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4.1 Bound problems 

In the previous chapter we studied stationary problems in which the system is best described as a (time-independent)
 
wave, “scattering” and “tunneling” (that is, showing variation on its intensity) because of obstacles given by changes
 
in the potential energy.
 
Although the potential determined the space-dependent wavefunction, there was no limitation imposed on the possible
 
wavenumbers and energies involved. An infinite number of continuous energies were possible solutions to the time-

independent Schrödinger equation.
 
In this chapter, we want instead to describe systems which are best described as particles confined inside a potential.
 
This type of system well describe atoms or nuclei whose constituents are bound by their mutual interactions. We
 
shall see that because of the particle confinement, the solutions to the energy eigenvalue equation (i.e. the time-

independent Schrödinger equation) are now only a discrete set of possible values (a discrete set os energy levels).
 
The energy is therefore quantized. Correspondingly, only a discrete set of eigenfunctions will be solutions, thus the
 
system, if it’s in a stationary state, can only be found in one of these allowed eigenstates.
 
We will start to describe simple examples. However, after learning the relevant concepts (and mathematical tricks)
 
we will see how these same concepts are used to predict and describe the energy of atoms and nuclei. This theory
 
can predict for example the discrete emission spectrum of atoms and the nuclear binding energy.
 

4.1.1 Energy in Square infinite well (particle in a box) 

The simplest system to be analyzed is a particle in a box: classically, in 3D, the particle is stuck inside the box and 
can never leave. Another classical analogy would be a ball at the bottom of a well so deep that no matter how much 
kinetic energy the ball possess, it will never be able to exit the well. 
We consider again a particle in a 1D space. However now the particle is no longer free to travel but is confined to be 
between the positions 0 and L. In order to confine the particle there must be an infinite force at these boundaries 
that repels the particle and forces it to stay only in the allowed space. Correspondingly there must be an infinite 
potential in the forbidden region. 
Thus the potential function is as depicted in Fig. 20: V (x) = ∞ for x < 0 and x > L; and V (x) = 0 for 0 ≤ x ≤ L. 
This last condition means that the particle behaves as a free particle inside the well (or box) created by the potential. 
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Fig. 19: Potential of an infinite well 

We can then write the energy eigenvalue problem inside the well: 

�
2 ∂2 wn(x)H[wn] = − = Enwn(x)

2m ∂x2 

Outside the well we cannot write a proper equation because of the infinities. We can still set the values of wn(x) at 
the boundaries 0, L. Physically, we expect wn(x) = 0 in the forbidden region. In fact, we know that ψ(x) = 0 in the 
forbidden region (since the particle has zero probability of being there) 6. Then if we write any ψ(x) in terms of the 
energy eigenfunctions, ψ(x) = 

L
cnwn(x) this has to be zero ∀cn in the forbidden region, thus the wn have to be n 

zero.
 
At the boundaries we can thus write the boundary conditions7:
 

wn(0) = wn(L) = 0 

We can solve the eigenvalue problem inside the well as done for the free particle, obtaining the eigenfunctions 

′ iknx −iknx w (x) = A ′ e + B ′ e ,n

1
2k2 

nwith eigenvalues En = .2m 
It is easier to solve the boundary conditions by considering instead: 

wn(x) = A sin(knx) +B cos(knx). 

We have: 
wn(0) = A × 0 +B × 1 = B = 0 

Thus from wn(0) = 0 we have that B = 0. The second condition states that 

wn(L) = A sin(knL) = 0 

The second condition thus does not set the value of A (that can be done by the normalization condition). In order 
to satisfy the condition, instead, we have to set 

nπ 
knL = nπ → kn = 

L 

for integer n. This condition then in turns sets the allowed values for the energies: 

�
2k2 �

2π2 
n 2 ≡ E1n 2En = = n 

2m 2mL2

1
2π2 

where we set E1 = 2mL2 and n is called a quantum number (associated with the energy eigenvalue).
 
From this, we see that only some values of the energies are allowed. There are still an infinite number of energies,
 
but now they are not a continuous set. We say that the energies are quantized. The quantization of energies (first
 

6 Note that this is true because the potential is infinite. The energy eigenvalue function (for the Hamiltonian operator) is always 
valid. The only way for the equation to be valid outside the well it is if wn(x) = 0 

7 Note that in this case we cannot require that the first derivative be continuous, since the potential becomes infinity at the 
boundary. In the cases we examined to describe scattering, the potential had only discontinuity of the first kind. 
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Fig. 20: Quantized energy levels (En for n = 0− 4) in red. Also, in green the position probability distribution |wn(x)|
2 

the photon energies in black-body radiation and photo-electric effect, then the electron energies in the atom) is 
what gave quantum mechanics its name. However, as we saw from the scattering problems in the previous chapter, 
the quantization of energies is not a general property of quantum mechanical systems. Although this is common 
(and the rule any time that the particle is bound, or confined in a region by a potential) the quantization is always 
a consequence of a particular characteristic of the potential. There exist potentials (as for the free particle, or in 
general for unbound particles) where the energies are not quantized and do form a continuum (as in the classical 
case). 
Finally we calculate the normalization of the energy eigenfunctions: 

 � ∞ � L L 2 |2 A2dx |wn = 1 → A2 sin(knx)
2dx = = 1 → A =

2 L−∞ 0 

Notice that because the system is bound inside a well defined region of space, the normalization condition has 
now a very clear physical meaning (and thus we must always apply it): if the system is represented by one of 
the eigenfunctions (and it is thus stationary) we know that it must be found somewhere between 0 and L. Thus 
the probability of finding the system somewhere in that region must be one. This corresponds to the condition 
J L J L 

p(x)dx = 1 or |ψ(x)|2dx = 1.
0 0 
Finally, we have 

 
2π2 

wn(x) =
2 nπ

, En = n 2sin knx, kn = 
L L 2mL2

I 
2 

( 
nπx 
)

Now assume that a particle is in an energy eigenstate, that is ψ(x) = wn(x) for some n: ψ(x) = sin . We L L 

plot in Fig. 21 some possible wavefunctions. 

L 

-1.0 
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0.5 

1.0 

0 

Fig. 21: Energy eigenfunctions. Blue: n=1, Mauve n=2, Brown n=10, Green n=100 

Consider for example n = 1. 

? Question: What does an energy measurement yield? What is the probability of this measurement? 

~
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1
2π2 

(E = with probability 1) 2m 

? Question: what does a postion measurement yield? What is the probability of finding the particle at 0 ≤ x ≤ L?
 
and at x = 0, L?
 

? Question: What is the difference in energy between n and n + 1 when n → ∞? And what about the position
 
probability |wn|2 at large n? What does that say about a possible classical limit?
 
In the limit of large quantum numbers or small deBroglie wavelength λ ∝ 1/k on average the quantum mechanical
 
description recovers the classical one (Bohr correspondence principle).
 

4.1.2 Finite square well 

We now consider a potential which is very similar to the one studied for scattering (compare Fig. 15 to Fig. 22), 
but that represents a completely different situation. The physical picture modeled by this potential is that of a 
bound particle. Specifically if we consider the case where the total energy of the particle E2 < 0 is negative, then 
classically we would expect the particle to be trapped inside the potential well. This is similar to what we already 
saw when studying the infinite well. Here however the height of the well is finite, so that we will see that the quantum 
mechanical solution allows for a finite penetration of the wavefunction in the classically forbidden region. 

? Question: What is the expect behavior of a classical particle? (consider for example a snowboarder in a half-pipe. 
If she does not have enough speed she’s not going to be able to jump over the slope, and will be confined inside). 

-VH 

a-a x 

E2=-E 

E1=+E 

V(x) 

Region I Region II Region III 

Fig. 22: Potential of a finite well. The potential is non-zero and equal to −VH in the region −a ≤ x ≤ a. 

