.” Computer Music Journal 16(2):
69-83.

Cope, D. 1996. Experiments in Musical Intelligence. Madison, WI: A-R Editions.

Cope, D. 2000. The Algorithmic Composer. Madison, WI: A-R Editions.

Cope, D. 2001. Virtual Music: Computer Synthesis of Musical Style. Cambridge: MIT Press.

Cope, D. 2004. “A Musical Learning Algorithm.” Computer Music Journal 28(3): 12-27.

Cope, D. 2005. Computer Models of Musical Creativity. Cambridge: MIT Press.

Doornbusch, P. 2002. “Composers Views on Mapping in Algorithmic Composition.” Organised
Sound 7(2): 145-156.

Ebcioglu, K. 1988. “An Expert System for Harmonizing Four-part Chorales.” Computer Music Journal
12(3): 43-51.

Eco, U. 1989. The Open Work. Translated by A. Cancogni. Cambridge: Harvard University Press.

Farbood, M. and H. Kaufman, K. Jennings. 2007. “Composing with Hyperscore: An Intuitive
Interface for Visualizing Musical Structure.” In Proceedings of the International Computer Music
Conference. San Francisco: International Computer Music Association. 2: 111-117.

Gardner, M. 1974. “Mathematical Games: The Arts as Combinatorial Mathematics, or, How to
Compose Like Mozart with Dice.” Scientific American 231(6): 132-136.

Harnad, S. 2000. “Minds, Machines and Turing.” Journal of Logic, Language and Information 9(4): 425-
445.

Hedges, S. A. 1978. “Dice Music in the Eighteenth Century.” Music and Letters 180-187.

Hiller, L. 1956. “Abstracts: Some Structural Principles of Computer Music.” Journal of the American
Musicological Society 9(3): 247-248.

Hiller, L. 1970. “Music Composed with Computers: An Historical Survey.” In The Computer and
Music. H. B. Lincoln, ed. Ithaca: Cornell University Press. 42-96.

Hiller, L. 1981. “Composing with Computers: A Progress Report.” Computer Music Journal 5(4): 7-21.

Hiller, L. and L. Isaacson. 1959. Experimental Music. New York: McGraw-Hill.

Hoffman, P. 2000. “A New GENDYN Program.” Computer Music Journal 24(2): 31-38.

Hoffman, P. 2002. “Towards an ‘Automated Art’: Algorithmic Processes in Xenakis’
Compositions.” Contemporary Music Review 21(2-3): 121-131.

Hofstadter, D. R. 1979. Gödel, Escher, Bach: an eternal golden braid . New York: Vintage.

282

Koenig, G. M. 1968. “Remarks on Composition Theory.”

Koenig, G. M. 1970a. “Project One.” In Electronic Music Report. Utrecht: Institute of Sonology. 2: 32-

46.

Koenig, G. M. 1970b. “Project Two - A Programme for Musical Composition.” In Electronic Music
Report. Utrecht: Institute of Sonology. 3.

Koenig, G. M. 1971. “The Use of Computer Programs in Creating Music.” In Music and Technology
(Proceedings of the Stockholm Meeting organized by UNESCO). Paris: La Revue Musicale. 93-115.

Koenig, G. M. 1983. “Aesthetic Integration of Computer-Composed Scores.” Computer Music Journal
7(4): 27-32.

Koenig, G. M. 1991. “Working with ‘Project One’: My Experiences with Computer Composition.”
Interface 20(3-4): 175-180.

Kurzweil, R. 1990. The Age of Intelligent Machines. Cambridge: MIT Press.

Laske, O. 1973. “In Search of a Generative Grammar for Music.” Perspectives of New Music 12(1): 351-
378.

Lovelace, A. 1842. “Translator’s notes to an article on Babbage’s Analytical Engine.” In Scientific
memoirs: selected from the transactions of foreign academies of science and learned societies, and from foreign
journals. R. Taylor, ed. London: printed by Richard and John E. Taylor. 3: 691-731.

Luque, S. 2006. Stochastic Synthesis: Origins and Extensions. Masters Thesis, Institute of Sonology.

Magnus, C. 2004. “Evolving electroacoustic music: the application of genetic algorithms to time-
domain waveforms.” In Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association. 173-176.

Manousakis, S. 2006. Musical L-Systems. Masters Thesis, Institute of Sonology.

Marino, G. and M. Serra, J. Raczinski. 1993. “The UPIC System: Origins and Innovations.”
Perspectives of New Music 31(1): 258-269.

McCartney, J. 1996. “SuperCollider: a New Real Time Synthesis Language.” In Proceedings of the
International Computer Music Conference. San Francisco: International Computer Music Association.

McCartney, J. 1998. “Continued Evolution of the SuperCollider Real Time Synthesis Environment.”
In Proceedings of the International Computer Music Conference. San Francisco: International Computer
Music Association.

McCracken, D. 1955. “Monte Carlo Method.” Scientific American 192(5): 90-96.

Miranda, E. R. 1995. “Granular Synthesis of Sounds by Means of a Cellular Automaton.” Leonardo
28(4): 297-300.

283

Miranda, E. R. 2000. Composing Music With Computers. Burlington: Focal Press.

Miranda, E. R. 2002. “Emergent Sound Repertoires in Virtual Societies.” Computer Music Journal
26(2): 77-90.

