
The XY Drum


December 10, 2009 

Abstract 

Standard electronic drum pads are equipped with one piezoelec­
tric sensor that converts stick strikes to electronic pulses which are 
measured and used to trigger pre-recorded samples or other sounds. 
Advanced models can measure the amplitude of this pulse and adjust 
the volume of the resultant sample or even select a different sample en­
tirely. The state of the art electronic drums are equipped with several 
’trigger zones’ on each head that allow for two to four different sam­
ples to be mapped to different parts of the drum. The XY Drum aims 
to offer a new level flexibility to electronic drum designs by providing 
high resolution x,y strike position for each trigger event. Furthermore, 
the XY Drum uses this information to enrich the interface of electronic 
rhythm, affording an entirely new playing experience. This paper mo­
tivates a fundamental approach to capturing x-y information using 
several piezoelectric sensors simultaneously and demonstrates its via­
bility. Furthermore, an early prototype of the XY drum is described. 
However, further obstacles in the analog design of the system must be 
overcome before this prototype will be able to successfully generate 
the desired x-y strike positions. 

1 The XY Drum 

The XY Drum is a nonprogrammable electronic drum head that captures 
stick strike velocity and x,y position on the pad. While information alone 
encapsulates a rich rhythmic interface, users are left to decide how best to 
use this information. Simple synthesis firmware for generating four sinu­
soidal voices are provided, but the mapping between these oscillators and 

1


Anonymous MIT student



the trigger events are intentionally left blank so that users can experiment 
with how to use this new interface. This mapping is specified via a simple 
software interface that is uploaded to the XY Drum over USB. The classic 
use case, although this has not yet been demonstrated, is to map frequency 
on the vertical axis and decay on the horizontal. Thus pure tones at cer­
tain frequencies and with certain envelopes can be produced by striking the 
pad at varying positions. Early data suggests that users should have no 
problem triggering several notes simultaneously. This is possible because no 
player is capable of producing truly simultaneously strick strikes. Incident 
impulses are measured with a phase resolution of 20MHz (wave peaks can 
be differentiated as long as they are 50ns apart). Furthermore, positioning 
information depends on 1ms timing differential between wave peaks, which 
is about the time it takes for sound to travel across the pad. Thus, unless a 
player can play simultaneous strokes accurate to the millisecond, the system 
should gracefully handle the gesture as two distinct strikes. 

2 Measuring the Timing Delta 

The first step towards building the XY Drum was to verify that timing in­
formation could be used to triangulate stick strike position. More complex 
methods of measuring this information are possible. For example, field inter­
ference effects (technique used by most tablet displays) would be effective, 
but would require special sticks with inductive tips. Resistive arrays are also 
a possibility, and this approach is backed by several patents for x,y sensi­
tive drum pads (none have come to commercial fruition). This mechanism 
is mechanically unsuitable, however, as the resistive top layer that does the 
sensing tends to ruin the desired strike dynamics that players prefer. Am­
plitude triangulation is ruled out because it depends on the pad dampening 
wave pulses as they transmit across the surface. This dampening effect would 
make it impossible to recover velocity information about the strike, since am­
plitude would necessarily depend on strike position. Measuring the timing 
delta between wave peaks is subject to non of the above issues. However, this 
approach requires high frequency sampling not available on most electronic 
drum interfaces. In fact, most drum triggers are samples at the audio rate of 
44KHz, or sometimes slower, since that already exceeds the accuracy of the 
player. In high quality drum pads such as those produced by Roland, the 
piezoelectric sensor is coupled to the drum head with a thin metal interface. 

2




This decrease any dampening, but sound travels very quickly through this 
material. Depending on the metal, the speed of sound is usually near 3000 
m/s. Thus wave pulses take about 3us to travel across a 10cm pad. While it 
is technically possible to capture 100 million samples per second (MsPs), the 
associated electronics cost would be too high (more than 200$). In a plas­
tic ’rock-band’ style drum, sound travels substantially slower. Experimental 
results show that wave pulses take a full 1ms to travel across the pad. Un­
fortunately, this comes at a cost of substantial dampening, making velocity 
retrieval difficult. However, this timing delta can be trivially measured to 
produce ¡ 1mm precision in x,y triangulation, which is far less than players 
can accurately differentiate. Rather than sample the piezoelectric sensors 
and search for wave peaks, the signal is amplified so that any tap will rail to 
the gain ceiling of 3.3V. This means that an ADC is not needed to measure 
strike position, as this 3.3V can be used to trigger a digital interrupt on most 
micro controllers. Velocity measurements are impossible in this configura­
tion, but can be easily obtained by sampling any of the 3 triggers (or all 
three) and measuring the peak amplitude of impulses before they have been 
amplified. 