For a quantum mechanical particle we want instead to solve the Schrödinger equation. We consider two cases. In the 
first case, the kinetic energy is always positive: 

 
 

 

ψ(x)− 1
2 d2 

= Eψ(x) in Region I 2m dx2 
2 d2 ψ(x)− 12m dx2 = (E + VH )ψ(x) in Region II 

ψ(x)− 1
2 d2 

= Eψ(x) in Region III 2m dx2 

2d2 Hψ(x) = − ψ(x) + V (x)ψ(x) = Eψ(x) → 
2mdx2

so we expect to find a solution in terms of traveling waves. This is not so interesting, we only note that this describes 
the case of an unbound particle. The solutions will be similar to scattering solutions (see mathematica demonstration). 
In the second case, the kinetic energy is greater than zero for |x| ≤ a and negative otherwise (since the total energy 
is negative). Notice that I set E to be a positive quantity, and the system’s energy is −E. We also assume that 
E < VH . The equations are thus rewritten as: 

 
 

 

ψ(x)− 1
2 d2 

= −Eψ(x) in Region I 2m dx22d2 2 d2 ψ(x)− 12m 
Hψ(x) = − ψ(x) + V (x)ψ(x) = Eψ(x) → = (VH − E)ψ(x) in Region II 

2mdx2 dx2 

ψ(x)− 1
2 d2 

= −Eψ(x) in Region III 2m dx2 

I 

Then we expect waves inside the well and an imaginary momentum (yielding exponentially decaying probability of 
finding the particle) in the outside regions. More precisely, in the 3 regions we find: 

Region I Region II Region III 
2m(VH+E2)k ′ = iκ, k = 

12 k ′ = iκ, 
III I 

−2mE2 2mE = 
12 12 = 2m(VH−E) 

12 κ = 2mE 
12κ = 
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Fig. 23: cot z (Red) and z cot z (Black) 

And the wavefunction is 
Region I Region II Region III 
C ′ e−κ|x| A ′ eikx + B ′ e−ikx D ′ e−κx 

′ ′−κ|x| κx. The first notation makes it clear that we have (Notice that in the first region I can write either C e or C e
an exponential decay). We now want to match the boundary conditions in order to find the coefficients. Also, we 
remember from the infinite well that the boundary conditions gave us not the coefficient A, B but a condition on the 
allowed values of the energy. We expect something similar here, since the infinite case is just a limit of the present 
case. 
First we note that the potential is an even function of x. The differential operator is also an even function of x. Then 
the solution has to either be odd or even for the equation to hold. This means that A and B have to be chosen so 

A ′ ikx + B ′ that ψ(x) = e e−ikx is either even or odd. This is arranged by setting ψ(x) = A cos(kx) [even solution] or 
′ ψ(x) = A sin(kx) [odd solution]. Here I choose the odd solution, ψ(−x) = −ψ(x). That also sets C = −D ′ and we 

′ D ′ rewrite this constant as −C = = C. 
We then have: 

Region I Region II Region III 
ψ(x) = −Ceκx ψ(x) = A sin (kx) ψ(x) = Ce−κx 

ψ ′ (x) = −κCeκx ψ ′ (x) = kA cos (kx) ψ ′ (x) = −κCe−κx 

Since we know that ψ(−x) = −ψ(x) (odd solution) we can consider the boundary matching condition only at x = a. 
The two equations are: 

{ 
Ce−κa A sin(ka) = 

Ak cos(ka) = −κCe−κa 

Substituting the first equation into the second we find: Ak cos(ka) = −κA sin(ka). Then we obtain an equation not 
for the coefficient A (as it was the case for the infinite well) but a constraint on the eigenvalues k and κ: 

κ = −k cot(ka) 

This is a condition on the eigenvalues that allows only a subset of solutions. This equation cannot be solved analyt­
ically, we thus search for a solution graphically (it could be done of course numerically!). 
To do so, we first make a change of variable, multiplying both sides by a and setting ka = z, κa = z1. Notice that 
2 2mE 2 2m(VH−E) 2 2mVHa 2 2 2 

/
2z1 = a2 and z = a2. Setting z0 = 

2 

, we have z1 = z0 − z or κa = z − z2 . Then we can 
12 12 12 0 

ka 
ka cot(ka) 

√z02-(ka)2 

π 3π2π 

√z02-(ka)2 

ka tan(ka) 

π/2 3π/2 5π/ k2 a 

Fig. 24: Graphic solution of the eigenvalue equation. Left: odd solutions; Right: even solutions. The red curves of different 
y

2
0

y

z2 (left) or 2
0 z2tone are the function − z − z − (right) for different (increasing) values of z0. Crossings (solutions) are 

marked by a black dot. 
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Fig. 25: Left: Odd solution for the finite barrier potential, for two potential depth. Ground state of the wavefunction. The 
wavefunction is a sinusoidal in Region II (Black) and an exponential decay in regions I and III (Blue). Notice that for the 
shallower potential (dashed lines) the wavefunction just barely “fit” inside the well. Right: Odd solution, for larger k vector 
(higher quantum number), allowing two oscillations. 

/
2 − z2rewrite the equation κa = −ka cot(ka) → z1 = −z cot(z) as z = −z cot(z), or:0 

I 
2z − z2 = −z cot(z)0 

This is a transcendental equation for z (and hence E) as a function of z0, which gives the depth of the well (via VH ). /
2To find solutions we plot both sides of the equation and look for crossings. That is, we plot y1(z) = − z − z2 ,0 I 

2mVHa2 
which represent a quarter circle (as z is positive) of radius z0 = 

12 and y2(z) = z cot(z). 

Obs. 1 The coefficient A (and thus C and D) can be found (once the eigenfunctions have been found numerically or 
graphically) by imposing that the eigenfunction is normalized. 
Obs. 2 Notice that the first red curve never crosses the blue curves. That means that there are no solutions. If 
z0 < π/2 there are no solutions (That is, if the well is too shallow there are no bound solutions, the particle can 

π2 
escape). Only if VH > there’s a bound solution.8 
Obs. 3 There’s a finite number of solutions, given a value of z0 > π/2. For example, for π/2 ≤ z0 ≤ 3π/2 there’s only 
one solution, 2 for 3π/2 ≤ z0 ≤ 5π/2, etc. 
Remember however that we only considered the odd solutions. A bound solution is always possible if we consider the 
even solutions., since the equation to be solved is 

I 
2κa = ka tan(ka) = z − z2 .0 

Importantly, we found that for the odd solution there is a minimum size of the potential well (width and depth) that 
supports bound states. How can we estimate this size? A bound state requires a negative total energy, or a kinetic 

energy smaller than the potential: Ekin = 1
2k2 

2m < VH . This poses a constraint on the wavenumber k and thus the 
wavelength, λ = 2π 

k : 
2π 

λ ≥ √ 
2mVH 

However, in order to satisfy the boundary conditions (that connect the oscillating wavefunction to the exponentially 
1decay one) we need to fit at least half of a wavelength inside the 2a width of the potential., λ ≤ 2a. Then we obtain2

1
2 

ma2 

Fig. 26: Even solution for the finite barrier potential. The wavefunction is ∝ cos(kx) in Region II (Black) and an exponential 
decay in regions I and III (Blue). Left: any wavefunction can “fit” in the well and satisfy the boundary condition (there’s no 
minimum well depth and width). Right, wavefunction with a higher quantum number, showing two oscillations 

~
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a relationship between the minimum potential depth and width 

2 π22π √ ≤ λ ≤ 4a → VH ≥ 
2mVH ma2 8 

Although we solved a 1D problem, the square well represents a 3D problem as well. Consider for example a spherical 
well in 3D: The potential is zero inside a region of radius a and is VH for r > a. Then we can rewrite the time-
independent Schrödinger equation in 3D for this potential in spherical coordinates and use separation of variables 
({r, ϑ, ϕ}). Because of symmetry, the wavefunction is a constant in ϑ and ϕ, thus we will have to solve just a single 
differential equation for the radial variable, very similar to what found here. We must then choose the odd-parity 
solution in order to obtain a finite wavefunction at r = 0. Thus in 3D, only the odd solutions are possible and we 
need a minimum potential well depth in order to find a bound state. 