Miranda, E. R. 2003. “On the Music of Emergent Behavior: What Can Evolutionary Computation
Bring to the Musician?.” Leonardo 36(1): 55-59.

Mozart, W. A. 1793. Anleitung zum Componiren von Walzern so viele man will vermittlest zweier Würfel ohne
etwas von der Musik oder Composition zu verstehen. Berlin: Juhan Julius Hummel.

Olson, H. F. and H. Belar. 1961. “Aid to Music Composition Employing a Random Probability
System.” Journal of the Acoustical Society of America 33(9): 1163-1170.

Pinkerton, R. C. 1956. “Information Theory and Melody.” Scientific American 194(2): 77-86.

Prusinkiewicz, P. and A. Lindenmayer. 1990. The Algorithmic Beauty of Plants (The Virtual Laboratory).
London: Springer Verlag.

Puckette, M. 1985. “A real-time music performance system.” MIT Experimental Music Studio.

Puckette, M. 1988. “The Patcher.” In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 420-429.

Puckette, M. 1997. “Pure Data.” In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 224-227.

Puckette, M. 2002. “Max at 17.” Computer Music Journal 26(4): 31-43.

Riskin, J. 2003. “The Defecating Duck, or, the Ambiguous Origins of Artificial Life.” Critical Inquiry
29(4): 599-633.

Roads, C. 1979. “Grammars as Representations for Music.” Computer Music Journal 3(1): 48-55.

Roads, C. 1980. “Interview with Max Mathews.” Computer Music Journal 4(4): 15-22.

Roads, C. 1988. “Introduction to Granular Synthesis.” Computer Music Journal 12(2): 11-13.

Rowe, R. 1992. “Machine Listening and Composing with Cypher.” Computer Music Journal 16(1): 43-
63.

Schillinger, J. 1941. The Schillinger System of Musical Composition. New York: Carl Fischer.

Schillinger, J. 1948. The Mathematical Basis of the Arts. New York: Carl Fischer.

Serra, M. 1993. “Stochastic Composition and Stochastic Timbre: GENDY3 by Iannis Xenakis.”
Perspectives of New Music 31(1): 236-257.

Soldier, D. 2002. “Eine Kleine Naughtmusik: How Nefarious Nonartists Cleverly Imitate Music.”
Leonardo Music Journal 12: 53-58.

284

Sowa, J. F. 1957. “A machine to compose music.” In Geniac Manual. New York: Oliver Garfield
Company.

Standage, T. 2002. The Turk. New York: Walker & Company.

Standage, T. 2003. “Monster in a Box.” Wired. Internet:
http://www.wired.com/wired/archive/10.03/turk_pr.html.

Sturm, B. L. 2006. “Adaptive Concatenative Sound Synthesis and Its Application to Micromontage
Composition.” Computer Music Journal 30(4): 46-66.

Taube, H. 1997. “An Introduction to Common Music.” Computer Music Journal 21(1): 29-34.

Taube, H. 2004. Notes from the Metalevel: An Introduction to Computer Composition. Amsterdam: Swets &
Zeitlinger Publishing.

Tipei, S. 1989. “Manifold Compositions: A (Super)Computer-Assisted Composition Experiment in
Progress.” In Proceedings of the International Computer Music Conference. San Francisco: International
Computer Music Association. 324-327.

Truax, B. 1985. “The PODX System: Interactive Compositional Software for the DMX-1000.”
Computer Music Journal 9(1): 29-38.

Vercoe, B. 1986. CSOUND: A Manual for the Audio Processing System and Supporting Programs.
Cambridge: MIT Media Lab.

Voss, R. F. and J. Clarke. 1978. “1/f Noise in Music: Music from 1/f Noise.” Journal of the Acoustical
Society of America 63(1): 258-263.

Weinberg, G. and S. Driscoll. 2006. “Toward Robotic Musicianship.” Computer Music Journal 30(4):
28-45.

Wimsatt, W. K. and M. C. Beardsley. 1946. “The Intentional Fallacy.” Sewanee Review 54: 468-488.

Winkler, T. 1998. Composing Interactive Music. Cambridge: MIT Press.

Xenakis, I. 1955. “La crise de la musique sèrielle.” Gravesaner Blätter 1.

Xenakis, I. 1960. “Elements of Stochastic Music.” Gravesaner Blätter 18: 84-105.

Xenakis, I. 1965. “Free Stochastic Music from the Computer. Programme of Stochastic music in
Fortran.” Gravesaner Blätter 26.

Xenakis, I. 1971. “Free stochastic Music.” In Cybernetics, art and ideas. J. Reichardt, ed. Greenwich:
New York Graphic Society. 124-142.

Xenakis, I. 1985. “Music Composition Treks.” In Composers and the Computer. C. Roads, ed. Los Altos:
William Kaufmann, Inc.

Xenakis, I. 1987. “Xenakis on Xenakis.” Perspectives of New Music 25(1-2): 16-63.

285

Xenakis, I. 1990. “Sieves.” Perspectives of New Music 28(1): 58-78.

Xenakis, I. 1992. Formalized Music: Thought and Mathematics in Music. Indiana: Indiana University Press.

Xenakis, I. 1996. “Determinacy and Indeterminacy.” Organised Sound 1(3): 143-155.

Zicarelli, D. 1987. “M and Jam Factory.” Computer Music Journal 11(4): 13-29.

286

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

