
22.02 – Introduction to Applied Nuclear Physics

Problem set # 2
Issued on Wednesday Feb. 22, 2012. Due on Wednesday Feb. 29, 2012

Problem 1: Gaussian Integral (solved problem)

The Gaussian functiong(x) = 1√ e /
2

−x2 2σ2

is often used to describe the shape of a wave packet. Also, it represents
2πσ

the probability density function (p.d.f.) of the Gaussian distribution.

a) Calculate the integral∞ 1 e√ −x /2σ
−∞ 2πσ2

Solution
Here I will give the calculation for the simpler function:G(x) = e

2−x . The integralI =
∫∞

e−x2

can be squared as:
−∞

2

(∫ ∞
x2

) ∫ ∞ ∫ ∞
2

I = dx e− = dx dy e−x e−y2

=
−∞ −∞ −∞ −∞ −∞

This corresponds to making an integral over a 2D plane, defined by the cartesian coordinatesx andy. We can perform
the same integral by a change of variables to polar coordinates:

{
x = r cosϑ
y = r sinϑ

Then and the integral is:

∫ ∞ ∫ ∞

dx dy e−(x2+y2)

∫ 2 2

dxdy = rdrdϑ

2

I2 =

∫ π

dϑ
0

∫ ∞

dr r e−r2 = 2π
0

∫ ∞

dr r e−r2

0

Now with another change of variables:s = r2, 2rdr = ds, we have:

I2 = π

∫ ∞

ds e−s = π
0

∫Thus we obtainedI =
∫∞

e−x2

=
√
π and going back to the functiong(x) we see that its integral just gives

−∞
∞

g(x) = 1 (as needed for a p.d.f).
−∞

Note: we can generalize this result to∞ ae−(x+b)2/c2dx = ac
√
π

−∞

∫

Problem 2: Fourier Transform

Give the Fourier transform of :

(a – solved problem) The sine functionsin(ax)

Solution
The Fourier Transform is given by:F [f(x)][k] = 1

∫∞
dx e−ikxf(x). The sine functionsin(ax) can be written√

2π −∞

assin(ax) = eiax−e−iax

. By using a property of the Dirac delta function that we saw in Pset 1, we have2i

πF [sin(ax)] =

√
i (δ(k − a)− δ(k + a))

2

b) The Gaussian functiong(x) = 1 e /√ −x2 2σ2

2πσ2
.
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[Note: this result can be found in any math book, together with the proof. Make sure you understand how it is derived
and how the integral is made by reproducing the proof here.]

b) The rectangular functionr(x)
1 a x a

r(x) =

{
2a − ≤ ≤
0 |x| > a

Problem 3: Kinetic energy measurement - Method I

An electron is prepared in a state such that its wavefunction (in a 1D space) isψ(x) = 1 cos(
√
21x).√

π

a) Following the “recipe” given in class, what do you expect to obtain when measuring the electronkinetic energy?

[You should answer the questions: What are the possible results of a kinetic energy measurement? What are the
probabilities of each possible kinetic energy measurement result?]

Problem 4: Kinetic energy measurement - Method II

A neutron is in the quantum state|ψ〉 such that its wavefunction isψ(x) = 1 sin(√
π

√
13x).

a) Write the state|ψ〉 in the kinetic energy basis.

b) Given your answer to question a) what do you expect to obtain when measuring the neutron kinetic energy?

Problem 5: Expectation values

Consider a wavefunction described by

1
ψ(x) = e−x2/(4a2)e−ik0x

(2πa2)1/4

wherek0 is the wave number associated with a momentump0 = ~k0. (Note that this state describes a traveling
wavepacket.)

a) What is the expectation value of the position?

b) What is the uncertainty of the position 2
〈

2
〉
− 〈 〉2∆x = x̂ x̂ ?

[Here x̂2 is the expectation value of the operatorx̂2.]
〈 〉

c) Write the wavefunctionψ(x) in themomentum basis. What are the possible outcomes of a momentum measure-
ment? What are their probabilities?

[Hint: remember the property of the Fourier transform: ifF [f(x)] = F (k), we have thatF [f(x)eik0x] = F (k+k0)]

d) What is the expectation value of the momentum operatorp̂ ?〈 〉
Solve this questions in two ways – making sure they give the same answer!
i) Using the results in question c, calculate the average from a formula such as〈p̂〉 = pP (p)dp.
ii) Use the definition of expectation value for the momentum operator:〈p̂〉 = ψ(x)∗

∫
∫

p̂[ψ(x)] dx.

e) What is its uncertainty∆p2 =
〈
p̂2
〉
− 〈p̂〉2? (Complete the following partial answer)

Solution:

To find∆p we first need
〈
p2
〉
.

〈
p̂2
〉
= . . . fill in the missing steps =

− 2
~ 1· · · √

∫ ∞

dx

[
1− x2

ik− 0
x− 2 2

+ k2

2πa2 2a2 4a4 0
−∞

]
e−x /2a

a2

The term linear inx is zero, since it is an odd function that will integrate to zero. Using the Gaussian integral identity
given in Problem 1 and the second, following identity:

∫ ∞
2 1 π

x2e−ax dx =
2−∞

√

a3

2



we obtain:
〈 〉 − 2

~
p2

[
1 √ 1 1

= √
2

− π2a2 +
πa2 2a2 4a2 2

√
0

]
~

π(2a2)3
√ 2

− k2 π2a2 = 2
~ k20 + 4a2

The uncertainty is then :. . .

c) What is the relationship between the product of the position and momentum uncertainties? Assume that the wave-
function is very localized (that is, its spreada is very small,a→ 0). What happens to the momentum uncertainty?

Problem 6: Parity operator

The parity operation flips the sign of the spatial coordinates. This can be formalized by defining the parity operator (in
one dimension),P̂ ,

P̂ [f (x)] = f (−x)

a) Now consider a[ free p]article in one dimension with Hamiltonian,Ĥ = p̂2/2m. Prove that parity commutes with

this Hamiltonian, H,P = 0.

b) If the two operat

̂

ors

̂

commute, there must be a set of eigenfunctions common to both energy and parity. Starting
from the two independent energy eigenfunctions,

ϕ1 (x) = eikx

ϕ (x) = e−ikx
2

construct two linear combinations ofϕ1(x) andϕ2(x),

ψ1(x) = T11ϕ1(x) + T12ϕ2(x)

ψ2(x) = T21ϕ1(x) + T22ϕ2(x)

that are common eigenfunctions to both energy and parity and give the corresponding eigenvalues for both operators.
(Hint: See lecture notes, 2.6.2.B)

Problem 7: Commutation, common eigenfunctions and conserved quantities

Consider a quantum particle moving in a 3D potential,V (x) = V (x, y, z). Which directions (if any) of the particle’s
momentum commute with the Hamiltonian, if the potential takes the following form: (a, b, andc are constants)

a) V (x, y, z) = e−x(y3 + 3z)

b) sin(bx)V (x, y, z) = a bx

c)
2 2 2

V (x, y, z) = be−(x +y )/c

d) For which of the above potentials do the energy and parity (in 3D) observables have common eigenfunctions?
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