~ ~
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4.2 Quantum Mechanics in 3D: Angular momentum 

4.2.1 Schrödinger equation in spherical coordinates 

We now go back to the time-independent Schrödinger equation 

(
2 

)

− ∇2 + V (x, y, z) ψ(x) = Eψ(x)
2m 

We have already studied some solutions to this equations – for specific potentials in one dimension. Now we want to 
solve QM problems in 3D. Specifically, we look at 3D problems where the potential V (xx) is isotropic, that is, it only 
depends on the distance from the origin. Then, instead of using cartesian coordinates xx = {x, y, z}, it is convenient 
to use spherical coordinates xx = {r, ϑ, ϕ}: 

 / 
r = x2 + y2 + z2 x = r sinϑ cos ϕ   ( / )

y = r sinϑ sinϕ ↔ ϑ = arctan z/ x2 + y2
 x = r cos ϑ  

ϕ = arctan(y/x) 

zz 

y 
x 

φ 

r 

θ 

Fig. 27: Spherical Coordinates 

First, we express the Laplacian ∇2 in spherical coordinates: 

( ) ( )
1 ∂ 2 ∂ 1 ∂ ∂ 1 ∂2 ∇2 = r sinϑ + 
r2 ∂r ∂r 

+ 
r2 sinϑ ∂ϑ ∂ϑ r2 sin2 ϑ ∂ϕ2 

To look for solutions, we use again the separation of variable methods, writing ψ(xx) = ψ(r, ϑ, ϕ) = R(r)Y (ϑ, ϕ): 

2 
[ 
Y d 

(
dR 
) 

R ∂ 
(

∂Y 
) 

R ∂2Y 
]

2− r sinϑ + + V (r)RY = ERY 
2m r2 d r d r 

+ 
r2 sinϑ ∂ϑ ∂ϑ r2 sin2 ϑ ∂ϕ2 

We then divide by RY/r2 and rearrange the terms as 

2 
( )] 

2 
[ ( ) ][ 

1 d dR 1 ∂ ∂Y 1 ∂2Y2− r + r 2(V − E) = sinϑ 
2m R d r d r 2mY sinϑ ∂ϑ ∂ϑ 

+ 
sin2 ϑ ∂ϕ2 

Each side is a function of r only and ϑ, ϕ, so they must be independently equal to a constant C that we set (for 
reasons to be seen later) equal to C = − 1

2 
l(l + 1). We obtain two equations:2m 

( ) 
21 d dR 2mr2r − (V − E) = l(l + 1)

2R d r d r 

and 
( )

1 ∂ ∂Y 1 ∂2Y 
sinϑ + = −l(l+1)Y 

sinϑ ∂ϑ ∂ϑ sin2 ϑ ∂ϕ2 

This last equation is the angular equation. Notice that it can be considered an eigenvalue equation for an operator 
) 

1 ∂21 ∂ 
(
sinϑ ∂ + . What is the meaning of this operator? sin ϑ ∂ϑ ∂ϑ sin2 ϑ ∂ϕ2 

~

~ ~

~
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4.2.2 Angular momentum operator 

We take one step back and look at the angular momentum operator. From its classical form Lx = xr × px we can define 
the QM operator: 

x ˆ ˆ xL
ˆ
= xr × px̂ = −i xr ×∇ˆ

In cartesian coordinates this reads ( )
∂ ∂ 

L̂x = ŷp̂z − p̂y ẑ = −i y − z
∂z ∂y 

( )
∂ ∂ 

L̂y = ẑp̂x − p̂z x̂ = −i z − x
∂x ∂z 

( )
∂ ∂ 

L̂z = x̂p̂y − p̂xŷ = −i z − y
∂y ∂x 

ˆSome very important properties of this vector operator regard its commutator. Consider for example [L̂x, Ly ]: 

[ ˆ ˆ ] [ˆpz pyz, ˆpx x] [ˆpz , ˆ py z, ˆpx y ̂ pz x] + [ˆ ˆ pz x]Lx, Ly = y ̂ − ˆ ˆ z ̂ − p̂z ̂ = y ̂ zp̂x]− [ˆ ˆ z ̂ ]− [ˆpz , ˆ ˆ py z, ˆ ˆ

Now remember that [xi, xj ] = [pi, pj ] = 0 and [xi, pj ] = i δij . Also [AB, C] = A[B, C] + [A, C]B. This simplifies 
matters a lot 

    [L̂x, Ly ] = ˆ pz , ˆ px − py ̂ zp̂x [ˆpz, p̂zx] + p̂y z, p̂z x = xp̂y yp̂x) = Lz 
ˆ y[ˆ z]ˆ [ˆ z, ˆ ]− y ̂  ˆ [ˆ ]ˆ i (ˆ − ˆ i ˆ

By performing a cyclic permutation of the indexes, we can show that this holds in general: 

[L̂a, L̂b] = i L̂c 

Obs. Since the different components of the angular momentum do not commute, they do not possess common 
eigenvalues and there is an uncertainty relation for them. If for example I know with absolute precision the angular 
momentum along the z direction, I cannot have any knowledge of the components along x and y. 

? Question: : what is the uncertainty relation for the x and y components? 

ΔLxΔLy ≥ | (Lz ) | 
2

? Question: Assume we know with certainty the angular momentum along the z direction. What is the uncertainty 
in the angular momentum in the x and y directions? 

1 1From the uncertainty relations, ΔLxΔLz ≥ 2 2| (Ly) | and ΔLyΔLz ≥ | (Lx) |, we have that if ΔLz = 0 (perfect 
knowledge) then we have a complete uncertainty in Lx and Ly. 

Obs. Consider the squared length of the angular momentum vector L̂2 = L̂2 +L̂2+L̂2. We can show that [L̂a, L̂
2] = 0x y z

(for a = {x, y, z}). Thus we can always know the length of the angular momentum plus one of its components.
 
For example, choosing the z-component, we can represent the angular momentum as a cone, of length (L), projection
 
on the z-axis (Lz ) and with complete uncertainty of its projection along x and y.
 
We now express the angular momentum using spherical coordinates. This simplifies particularly how the azimuthal
 
angular momentum L̂z is expressed:
 

( )
∂ ∂

L̂x = i sinϕ + cotϑ cos ϕ ,
∂ϑ ∂ϕ 

( )
∂ ∂

L̂y = −i cos ϕ − cot ϑ sinϕ ,
∂ϑ ∂ϕ 

∂
L̂z = −i 

∂ϕ 

The form of L̂2 should be familiar: 
[ ( ) ]

∂21 ∂ ∂ 1 
L̂2 2 = − sinϑ 

sinϑ ∂ϑ ∂ϑ 
+ 

sin2 ϑ ∂ϕ2

~

~

~

~

~

~

~

~

~ ~
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Fig. 28: Graphical representation of the angular momentum, with fixed Lz and L
2, but complete uncertainty in Lx and Ly. 

as you should recognize the angular part of the 3D Schrödinger equation. We can then write the eigenvalue equations 
for these two operators: 

L̂2Φ(ϑ, ϕ) = �2l(l + 1)Φ(ϑ, ϕ) 

and 
L̂z Φ(ϑ, ϕ) = �mz Φ(ϑ, ϕ) 

where we already used the fact that they share common eigenfunctions (then, we can label these eigenfunctions by l
 
and mz : Φl,mz 

(ϑ, ϕ).
 
The allowed values for l and mz are integers such that l = 0, 1, 2, . . . and mz = −l, . . . , l − 1, l. This result can be
 
inferred from the commutation relationship. For interested students, the derivation is below.
 

