Neutron Interferometry

NIST Center for Neutron Research

Home to a 20 MW reactor that provides neutrons for scientific research

Dozens of instruments (most for Solid State applications)
Some instruments for the study of Fundamental Physics

The Neutron Interferometer and Optics Facility

Isolated 40,000 Kg room is supported by six airsprings Active Vibration Control eliminates vibrations less than 10Hz Temperature Controlled to +/- 5 mK

Inside the NCNR

Wavepacket

Neutron coming out of the reactor is a wavepacket: Sum of many plane waves with different wavenumber k [not a stationary state: evolves (moves!) in time]

Monochromator

Top view of NIST Interferometry and Optics Facility (all dimensions are in cm)

Monochromator selects a small range of momenta

Wavepacket

Neutron Interferometer

3-blade interferometer from single Si crystal

Public domain image (source: NIST).

5-blade interferometer from single Si crystal

Photo courtesy of Dmitry Pushin. Used with permission.

Wavepacket → Plane wave

Photo courtesy of Dmitry Pushin. Used with permission.

Wavepacket $\Delta x \gg Interferometer \rightarrow consider \Delta x = \infty$

or neutron = plane wave
$$|k\rangle$$
 =

or neutron = plane wave
$$|k\rangle = \varphi_k(x) = \frac{1}{\sqrt{2\pi}}e^{ikx}$$

Momentum eigenfunctions

courtesy of Dmitry Pushin. Used with permission.

We can analyze the neutron interferometer looking only at the momentum eigenfunctions: STATIONARY SOLUTION (no time evolution)

(Calculations: I)

The neutron is a plain wave with k>0. The first blade is a beam splitter (50/50% probability of going up or down)

(Calculations: 2)

After the first blade, the state is a superposition.

(Calculations: 3)

The second blade is a mirror, exchanging neutrons with positive and negative k

(Calculations: 4)

Neutrons in the upper path (with negative momentum) go through the phase flag (an object)

(Calculations: 5)

The third blade recombines the beams and allows them to interfere.

The detector measure the neutron flux intensity (number of neutrons per unit time).

Flux of particles

- Plane wave wavefunction $\psi(x) = Ae^{ikx}$ is not properly normalized
- It is difficult to interpret as $|\psi(x)|^2$ as the probability of finding a particle at position x.
- Interpret $v|\psi(x)|^2 = I$ as a flux of particles

set
$$A=\sqrt{rac{mI}{\hbar k}}$$

Scattering

of Waves and Particles

Transmission

$$E=T+V \rightarrow mv_0^2/2 > mgH$$

Transmission

Energy > Potential Step

$$E=T+V \rightarrow mv_0^2/2 > mgH$$

Reflection

Energy < Potential Step

$$E=T+V \rightarrow mv_0^2/2 < mgH$$

Reflection

Energy < Potential Step

$$E=T+V \rightarrow mv_0^2/2 < mgH$$

Reflection/Transmission

Reflected wave e^{-ikx}

Transmitted wave e^{ikx}

Incoming wave e^{ikx}

Reflection/Transmission

Reflected wave e^{-ikx}

Transmitted wave e^{ikx}

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.