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1 Basics of Physics, Kinematics, and Relativity

p = mv =
√

2mE; E =
1
mv2 (1)

2

where p is momentum, m is mass, v is velocity, and E is kinetic energy of a particle.

hc
Eγ = (2)

λ

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of the photon.
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where n corresponds to the initial and final electron shell levels, depending on the subscript. The Rydberg
energy is given as follows:

Z2me−e
4

RyZ = c (4)
8ε20h

3c

where Z is the number of protons in the nucleus, me− is the rest mass of the electron (511 keV), ec is the
charge on the electron (1.6× 10−19C), and ε0 is the permittivity of a vacuum to allow electric field lines
through it.
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γ = √

1− v2

c2

=
mrelativistic

(5)
m0

where γ represents the gamma factor for relativistic motion, and m0 is the rest mass of the particle. It is
used to compute the relativistic mass of a particle traveling at significant fractions (1% and higher) of the
speed of light:

Etotal = m0γc
2; Ekinetic = (γ − 1)m0c

2 (6)

Consider the limiting cases here. If a particle is at rest (v=0, γ = 1), then its kinetic energy is zero, and its
mass is equal to its rest mass. If the particle is travelling at the speed of light, then γ →∞ and it becomes
infinitely massive. It also takes an infinite amount of kinetic energy to get a particle with non-zero mass
moving at the speed of light.

2 Nuclear Reactions and Energetics

A general nuclear reaction proceeds, and is written as follows:

i+ I → f + F +Q; I (i, f)F (7)
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where i and I represent the small and large initial particles, respectively, f and F represent the small and large
final particles, respectively (which may not be the same ones), and Q is the energy consumed or liberated
from the reaction. The last term shown is the shorthand form.

This Q value is expressible in terms of many things, stemming from conservation of total rest mass energy
and kinetic energy of the reaction:

Ei +mic
2 +mIc

2 = Ef +m 2
fc + EF +mF c

2 (8)

Separating the two sets of masses and energies to one side or the other of the equation, it can be written as
follows:

m 2
ic +mIc

2 −mfc
2 −mF c

2 = Ef + EF − Ei = Q (9)

where it is assumed that the large, initial particle is at rest, unless we’re in CERN or the large hadron collider
or something.

The binding energy of a nucleus is analogous to the work of separation of its constituent nucleons, and
can therefore be written as the difference between the masses of its individual nucleons and the assembled
nucleus:

B.E. (A,Z) = ZMp + (A− Z)Mn −M (A,Z) (10)

where BE is the binding energy, Z is the proton number, A is the total number of nucleons, Mp is the rest
mass of the proton, Mn is the rest mass of the neutron, and M(A,Z) is the mass of the nucleus.

All masses and energies can be equivalently expressed in units of energy, such as keV or
MeV. To convert between the two, use the following conversion factor:

M [MeV ] = M [amu]×
[

931.49MeV

amu− c2

]
c2 (11)

Pro tip: Don’t round masses in amu! All those digits really count.
The excess mass is the difference in amu between the number of nucleons in a nucleus and its actual

mass:
∆ = A−M (A,Z) (12)

Note how the excess mass and the binding energy are directly related:

B.E. (A,Z) = ZMp + (A− Z)Mn −A+ ∆ (13)

A semi-empirical estimate of the mass of a nucleus can be found using the liquid drop model of the nucleus:

B.E. (A,Z) = a A− a A2/3 Z (Z 1)
v s − ac

−
A1/3

− aa
(A− 2Z)

2

+ apδ (14)
A

For definitions of the terms, see the Yip book, p. 59, equation 4.10 and the following explanation.

3 Radioactive Decay

Spontaneous radioactive decay implies that Q>0, or that the reaction is exothermic. The opposite case
would be when the reaction is endothermic, or would consume energy. The latter case requires additional
energy to be imparted into the system to make the reaction move forward, just like in chemistry.

Spontaneous radioactive decay can proceed via a number of mechanisms, including:

3.1 Alpha (α) Decay

A
ZP →A−4

Z 2 D + α; Q [amu] = (m− P −mD −mα) (15)

Alpha particles are emitted monoenergetically, according to allowed transitions. Alpha decay may proceed
to an excited state, which would allow further isomeric transitions (IT) or internal conversions (IC).
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3.2 Beta (β−) Decay
A
ZP →A

Z+1 D + β− + ν̄; Q [amu] = (mP −mD) (16)

Betas and associated antineutrinos are emitted with a continuous spectrum, each having an average and
maximum energy:

Beta decay may proceed to an excited state, which would allow further isomeric transitions (IT) or
internal conversions (IC).