Derivation of the eigenvalues. Assume that the eigenvalues of L2 and Lz are unknown, and call them λ and µ. We 
introduce two new operators, the raising and lowering operators L+ = Lx + iLy and L− = Lx − iLy. The commutator with Lz 

is [Lz, L±] = ±�L± (while they of course commute with L2). Now consider the function f± = L±f , where f is an eigenfunction 
of L2 and Lz: 

L2f± = L±L
2f = L±λf = λf± 

and 
Lzf± = [Lz, L±]f + L±Lzf = ±�L±f + L±µf = (µ ± �)f± 

Then f± = L±f is also an eigenfunction of L2 and Lz. Furthermore, we can keep finding eigenfunctions of Lz with higher and 
higher eigenvalues µ ′ = µ + �+ �+ . . . , by applying the L+ operator (or lower and lower with L−), while the L

2 eigenvalue is 
fixed. Of course there is a limit, since we want µ ′ ≤ λ. Then there is a maximum eigenfunction such that L+fM = 0 and we 
set the corresponding eigenvalue to �lM . Now notice that we can write L2 instead of by using Lx,y by using L±: 

L2 = L−L+ + L2 
z + �Lz 

Using this relationship on fM we find: 

2 2 2 
�
2L fm = λfm → (L−L+ + Lz + �Lz)fM = [0 + �2lM + �(�lM )]fM → λ = lM (lM + 1) 

�
2In the same way, there is also a minimum eigenvalue lm and eigenfunction s.t. L−fm = 0 and we can find λ = lm(lm − 1). 

Since λ is always the same, we also have lm(lm − 1) = lM (lM + 1), with solution lm = −lM (the other solution would have 
lm > lM ). Finally we have found that the eigenvalues of Lz are between +�l and −�l with integer increases, so that l = −l +N 
giving l = N/2: that is, l is either an integer or an half-integer. We thus set λ = �2l(l + 1) and µ = �m, m = −l, −l + 1, . . . , l. 

We can gather some intuition about the eigenvalues if we solve first the second equation, finding 

∂Φl,m imzϕ−i� = �mz Φ(ϑ, ϕ), Φl,m(ϑ, ϕ) = Θl(ϑ)e 
∂ϕ 

where, because of the periodicity in ϕ, mz can only take on integer values (positive and negative) so that Φlm(ϑ, ϕ + 
2π) = Φlm(ϑ, ϕ). 
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If we solve the first equation, we would find for each eigenvalue l there are many eigenfunctions. What is the
 
degeneracy of the eigenvalue l? We know that given l, mz can take many values (between −l and l), in particular
 
2l + 1 values. This is the degeneracy of l.
 

? Question: What are the possible values of L̂x if l = 7 and mz = 5?
 
We know that we can define quantum numbers mx(y) such that they take integer numbers mx(y) = −l, . . . , l − 1, l.
 
Also, we have the relation among the expectation values:
 

\ ) \ ) \ )
2 2L̂2 = L̂2 + L̂2 + L̂2 → l(l + 1) = m + L̂2 + L̂2 /x y z z x y 

so in general 
\ ) 
L̂2 2≤ 2[l(l + 1) − m ]x z 

Then here we have \ ) 
2L̂2 ≤ 2(56 − 25) = 31x

\ )

If L̂x could only take its maximum value (with probability one) we would have L̂2 = 
L 
PiL

2 = L2 thus we x x,i x,max 
√ \ ) \ )

L̂2 L̂2have Lx,max ≤ 5 (with 5 the closest integer to 31). Often, because of symmetry, we have x = y and, 

\ ) 
L̂2 2 = 2[l(l + 1) − m ]/2x z

thus restricting even further the maximum value of Lx. 

4.2.3 Spin angular momentum 

The quantization of angular momentum gave the result that the angular momentum quantum number was defined 
by integer values. There is another quantum operator that has the same commutation relationship as the angular 
momentum but has no classical counterpart and can assume half-integer values. It is called the intrinsic spin angular 

x̂momentum S (or for short, spin). Because it is not a classical properties, we cannot write spin in terms of position 
and momentum operator. The spin is defined in an abstract spin space (not the usual phase space). 
Every elementary particle has a specific and immutable value of the intrinsic spin quantum number s (with s 

S2 2determining the eigenvalues of ˆ , s(s +1)), which we call the spin of that particular species: pi mesons have spin 
0; electrons have spin 1/2; photons have spin 1; gravitons have spin 2; and so on. By contrast, the orbital angular 
momentum quantum number l of a particle can a priori take on any (integer) value, and l will change when the 
system is perturbed. 
The eigenvectors of the spin operators are not spherical harmonics. Actually, since the spin is not defined in terms 
of position and momentum, they are not a function of position and are not defined on the usual phase space. The 
eigenstates are instead described by linear vectors, for example, two-dimensional vectors for the spin- 1 . Thus the 2
operators will be as well represented by matrices.
 
We already saw the operators describing the spin-1 operators and we even calculated their eigenvalues and eigenvec­2 
tors (see section 2.2) 
We can then also define the total angular momentum, which is the sum of the usual angular momentum (called the 
orbital angular momentum) and the spin: 

ˆ ˆ ˆx x xJ = L + S 

What is the meaning of the sum of two angular momentum operators and what are the eigenvalues and eigenfunctions 
of the resulting operators? 

4.2.4 Addition of angular momentum 

We have seen above that any elementary particle posses an intrinsic spin. Then, we can always define the total angular 
momentum as the sum of the orbital angular momentum and the intrinsic spin. This is an example of addition of 
angular momentum. Then of course we could also consider two distinct particles and ask what is the total orbital 
angular momentum of the two particles (or of more particles). There are thus many cases of addition of angular 
momentum, for example: 

ˆ ˆ ˆx x x1. J = L + S 

~

~

~ ~

~

~
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L 

ˆ ˆ ˆ
2.	 Lx = Lx 1 + Lx 2 

ˆ ˆ ˆ ˆ ˆ ˆ ˆx x x x x x x3.	 J = J1 + J2 = L1 + S1 + L2 + S2 

ˆ ˆ ˆ ˆ
4.	 Sx = Sx1 + Sx2 + Sx3 

5.	 . . . 

Consider for example the second case. A possible state of the two particles can be described by the eigenval­
1ues/eigenfunctions of each particle angular momentum. For example we could specify l1 and m as well as l2 and z 

2	 1m	 (I will from now on just write m1 for m etc.). Then a state could be for example written in Dirac’s notation asz	 z 
|l1,m1, l2,m2). This however does not tell us anything about the total system and its angular momentum. Sometime 
this quantity is more interesting (for example if the two particles are interacting, their total angular momentum is 
bound to determine their energy, and not the state of each particle alone). 

A.	 Coupled and uncoupled representations 

The sum of angular momentum satisfy the general commutation rules, [L2, Lz ] = 0, [Lx, Ly] = i Lz etc. We can then 

xalso define the eigenvalues (and eigenfunctions) of the total angular momentum L
ˆ
, for example l (for L2) and m (for
 

Lz ). However, since we only have 2 quantum numbers, we expect the eigenfunctions to be degenerate and we still
 
need to find two more quantum numbers. Equivalently, what we need to do is to find a complete set of commuting
 
observables, such that an eigenfunction (common to all these observables) is well defined –no ambiguity in it– by the
 
set of eigenvalues (or quantum numbers) of the observables.
 
The first question we can ask is : are these eigenfunctions going to be in common with the single particle operators?
 
To determine this, we need to look at the commutation of the operators.
 
Now we know that [L2

1, Lz,1] = 0, but what about [L2, Lz,1]?
 
ˆ ˆ	 ˆ ˆx x	 x xWe first express L2 explicitly: L2 = |L1 + L2|2 = L1

2 + L2
2 + 2L1 · L2. Then the commutator is: 

[L2, Lz,1] = [L2
1 + L2

2 + 2(Lx,1Lx,2 + Ly,1Ly,2 + L1L2), Lz,1]z z 

= [2(Lx,1Lx,2 + Ly,1Ly,2), Lz,1] = 2i ((Ly,1Lx,2 − Lx,1Ly,2) �= 0 

Thus the two operators do not commute and do not share common eigenfunctions. What about L2
1? 

[L2, L1
2] = [L2

1 + L2
2 + 2(Lx,1Lx,2 + Ly,1Ly,2 + L1L2), L1

2] = 0z z 

since [L2
1, La,1] = 0. This means that there are common eigenfunctions of L1

2 , L2
2, L

2 and Lz . These operators are a
 
complete set of commuting observables. An eigenfunction is thus well defined by the set of eigenvalues l, m, l1 and l2
 
and we can write the eigenstates as ψl,m,l1,l2 or |l, m, l1, l2).
 