3 The Hardware 

The piezoelectric sensors source the data pipeline, measuring stick strikes AC 
pulses. In order to generate x,y information, there are actually three iden­
tical data pipelines sourced from three separate sensors. From the sensors, 
the signal is rectified and amplified and then passed into an STM32F103 
Microcontroller. This ARM Cortex M-3 Processor was chosen because it 
has the requisite speed to measure the timing deltas while simultaneously 
synthesizing sound or replaying samples. Furthermore, the simple program­
ming interface to this device makes it perfect to allow users to reprogram 
the XY Drum to suit their sonic needs. The processor generates an acoustic 
waveform that is modulated using PWM. This signal is then low pass filtered 
and amplified before being passed to an integrated loudspeaker. In this way, 
the XY Drum can operate as a freestanding device (once programmed) with 
no need to be attached to further hardware to be used as a live percussive 
instrument. 

3 



3.1 Conditioning the Signal 

The piezoelectric sensor generates AC signals, and depending on the physi­
cal dynamics of drum pad there are no guarantees that the first wave pulse 
will be measured as positive or negative. Thus the first stage in the signal 
pipeline is a full-wave rectifier. This circuit leaves positive pulses untouched 
while multiplying negative signals by -1. This filter comes at a cost, however, 
reducing the peak voltage by .7V as required by the operation of the diodes. 
Since both the positive and negative terminals of the sensor are technically 
being measured as part of the signal the sensor is decoupled from ground. 
This make the long leads in the circuit extremely sensitive to periodic noise, 
namely the 60Hz electrical background noise common in most environments. 
Filtering out this 60Hz noise while maintaining the original signal proved dif­
ficult and remains one of the principle roadblocks to a successful prototype. 
In order to make the drum sensitive to even light taps, this rectified signal 
must then be amplified. Ordinarily, light taps produce a .1V swing, while 
hard strikes can produce wave peaks over 2V. The 60Hz background noise 
hovers at around .05V in amplitude, which allots extremely narrow margins 
between amplifying the .1V taps such that they exceed the digital transition 
voltage (around 2V) without amplifying the 60Hz noise as well. The mi­
crocontroller will usually respond to input voltages above 2V, so the goal of 
amplification is to achieve a precise gain of 200 so that .1V taps result in a 
trigger, but .05V noise does not. In fact, this precision was never achieved, 
and the current state of the XY Drum requires strong stick strikes in order 
to cause a trigger event. 

3.2 The Maple Microcontroller 

The Maple Microcontroller is effectively a usb programmable ARM Cortex 
M-3 processor with a lightweight library that exposes much of the processors 
functionality. Two core features of this processor are used. The first is the 
50MHz GPIO bus, that is configured to trigger separate interrupts whenever 
one of the three input channels rise above 2V. In practice, these GPIO pins 
are only accurate to 20MHz, although this did not adversely affect the per­
formance of measurement. Second, the integrated PWM peripheral is used 
in order to generate the output signal without the need for a DAC. PWM 
is common practice that encodes data in the duty cycle of a fixed frequency 
square wave. In the XY Drum, the output PWM channel is configured to 

4




Figure 1: Recitifcation and Amplification


5




produce a square wave at 1MHz, where the duty cycle can vary from 0% to 
100% in 255 discrete steps. Generating this signal only requires one instruc­
tion per microsecond, since once the PWM channel is loaded with a duty 
cycle, it generates the square wave without use of the processor. In practice, 
this resource is more than sufficient to create high quality sine tones up to 
and beyond the range of human hearing. The channel is, however, a little 
audibly noisy due to the high frequency components of the carrier square 
wave, and this noise is filtered out with a simple RC Low Pass filter. 

4 Software 

The software is composed of three principle components. The external in­
terrupts, the main state machine, and the signal multiplexer. Each of these 
simple structures are described below. 