3.3 Positron (β+) Decay
AP →A D + β+
Z Z−1 + ν; Q [amu] = (mP −mD) (17)

Positrons and associated neutrinos are emitted with a continuous spectrum, each having an average and
maximum energy as above, though the intensity of positrons with zero energy begins at zero. Beta decay
may proceed to an excited state, which would allow further isomeric transitions (IT) or internal conversions
(IC). Q must be above 1.022MeV for this reaction to be allowable.

3.4 Electron Capture (EC)

Instead of emitting a positron, the nucleus may capture an inner-shell electron, binding it with a proton
to create a neutron. The inner-shell hole is then plugged by higher-energy electrons falling down in energy
levels, emitting characteristic photons according to Equation 3. These also compete with the emission of
Auger electrons, which may be ejected from outer shells.

3.5 Isomeric Transition (IT, γ Decay)

A nucleus in an excited state may decay by gamma ray emission to a lower energy state, which may or may
not be the ground state:

A
ZP

∗ →A
Z P + γ; Q [MeV ] = Eγ (18)

3.6 Internal Conversion (IC)

This process competes with IT, and involves the ejection of an inner-shell electron with an energy of
Ee− = Eγ − Ebinding, with the latter given by Equation 3 with a final shell level of ∞. This can also be
followed by electron shell transitions with characteristic x-rays and/or Auger electrons as above.
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3.7 Spontaneous Fission (SF)

Big nuclei just blow up sometimes. Even when it is energetically possible, the Q value needs to be high
enough for the two nuclear pieces to overcome the strong nuclear force barrier and tunnel out of the nucleus.
Needless to say it is a low-probability reaction, though it does happen for heavier nuclei:

A
ZP → FP1 + FP 1

2 + η0n; Q [amu] = (mP −mFP1
−mFP1

− ηmn) (19)

4 Allowable Nuclear Reactions and the Q-Equation

The full equation relating Q, the masses, energies, and angles involved in a general nuclear reaction are as
follows:

Ef

(
mf

1 +
mF

)
− Ei

(
1− mi

mF

)
− 2

mF

√
mimfEiEfcosθ (20)

Reactions involving fewer particles can be simplified by setting appropriate terms to zero. There are a few
important implications to this formula:

1. A necessary and sufficient condition for a reaction to proceed is that the sum of the kinetic energy of
the incoming particle and the Q-value is positive:

Ei +Q ≥ 0 (21)

2. If a reaction is not allowed on its own (endothermic, Q<0), then there is a threshold energy required
to induce it:

m F
Ethreshol = − f +m

d Q
mf +mF −mi

≈ −Qmi +mI
(22)

mI

Note that energies are always positive, so for a reaction to have a threshold energy, it must be en-
dothermic (Q<0).

3. For other implications, allowed angles, and energies, see Yip, pp. 142-149.

5 Radioactive Decay and Half Life

Activity is defined as follows:
A = λN (23)

where A is the activity in Bq (or Ci), λ is the decay constant in 1/s, and N is the number of decaying atoms
present. Recognizing that:

dN
A = −

dt
(24)

we can write:
dN

=
dt

−λN ; N = N0e
−λt (25)

The half life
(
t1/2

)
is solved by setting the fraction N equal to 0.5:N0

ln (2)
t1/2 = (26)

λ

The concentration of a particular isotope, or chain of isotopes, can always be written as the balance between
production and destruction:

dNi
= Prod.i

dt
−Destr.i (27)
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Production can either be directly from bombarded particles, or from another radioactive decay:

Prod.i = Ni−1σcapturei−1
Φ + λi 1Ni (28)− −1

where σ is the cross section, or interaction probability, of capture by a flux Φ of incoming particles, and N
represents a number density of isotope i or i-1. Number densities are calculated as follows:

ρNAv
N = (29)

MM

where ρ is the density, NAv is Avogadro’s number, and MM is the molar mass (or molecular weight). Note
that the macroscopic cross section Σ accounts for both the amount of isotope i-1 present and the probability
that isotope i-1 undergoes a reaction to produce isotope i :

Σ = Nσ (30)

These can be constructed into a series of differential equations, which can be solved to obtain the concentra-
tions of different isotopes. For example, let’s say we have a quantity of isotope N1 at N10, and it decays into
isotope N2, which also decays into isotope N3. Isotope N2, however, also captures neutrons (that’s right,
we’re in a reactor now) with a characteristic cross section σc2 :

dN1
=

dt
−λ1N1 (31)

dN2
= λ1N1

dt
− λ2N2 −N2σc2Φreactor (32)

dN3
= λ2N2 (33)

dt

Things to keep in mind include:

1. Cases in which coefficients are wildly different, for example, what happens if λ1 � λ2 or λ1 � λ2?

2. Behavior during very short times

3. Finding maximum concentrations of a given isotope, by setting the derivative equal to zero
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