There are then two possible representations of the combined system (two possible basis to represent a general state):
 

Representation Eigenstates Complete set of commuting observables 

Uncoupled |l1,m1, l2,m2), L1
2 , L2

2, L1,z and L2,z 

Coupled |l, m, l1, l2),	 L1
2 , L2

2 , L2 and Lz . 

How do we go from one basis to the other? As usual this is done by expressing each vector in one basis as a linear 
combination of vectors in the other basis: 

l|l, m, l1, l2) = c |l1,m1, l2,m2)m1,m2 

m1,m2 

Notice that since the total angular momentum in the z direction must be m, we limit the sum to terms s.t. m1+m2 = 
m. 

lWhat are the coefficients c ?m1,m2 
′ ′ Since the two representations are two orthogonal basis, we have that (l1′ ,m 1, l 2

′ ,m 2|l1,m1, l2,m2) = 0 unless all the 
indexes are equal. Then the coefficient can be calculated (as usual!) from the inner product of |l1,m1, l2,m2) and 
|l, m, l1, l2): 

l c = (l1,m1, l2,m2|l, m, l1, l2)m1,m2 

These coefficients are called the Clebsch-Gordon coefficients. 
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B. Addition rules: Two particles 

In describing the energy levels of atoms and nuclei it is very convenient to be able to find the allowed values of 
(l, m) given the values of (l1, l2) for two given particles (e.g. electrons, protons or neutrons). Indeed, we saw that the
 

operator L̂2 appears in the Hamiltonian of the system. Thus its eigenvalue 2l(l +1) will be important in determining
 
the system energy.
 
Even if we cannot fix the value of l if we only know l1,m1, l2 and m2 we can at least restrict the possible values
 
of l. In order to do so, one has to analyze the possible maximum length of the total angular momentum and the
 
degeneracy of the eigenvalues.
 

1) Maximum l: For two particles with quantum numbers l1 and l2 we know that in the coupled representation
 
we cannot fix the values of m1 and m2. However, we know that given l1 and l2 only some values of m1 and m2 are
 
allowed (e.g. m1 = −l1, −l1 + 1, . . . , l1). Then the maximum values of m1 and m2 are m1 = l1 and m2 = l2. This
 
also determines the maximum value of m: mmax = l1 + l2. But m itself can only take values m = −l, . . . , l − 1, l.
 
Then the maximum value of l is mmax = lmax.
 
Thus, what we just proved is that l ≤ l1 + l2.
 

2) Minimum l: To find the minimum l value we need to look at the degeneracy of the state |l, m, l1, l2). Since this L 
lstate could be also written (in the uncoupled representation) as c |l1,m1, l2,m2), the degeneracy of m1,m2 

m1+m2=m 

the state must be the same. What are the two degeneracies?
 
We know that for a given angular momentum operator L̂ with total angular momentum quantum number l, there
 
are 2l + 1 states with the same angular momentum 2l(l + 1).
 
Then, considering the uncoupled representation we have D = (2l1 + 1)(2l2 + 1) possible states with l1 and l2. 

Ll1 +l2In the coupled representation instead we have to consider all the states that have an allowed l: D = (2l +1). l=lmin 
LK K(K+1) We want these two quantities to be equal. Now remember that k = . Then 

Ll1 +l2 (2l +1) = (1+ l1 +k=1 2 l=lmin 

l2)
2 − l2 , so that l2 = (1 + l1 + l2)

2 − (2l1 + 1)(2l2 + 1) = (l1 − l2)2 .min min 
Using the degeneracy condition we thus proved that l ≥ |l1 − l2|. 

The addition rule states thus that 

The total angular momentum quantum number is bounded by |l1−l2| ≤ l ≤ l1+l2 

    

Example: Consider two spins-1/2 particles (for example two electrons with zero orbital angular momentum). Since we 
1 ± 1choose spin-1 we have only 1 possible value s = and two values for mz : mz = . We can omit writing explicitly 2 2 2

 − 1 +  +  +
) ) ) )

the s quantum number (since it’s always 12
1 1 1 

2
1 , − 1 2 2, and we write and . A basis for the , + = =2 2 2

uncoupled representation is then given by: 
 
 

 
 

 
 

) )
1 1 1 1 1 1+ , + , + , + + , +=2 2 2 2 2 2  

 
 
 

) )
1 1 1 , − 1 , + , +2 2 2 2 

1 , − 1 2 2+ +=|s1,m1, s2,m2) =  
 

 
 

) )
1 1 1 
2 , − 12 , + 2 , + 2 

1− 1 2 , ++ =
2  

 
 
 

) )
1 1 
2 , − 12 , + 2 , − 1 2 − 12 , − 12+ =

Consider now the coupled representation. The possible values for s are 1 or 0. In the first case, we have 3 possible 
values for m = −1, 0, 1. While the second only has m = 0. Again, since the values of s1 and s2 are fixed we do not 
write them:  

 
 
 

)
1 10, 0, 2 , |0, 0)= 2 

 
)

1 11, −1, 2 , 2 = |1, −1)
= |1, 0)|s, m, s1, s2) =  

 1 11, 0, 2 , 2 
 

)

)
1 11, 1, 2 , |1, 1) 

In this particular example it is easy to calculate the Clebsch-Gordon coefficients and we find the relations between 
the two representations: 

|+ 1 1 
2 ,− 1

2 )−|− 1
2 ,+ 2 )|0, 0) = √ 

= 2 

 

 

2 

|+ 1 1 
2 ,− 1

2 )+|− 1
2 ,+ 2 )√ 

 +

)
 − 12 , − 1 2|1, −1) =

|1, 0) = 
) 2 

|1, 1) = 1 1 
2 , + 2

~

~

59



C. Addition rules: many particles 

The addition rules can be generalized to many particles, by just repetitively applying the two-particle rules. We then 
find for N particles: 

LN 
- lmax = k=1 lk 

- lmin = max{0, 2lN − lmax}
where lN is the largest of the {lk}. 
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4.3 Solutions to the Schrödinger equation in 3D 

We now go back to the Schrödinger equation in spherical coordinates and we consider the angular and radial equation 
separately to find the energy eigenvalues and eigenfunctions. 

D. Angular Equation 

The angular equation was found to be: 

( )
1 ∂ ∂Y m(ϑ, ϕ) 1 ∂2Y m(ϑ, ϕ)l lsinϑ + = −l(l + 1)Y m(ϑ, ϕ)lsinϑ ∂ϑ ∂ϑ sin2 ϑ ∂ϕ2 

Notice that this equation does not depend at all on the potential, thus it will be common to all problems with an
 
isotropic potential.
 
We can solve the equation by using again separation of variables: Y (ϑ, ϕ) = Θ(ϑ)Φ(ϕ). By multiplying both sides of
 
the equation by sin2(ϑ)/Y (ϑ, ϕ) we obtain:
 

[ ( )]
1 d dΘ 1 d 2Φ 

sinϑ sinϑ + l(l + 1) sin2 ϑ = − 
Θ(ϑ) d ϑ d ϑ Φ(ϕ) dϕ2 

2As usual we separate the two equations in the different variables and introduce a constant C = m : 

d 2Φ 
= −m 2Φ(ϕ)

dϕ2 

( )
d dΘ [ ]

sinϑ sinϑ = m 2 − l(l + 1) sin2 ϑ Θ(ϑ)
d ϑ d ϑ 

The first equation is easily solved to give Φ(ϕ) = eimϕ with m = 0, ±1, ±2, . . . since we need to impose the periodicity 
of Φ, such that Φ(ϕ + 2π) = Φ(ϕ). 
The solutions to the second equations are associated Legendre Polynomials: Θ(ϑ) = AP m(cos ϑ), the first few of l 
which are in table 1. Notice that, as previously found when solving for the eigenvalues of the angular momentum, 
we have that m = −l, −l + 1, . . . , l, with l = 0, 1, . . . . 

l\m 0 1 2 3 
0 
1 
2 
3 

P 0 0 = 1 
P 0 1 = cos ϑ 
P 0 2 = 1 2 (3 cos

2 ϑ − 1) 
P 0 3 = 1 2 (5 cos

3 ϑ − 3 cosϑ) 

P 1 1 = sinϑ 
P 1 2 = 3 cosϑ sinϑ 
P 1 3 = 3 2 (5 cos

2 ϑ − 1) sinϑ 
P 2 2 = 3 sin2 ϑ 
P 2 3 = 15 cos ϑ sin2 ϑ P 3 3 = 15 sin3 ϑ 

Table 1: Legendre Polynomials 

The normalized angular eigenfunctions are then Spherical Harmonic functions, given by the normalized Legendre 
polynomial times the solution to the equation in ϕ, (see also Table 2) 

 

(2l + 1) (l − m)!
Y m P m imϕ (ϑ, ϕ) = (cos ϑ) el l4π (l + m)! 