4.1 Detecting Position With Interrupts 

Interrupts are software routines that are separate from the main loop of 
the program. These routines must be “triggered” by some external event. 
Once triggered, the processor immediately stops executing whatever routine 
is currently active, branches to the interrupt, and then returns to the routine 
that was interrupted. Interrupt routines and main loop routines communi­
cated via shared global variables. Each of the three conditioned piezoelectric 
sensors drive identical but independent external interrupt channels. The 
psuedocode for these interrupt service routines are as follows: 

global int x,y; 
global bool trigger; 
exti_isr_sensor0() { 

disableAllInterrupts(); 
int count_sensor0=0; 
int count_sensor1=0; 
int count_sensor2=0; 
int count=0; 

while (1) { 
count++; 
if (readPin(sensor1)) { 

6 



count_sensor1=count;

break;


} else if (readPin(sensor2)) {

count_sensor2=count;

break;


}

}


if (count_sensor1 != 0) { 
while (1) {


count++;

if (readPin(sensor2)) {


count_sensor2=count;

break;


}

} else {


while (1) {

count++;

if (readPin(sensor1)) {


count_sensor1=count;

break;


}

}


/* count_sensor0 is always 0, since we interrupted on it */ 
x = triangulateX(count_sensor0,count_sensor1,count_sensor2); 
y = triangulateY(count_sensor0,count_sensor1,count_sensor2); 
trigger=TRUE; 

enableAllInterrupts(); 
} 

4.2 Generating Sound with PWM and Wavetables 

In order to avoid unnecessary overhead in the size and complexity of the 
embedded executable, common programming libraries are omitted, such as 
libc. This means that convience functions like sin and exp are simply not 
available. To counter this, 4096 individual samples of sin(t) and e−x were 

7 



generated in python, the values were scaled to vary from [0, 255] in both 
cases. These values were formatted in appropriate ASCII text and simply 
copy-pasted into the source code for the XY Drum. The wavetable for sin 
captures a single period, and the wavetable for e−x was manually windowed 
to capture a decay from 254 down to 1. In this way, sin(x) (or e−x) can be 
computed via: 

u8 sin(u32 x) { 
x = x%4096; 
return sin_table[x]; 

} 

u8 exp(u32 x) { 
if (x>4096) {return 0;} 
return exp_table[x]; 

} 

4.3 Coding a Drum 

With these components, the simple drum state machine can be constructed. 
In order to minimize processing overhead, only four voices are provided, 
each defined by an amplitude, a frequency, and a decay rate. This limitation 
easily satisfies the processing constraints of the microcontroller. In fact, 
the limits were chosen conservatively. However, since the PWM signal is 
generated by a separate processing peripheral and uses only 1 instruction 
per microsecond, and the ISR is only triggered on very infrequent (compared 
to the processor speed) strike events, nearly all of the 72 million instructions 
per second that are available are unused. Thus a four voice limitation is 
extremely conservative. In fact, there are enough left over cycles to mix 
together dozens of samples simultaneously or add simple dsp filtering (like 
reverb or delay) to the signal. These flourishes are beyond the scope of this 
project, however. 

void main() { 
u16 voices_time[4]; 
u8 voices_freq[4]; 
u8 voices_decay[4]; 
u8 voices_amplitude[4]; /* not used */ 

8 



u32 signal; /* the signal is really only 
8 bits, so we have LOTS of 
room for computational overhead */ 

cvi=0; /* current voice index */ 
while (1) { 

if (trigger) {

trigger=FALSE;

voices_time[cvi] = 1;

voices_freq[cvi] = y;

voices_decay[cvi] = x;

if (cvi++ > 3) {cvi=0;}


} 

signal = 0;

count = 0;

for (int i=0; i<4; i++) {


if (voices_time[i] != 0) { 
signal += sin(voices_time[i]*voices_freq[i])* 

exp(voices_time[i]*voices_decay[i]); 
count++; 
if (voices_decay[i]*(voices_time[i]++) > 4096) { 

voices_time[i] = 0; 
} 

} 
} 
signal = signal/(255*count); /* normalize out that 

exp() goes to 255, and 
we have ’count’ voices */ 

setPwm(output,signal); 
} 

} 

There are a few features in the above pseudocode worth discussing. The 
first is that voices who have run to the end of their decay (deay∗voicesT ime) 
are no longer added to the signal and are not incremented. They are dead, 
only to be revived by future trigger events. Also note that this main loop is 
not of static runtime! Depending on the conditionals, this loops may have 

9 



fewer or greater number of instructions (for example, how many voices are 
currently active). This means setPwm() will be called at a higher frequency, 
and voicesTime will be similarly incremented at a higher rate. Thus, the 
more voices are active the lower all the frequencies are! In experimenting with 
this code, all sorts of interesting bugs can be uncovered by their interesting 
(sometimes desirable) sonic properties, which certainly adds to the fun of 
playing with the XY Drum. In the above example, the signal is given enough 
headroom to avoid any clipping or rollover effects. However, this is another 
source of endless variation, that can add unpredictable noise and other sounds 
into the signal. Many of these rollover errors are extremely interesting, if not 
always reproducible. All of these bugs can be eliminated, if desired. For 
example, the timing variation can be eliminated by scheduling this signal 
generation routine as a fixed-time interrupt. So that this logic only run 
every 1MHz or 100KHz, as opposed to “as fast as possible”. 

5 Putting it all Together 

Without the proper materials, a rugged frame and CAD designed, laser cut, 
computer milled components were simply unavailabe. The original prototype 
was build from wood and tape. Glue was not used so that components could 
be dissasembled later. Unfortunately, the XY Drum is currently dissasembled 
for further development and only these “simulated” pictures are available. 

6 The Result 

The principle obstacle still standing is the proper conditioning and amplifi­
cation of the sensor signal. This can likely be fixed via a tune filter to remove 
the 60Hz background noise from the signal. However, the amplitude of the 
noise is simply too near to the amplitude of the signal we want to capture to 
make this gain stage a trivial one. So far, all attempts to make the readings 
more sensitive using gain have resulted in a signal that is either only responds 
to strong stick strikes or is pretty much continuously firing the external in­
terrupts due to amplified noise. Furtermore, the piezo sensors themselves 
have an extremely large parasitic capacitance, which tends to slowly bias 
the amplifier over time such that even when the gain is properly tuned, the 
signal quickly fades to the positive rail and fires the interrupt for no reason. 

10




This effect isnt totally understood, however, a sophistocated gain circuit and 
some properly placed capacitors and inductors to match the impedance of 
the sensor should probably fix the problem. Also remaining is the brunt of 
the triangulation routines. While quadrant detection has been demonstrated 
with great accuracy, precise x,y measurements have not yet been obtained. 
This defficiency should be easily corrected with added software and it is not 
the result of any hardware problems. However, in order to obtain accurate 
timing delta’s between wave peaks, the signal must be properly rectified, 
which reduces the signal by .7V and therefore requires more gain. It is pre­
cisely the gain stage that has been proving difficult to implement correctly, 
thus indirectly hindering the progress of the x,y triangulation mechanism. 
The ability of the STM32 to generate high quality audio was expected, but 
it was still a surprisingly successful result. Carelessness in handling timing 
variability of program logic as well as managing variable overflow and wrap 
around caused some very interesting, often desirable sonic effects. Overall, 
the initial synthesizer was unpredictable but effective. However, these prob­
lems have since been corrected and pleasing pure tones in four part harmony 
have been achieved. The addition of a low pass filter on the output stage 
further reduced the noise on the output. 

6.1 The Future 

Once a suitible gain circuit is identified for signal conditioning, the final steps 
towards an accurate and sensitive x,y drum trigger pad are minimal. From 
there, future improvements will almost certainly include: 

1. Velocity sensitivity via sampling the analog values of the sensors 

2. A new chasis, designed to harness the components and organize the 
wiring rather than the ad-hoc duct time design currently employed 

3. The ability to upload samples and map them to locations on the trigger 
pad 

4. The ability to map strike location to filter parameters like reverb or eq 

5. A physical interface to select between operating modes, this might in­
clude a set of buttons and a small OLED screen 

11 



6. DIY pictures and instructions to go along with the project.	 Unfortu­
nately timing and resource constraints prevented adequate visual doc­
umentation of the project. If you have seen a white IPhone (with 
camera), please return it to ajmeyer@mit.edu 

12


mailto:ajmeyer@mit.edu


MIT OpenCourseWare
http://ocw.mit.edu 

21M.380 Music and Technology (Contemporary History and Aesthetics) 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	The XY Drum
	Measuring the Timing Delta
	The Hardware
	Conditioning the Signal
	The Maple Microcontroller

	Software
	Detecting Position With Interrupts
	Generating Sound with PWM and Wavetables
	Coding a Drum

	Putting it all Together
	The Result
	The Future