As we expect from eigenfunctions, the Spherical Harmonics are orthogonal: 

dΩ Y m(ϑ, ϕ)Y m ′ (ϑ, ϕ) = ′ l l′ δl,l′ δm,m 
4π 

E. The radial equation 

We now turn to the radial equation: 

( ) 
2d dR(r) 2mr2r − (V − E) = l(l + 1)R(r)

2d r d r ~

∫
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I 
Y −2 1 15I	 (ϑ, φ) = sin2 ϑ e−2iφ 

Y 0 1	 2 4 2π 
0 (ϑ, φ) = I 

Y −1 1 15I 4π	 
(ϑ, φ) = sinϑ cos ϑ e−iφ 

2 2 2π 
Y −1 3(ϑ, φ) = sinϑ e−iφ	 I
1 8π	 

Y 0 1 5I	 
2 (ϑ, φ) = (3 cos2 ϑ − 1)4 π3Y1

0(ϑ, φ) = cos ϑ	 I
4π −1 15I	 Y2

1(ϑ, φ) = 2 2π sinϑ cos ϑ eiφ 
3Y1

1(ϑ, φ) = − sinϑ eiφ	 I
8π	 

Y 2 1 15 
2 (ϑ, φ) = sin2 ϑ e2iφ 

4 2π 

Table 2: Spherical Harmonics 

To simplify the solution, we introduce a different function u(r) = rR(r). Then the equation reduces to: 

2 
[

2 
]

d 2u l(l + 1) − + V + u(r) = Eu(r)
2m d r2 2m r2 

This equation is very similar to the Schrödinger equation in 1D if we define an effective potential V ′ (r) = V (r) + 
2
 

r2 . The second term in this effective potential is called the centrifugal term.
 1 l(l+1) 
2m 
Solutions can be found for some forms of the potential V (r), by first calculating the equation solutions un,l(r), then 
finding Rn,l(r) = un,l(r)/r and finally the wavefunction 

Ψn,l,m(r, ϑ, ϕ) = Rn,l(r)Yl
m(ϑ, ϕ). 

Notice that we need 3 quantum numbers (n, l, m) to define the eigenfunctions of the Hamiltonian in 3D. 
For example we can have a simple spherical well: V (r) = 0 for r < r0 and V (r) = V0 otherwise. In the case of l = 0, 
this is the same equation as for the square well in 1D. Notice however that since the boundary conditions need to be 
such that R(r) is finite for all r, we need to impose that u(r = 0) = 0, hence only the odd solutions are acceptable 
(as we had anticipated). For l > 0 we can find solutions in terms of Bessel functions 

2 rTwo other important examples of potential are the harmonic oscillator potential V (r) = V0 2 − V0 (which is an r0 
2 

approximation for any potential close to its minimum) and the Coulomb potential V (r) = − e 1 , which describes 4πǫ0 r 
the atomic potential and in particular the Hydrogen atom. 

4.3.1 The Hydrogen atom 

We want to solve the radial equation for the Coulomb potential, or at least find the eigenvalues of the equation. 
Notice we are looking for bound states, thus the total energy is negative E < 0. Then we define the real quantity 
I 

−2mE κ = , and the quantities8:
12 

4πǫ0
2 2 

Bohr radius: a0 = , Rydberg constant: R = 2mee2	 2ma0 

Rand λ2 = . The values of the two constants are a0 = 5.29 × 10−11m and R = 13.6 eV (thus λ is a dimensionless |E|
parameter). The Bohr radius gives the distance at which the kinetic energy of an electron (classically) orbiting 

1 2 1 e 2 
around the nucleus equals the Coulomb interaction: mev = . In the semi-classical Bohr model, the angular 2 4πǫ0 r 
momentum L = mevr is quantized, with lowest value L = , then by inserting in the equation above, we find r = a0. 
We will see that the Rydberg energy gives instead the minimum energy for the hydrogen. 
We further apply a change of variable ρ = 2κr, and we rewrite the radial equation as: 

][ 
1 

= 
d 2u λ l(l + 1) − + u(ρ)
d ρ2 4 ρ ρ2 

There are two limiting cases: 
l(l+1) For ρ → 0, the equation reduces to d u 2 

= u, with solution u(ρ) ∼ ρl+1 .d ρ2 ρ2
 

u(ρ) −ρ/2
For ρ →∞ we have d u 2 
= , giving u(ρ) ∼ e .d ρ2 4 

8	 Note that the definition of the Bohr radius is slightly different if the Coulomb potential is not expressed in SI units but in cgs 
units 

~ ~

~ ~

~
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A general solution can then be written as u(ρ) = e−ρ/2ρl+1S(ρ) (with S to be determined). We then expand S(ρ) 
L∞ −ρ/2ρl+1 

L∞
in series as S(ρ) = j=0 sj ρ

j and try to find the coefficients sj . By inserting u(ρ) = e j=0 sj ρ
j in the 

equation we have: 
[ ]

d 2 d 
ρ + (2l + 2 − ρ) − (l + 1 − λ) S(ρ) = 0 
d ρ2 d ρ 

From which we obtain: 
L[

ρ {j(j + 1)sj+1ρ
j−1} + (2l + 2 − ρ){(j + 1)sj+1ρ

j } − (l + 1 − λ){sj ρj }
] 
= 0 

j 

(where the terms in brackets correspond to the derivatives of S(ρ)). This equation defines a recursive equation for 
the coefficients sj : 

j + l + 1 − λ 
sj+1 = sj

j(j + 1) + (2l + 2)(j + 1) 

If we want the function u(ρ) to be well defined, we must impose that u(ρ)→ 0 for ρ →∞. This imposes a maximum
 
value for j, jmax, such that all the higher coefficients sj>jmax 

are zero.
 
We thus impose that sjmax+1 = 0, setting the numerator of the formula above to zero.
 
Then we have that jmax +l+1−λ = 0. But this is an equation for λ, which in turns determines the energy eigenvalue:
 

λ = jmax + l + 1. 

We then rename the parameter λ the principal quantum number n, since it is an integer (as j and l are integers). 
Then the energy is given by E = − n

R 
2 and the allowed energies are given by the famous Bohr formula: 

En = − 
1 

n2 
me 

2 2 

( 
e2 

4πǫ0

)2 

Obs.: Note that the energy is only determined by the principal quantum number. What is the degeneracy of the n 
quantum number? We know that the full eigenfunction is specified by knowing the angular momentum L2 and one 
of its components (e.g. Lz). From the equation above, n = jmax + l +1, we see that for each n, l can vary from l = 0 
to l = n − 1. Then we also have 2l + 1 m values for each l (and 2 spin states for each m). Finally, the degeneracy is 
then given by 

n−1 L 
22(2l + 1) = 2n 

l=0 

4.3.2 Atomic periodic structure 

We calculated the energy levels for the Hydrogen atom. This will give us spectroscopy information about the excited 
states that we can excite using, for example, laser light. How can we use this information to infer the structure of 
the atoms? 
A neutral atom, of atomic number Z, consists of a heavy nucleus, with electric charge Ze, surrounded by Z electrons 
(mass m and charge -e). The Hamiltonian for this system is 

Z [ ] Z2 2L 1 Ze2 1 1 L e∇2H = − + 
2m j − 

4πǫ0 rj 2 4πǫ0 |xrj − xrk|j=1 j �=k 

The first term is simply the kinetic energy of each electron in the atom. The second term is the potential energy of 
the jth electron in the electric field created by the nucleus. Finally the last sum (which runs over all values of j and k 
except j = k) is the potential energy associated with the mutual repulsion of the electrons (the factor of 1/2 in front 
corrects for the fact that the summation counts each pair twice). 
Given this Hamiltonian, we want to find the energy levels (and in particular the ground state, which will give us the 
stable atomic configuration). We then need to solve Schrödinger ’s equation. But what would an eigenstate of this 
equation now be? 
Consider for example Helium, an atom with only two electrons. Neglecting for the moment spin, we can write 
the wavefunction as Ψ(xr1, xr2, t) (and stationary wavefunctions, ψ(xr1, xr2)), that is, we have a function of the spatial 
coordinates of both electrons. The physical interpretation of the wavefunction is a simple extension of the one-particle 
wavefunction: |ψ(xr1, xr2)|2d3xr1d3xr2 is the probability of finding contemporaneously the two electrons at the positions 

~

~
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J 
xr1 and xr2, respectively. The wavefunction must then be normalized as |ψ(xr1, xr2)|2d3xr1d3xr2 = 1. The generalization 
to many electrons (or more generally to many particles) is then evident. 
To determine the ground state of an atom we will then have to solve the Schrödinger equation 

Hψ(xr1, . . . , xrZ ) = Eψ(xr1, . . . , xrZ ) 

This equation has not been solved (yet) except for the case Z=1 of the Hydrogen atom we saw earlier. What we can 
do is to make a very crude approximation and ignore the Coulomb repulsion among electrons. Mathematically this 
simplifies tremendously the equation, since now we can simply use separation of variables to write many equations 
for each independent electron. Physically, this is often a good enough approximation because mutual repulsion of 
electron is not as strong as the attraction from all the protons. Then the Schrödinger equation becomes: 

Z [ 2 
]

L 1 Ze2 ∇2− ψ(xr1, . . . , xrZ ) = Eψ(xr1, . . . , xrZ )j − 
2m 4πǫ0 rjj=1 

and we can write ψ(xr1, . . . , xrZ ) = ψ(xr1)ψ(xr2) . . . ψ(xrZ )
 
Then, we can solve for each electron separately, as we did for the Hydrogen atom equation, and find for each electron
 

1 Ze2 
the same level structure as for the Hydrogen, except that the since the potential energy is now 4πǫ0 

the electron rj 

energy (Bohr’s formula) is now multiplied by Z. The solutions to the time-independent Schrödinger equations are 
then the same eigenfunctions we found for the hydrogen atom, ψ(xrj = ψlmn(r, ϑ, ϕ). 
Thus if we ignore the mutual repulsion among electrons, the individual electrons occupy one-particle hydrogenic 
states (n, l, m), called orbitals, in the Coulomb potential of a nucleus with charge Ze. 
There are 2n2 hydrogenic wave functions (all with the same energy En) for a given value of n. Looking at the Periodic 
Table we see this periodicity, with two elements in the n = 1 shell, 8 in the n = 2 shell, 18 in the third shell. Higher 
shells however are more influenced by the electron-electron repulsion that we ignored, thus simple considerations 
from this model are no longer valid. 
However, we would expect instead the electrons in the atoms to occupy the state with lowest energy. The ground 
state would then be a situation were all the electron occupy their own ground state (n = 0, l = 0, m = 0). But is this 
correct? This is not what is observed in nature, otherwise all the atom would show the same chemical properties. So 
what happens? 
To understand, we need to analyze the statistical properties of identical particles. But before that, we will intro­

rduce the solution for another central potential, the harmonic oscillator potential V (r) = V0 r
2 

2
0 
− V0 (which is an 

approximation for any potential close to its minimum). 

4.3.3 The Harmonic Oscillator Potential 

The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of 
evenly spaced energy levels. The energy difference between two consecutive levels is ΔE. The number of levels is 
infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we 
expect the Hamiltonian will have the form 

( )
1 H |n) = n + ω |n) ,
2

where each level in the ladder is identified by a number n. The name of the model is due to the analogy with 
characteristics of classical h.o., which we will review first. 

A. Classical harmonic oscillator and h.o. model 

1 rA classical h.o. is described by a potential energy V = kx2 (the radial potential considered above, V (r) = 2 V0 r
2 

2
0 
−V0, 

has this form). If the system has a finite energy E, the motion is bound by two values ±x0, such that V (x0) = E. 
The equation of motion is given by 

{ 
d x p(t) d 2x= d t m , → m = −kx, d p 
d t = −kx d x2 

and the kinetic energy is of course 
21 p2T = mẋ = . 

2 2m 

~
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The energy is constant since it is a conservative system, with no dissipation. Most of the time the particle is in the
 
position x0 since there the velocity is zero, while at x = 0 the velocity is maximum.
 
The h.o. oscillator in QM is an important model that describes many different physical situations. It describes e.g.
 
the electromagnetic field, vibrations of solid-state crystals and (a simplified model of) the nuclear potential. This is
 
because any potential with a local minimum can be locally described by an h.o.. Provided that the energy is low
 
enough (or x close to x0), any potential can in fact be expanded in series, giving: V (x) ≈ V (x0) + b(x − x0)2 + . . .
 

d2Vwhere b = |x0 .dx2 

It is easy to solve the equation of motion. Instead of just solving the usual equation, we follow a slightly different 
route. We define dimensionless variables, 

p √ 
P = √ , X = x mω, 

mω 
/

where we defined a parameter with units of frequency: ω = k/m and we introduce a complex classical variable 
(following Roy J. Glauber –Phys. Rev. 131, 2766–2788 (1963)) 

1 
α = √ (X + iP ). 

2

The classical equations of motion for x and p define the evolution of the variable α: 

{ 
d x p(t) , dα= d t m → = −iωα(t)d p = −kx dt
d t 

−iωt The evolution of α is therefore just a rotation in its phase space: α(t) = α(0)e .√ √ 
Since X = 2Re(α) and P = 2Im(α), X and P oscillate, as usual in the classical case: 

1 −iωt + α∗ iωt)X = √ (α0e 0e2
√−i −iωt − α∗ iωt)P = (α0e 0e2

The classical energy, given by ω/2(X2 + P 2) = ωα0
2, is constant at all time. 

B. Oscillator Hamiltonian: Position and momentum operators 

Using the operators associated with position and momentum, the Hamiltonian of the quantum h.o. is written as: 

2 2p kx2 p 1 2H = + = + mω2 x . 
2m 2 2m 2 

ωIn terms of the dimensionless variables, P and X, the Hamiltonian is H = 2 (X
2 + P 2). 

In analogy with the classical variable a(t) [and its complex conjugate a ∗(t), which simplified the equation of motion, we 
introduce two operators, a, a†, hoping to simplify the eigenvalue equation (time-independent Schrödinger equation): 

√ 
√ i a = √1 √1(X + iP ) = ( mωx + p)

21 21 mω √† √1 √1 √ ia = (X − iP ) = ( mωx − p),
21 21 mω 

†Also, we define the number operator as N = a a, with eigenvalues n and eigenfunctions |n). The Hamiltonian can be 
written in terms of these operators. We substitute a, a† at the place of X and P , yielding H = ω(a a+† 1 ) = ω(N + 1 )2 2
and the minimum energy ω/2 is called the zero point energy.
 
The commutation properties are: 

[
a, a†
] 
= 1 and [N, a] = −a, 

[
N, a†

] 
= a†. Also we have:
 

I 
1 †x = (a + a)2mω I 
mω1 p = i (a† − a)2 

� Prove the commutation relationships of the raising and lowering operators. 

† 1 1 i i 
[a, a ] = [X + iP, X − iP ] = ([X, −iP ] + [iP, X]) = − [X, P ] = − [x, p] = 1 

2 2 
† † †So we also have aa = [a, a †] + a a = 1 + a a = 1 +N . 

† † † † † † † †[N, a] = [a a, a] = [a , a]a = −a and [N, a ] = [a a, a ] = a [a, a ] = a 

~ ~

~ ~
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From the commutation relationships we have: 

a |n) = [a, N ] |n) = an |n) − Na |n) → N(a |n)) = (n − 1)(a |n)), 

that is, a |n) is also an eigenvector of the N operator, with eigenvalue (n − 1). Thus we confirm that this is the 
lowering operator: a |n) = cn |n − 1). Similarly, a† |n) is an eigenvector of N with eigenvalue n + 1: 

[ † a † |n) = N, a†
] 
|n) = Na† |n) − a n |n) → N(a † |n)) = (n + 1)(a |n)). 

We thus have a |n) = cn |n − 1) and a† |n) = dn |n + 1). What are the coefficients cn, dn? 
Since 

†(n| N |n) = (n| a a |n) = n 

and 
† 2(n| a a |n) = ((an|)(a |n)) = (n − 1|n − 1)c ,n√ †we must have cn = n. Analogously, since aa = N + 1, as seen from the commutation relationship: 

d2 † †(n + 1|n + 1) = (a n|a n) = (n| aa † |n) (n| (N + 1) |n) = n + 1 n

So in the end we have : 
√ √ 

a |n) = n |n − 1) ; a † |n) = n + 1 |n + 1) . 

All the n eigenvalues of N have to be non-negative since n = (n| N |n) = (ψn1 |ψn1 ) ≥ 0 (this follows from the 
properties of the inner product and the fact that |ψn1 ) = a |n) is just a regular state vector). However, if we apply 
over and over the a (lowering) operator, we could arrive at negative numbers n: we therefore require that a |0) = 0 

†to truncate this process. The action of the raising operator a can then produce any eigenstate, starting from the 0 
eigenstate: 

†)n(a|n) = √ |0) . 
n! 

The matrix representation of these operator in the |n) basis (with infinite-dimensional matrices) is particularly simple, √ √ 
since (n| a |n ′ ) = δn ′ ,n−1 n and (n| a† |n ′ ) = δn ′ ,n+1 n + 1: 

√   

0 1 0 . . . 0 0 0 . . . √ † √ 
a =  0 0 2 . . .  a =  1 0 0 . . . √ 

0 0 0 . . . 0 2 0 . . . 

C. Position representation 
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Fig. 29: Left: Harmonic oscillator wavefunction. Right: corresponding probability distribution function for n = 2 (blue) and 
n = 3 (Red, dotted). 

We have now started from a (physical) description of the h.o. Hamiltonian and made a change of basis in order to 
arrive at a simple diagonal form of it. Now that we know its eigenkets, we would like to go back to a more intuitive 
picture of position and momentum. We thus want to express the eigenkets |n) in terms of the position representation. 
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Fig. 30: Left: Harmonic oscillator wavefunction. Right: corresponding probability distribution function for n = 40. In Red, the 
classical probability. 

J
The position representation corresponds to expressing a state vector |ψ) in the position basis: |ψ) = dx (x|ψ) |x) = J 
dx ψ(x) |x) (where |x) is the eigenstate of the position operator that is a continuous variable, hence the integral). 

This defines the wavefunction ψ(x) = (x|ψ). 
The wave function description in the x representation of the quantum h.o. can be found by starting with the ground √ ipstate wavefunction. Since a |0) = 0 we have √1 (X + iP ) |0) = √1 ( mωx + √ ) |0) = 0. In the x representation, 

21 21 mω 

given ψ0(x) = (x| 0) 

1 √ −mωx2/2√ (x| ( mωx + √ip ) |0) = 0 → (mωx + 
d 

)ψ0(x) = 0 → ψ0(x) ∝ e 
2 mω dx 

(a )n 

The other eigenstates are built using Hermite Polynomials Hn(x), using the formula9 |n) = √ 
†

|0) to derive 
n! 

differential equations: 
]n[√1 1 d 

ψn(x) = (x| n) = √ mωx − √ ψ0(x) 
n!2n mω dx 

√ 1with solutions ψn(x) = (x| n) = Hn(x)ψ0(x). The n = 2 and n = 3 wavefunctions are plotted in the following 
2nn! 

figure, while the second figure displays the probability distribution function. Notice the different parity for even and 
odd number and the number of zeros of these functions. Classically, the probability that the oscillating particle is at 
a given value of x is simply the fraction of time that it spends there, which is inversely proportional to its velocity 

I 
v(x) = x0ω 1− x

x

2 

2
0 
at that position. For large n, the probability distribution becomes close to the classical one (see 

Fig. ??). 

9 For more details on Hermite Polynomials and their generator function, look on Cohen-Tannoudji. Online information from: 
Eric W. Weisstein. Hermite Polynomial. From MathWorld–A Wolfram Web Resource. 

~
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4.4 Identical particles 

We start first with the simplest case of a two-particle system. The wavefunction is then: ψ(xr1, xr2) and if we assume 
that there is no interaction between the two particles, we will be able to describe the states using separation of 
variables: 

ψ(xr1, xr2) = ψa(xr1)ψb(xr2) 

where a and b label two different single-particle states. Implicit in this expression is the assumption that I can 
distinguish the two particles by some mean, and link particle one to the position 1 and the state a. However, if we 
consider two identical particles (2 electrons, two photons, two neutrons) there is no physical mean to distinguish 
them. Even if we try to measure them in order to keep track of which one is which, we know that in the process we 
destroy the state (by the wavefunction collapse) so not even this is a possibility. 

4.4.1 Bosons, fermions 

In quantum mechanics identical particle are fundamentally indistinguishable. Then the expression above does not 
correctly describe the state anymore. In order to faithfully describe a state in which we cannot know if particle a or b 
is at r1 or r2, we can take a linear combination of these two possibilities: ψ(xr1, xr2) = A1ψa(xr1)ψb(xr2)+A2ψb(xr1)ψa(xr2). 

1Now, since the two possibilities have the same probability, we have |A1| = |A2| = √ . Then there are two possible 
2

combinations: 
1 

ψ(xr1, xr2) = √ [ψa(xr1)ψb(xr2)± ψb(xr1)ψa(xr2)]
2 

These two combinations describe two types of particle. The combination with the plus sign describes bosons, particles 
that are invariant under exchange of a particle pair. The combination with the minus sign describes fermions: 

- all particles with integer spin are bosons 

- all particles with half-integer spin are fermions 

(This can be proved in relativistic QM). 

4.4.2 Exchange operator 

We can define an operator P̂ that interchanges the two particles: 

P̂ [ψ(xr1, xr2)] = ψ(xr2, xr1) 

Since of course P̂ [P̂ [ψ(xr1, xr2)]] = ψ(xr1, xr2), we have that P̂ 2 = 1. Then the eigenvalues of P̂ must be ±1. [If ϕn 

is an eigenfunction of P̂ with eigenvalue pn, we have P̂
2ϕn = p2ϕn = ϕn, from which p2 = 1.] If two particles n n 

ˆare identical, then the Hamiltonian is invariant with respect to their exchange and [H, P ] = 0. Then we can find 
energy eigenfunctions that are common eigenfunctions of the exchange operator, or ψ(xr1, xr2) = ±ψ(xr2, xr1). Then if 
the system is initially in such a state, it will be always be in a state with the same exchange symmetry. For the 
considerations above, however, we have seen that the wavefunction is not only allowed, but it must be in a state with 
a definite symmetry: { 

ψ(xr2, xr1) bosons 
ψ(xr1, xr2) = −ψ(xr2, xr1) fermions 

4.4.3 Pauli exclusion principle 

From the form of the allowed wavefunction for fermions, it follows that two fermions cannot occupy the same state. 
Assume that ψa(xr) = ψb(xr), then we always have that 

1 
ψf (xr1, xr2) = √ [ψa(xr1)ψb(xr2)− ψb(xr1)ψa(xr2)] = 0. 

2 

This is the well-known Pauli exclusion principle. Notice that of course it applies to any fermions. For example, it 
applies to electrons, and this is the reason why electrons do not pile up in the lowest energy level of the atomic 
structure, but form a shell model. We will see that the same applies as well to protons and neutrons, giving rise to 
the shell model for nuclei. 
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