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5.1 Characteristics of the nuclear force 

In this part of the course we want to study the structure of nuclei. This in turns will give us insight on the energies 
and forces that bound nuclei together and thus of the phenomena (that we’ll study later on) that can break them 
apart or create them. 

In order to study the nuclear structure we need to know the constituents of nuclei (the nucleons, that is, protons 
and neutrons) and treat them as QM objects. From the point of view of QM as we studied until now, we want first 
to know what is the state of the system (at equilibrium). Thus we want to solve the time-independent Schrödinger 
equation. This will give us the energy levels of the nuclei. 

The exact nature of the forces that keep together the nucleus constituents are the study of quantum chromodynamics, 
that describes and look for the source of the strong interaction, one of the four fundamental interactions, along with 
gravitation, the electromagnetic force and the weak interaction. This theory is well-beyond this course. Here we want 
only to point out some of the properties of the nucleon-nucleon interaction: 

–	 At short distances is stronger than the Coulomb force: we know that nuclei comprise tightly packed protons, thus 
to keep these protons together the nuclear force has to beat the Coulomb repulsion. 

–	 The nuclear force is short range. This is supported by the fact that interactions among e.g. two nuclei in a molecule 
are only dictated by the Coulomb force and no longer by the nuclear force. 

–	 Not all the particles are subjected to the nuclear force (a notable exception are electrons) 

–	 The nuclear force does not depend at all on the particle charge, e.g. it is the same for protons and neutrons. 

–	 The nuclear force does depend on spin, as we will prove in the case of the deuteron. 

–	 Experiments can reveal other properties, such as the fact that there is a repulsive term at very short distances and 
that there is a component that is angular-dependent (the force is then not central and angular momentum is not 
conserved, although we can neglect this to a first approximation). 

We will first see how these characteristics are reflected into the Hamiltonian of the simplest (non-trivial) nucleus, the 
deuteron. This is the only nucleus that we can attempt to solve analytically by forming a full model of the interaction 
between two nucleons. Comparing the model prediction with experimental results, we can verify if the characteristics 
of the nuclear force we described are correct. We will then later study how the nuclear force properties shape the 
nature and composition of stable and unstable nuclei. 
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5.2 The Deuteron
 

5.2.1 Reduced Hamiltonian in the center-of-mass frame 

We start with the simplest problem, a nucleus formed by just one neutron and one proton: the deuteron. We will at 
first neglect the spins of these two particles and solve the energy eigenvalue problem (time-independent Schrödinger 
equation) for a bound p-n system. The Hamiltonian is then given by the kinetic energy of the proton and the neutron 
and by their mutual interaction. 

1 12 2H = p̂n + p̂p + Vnuc(|xp − xn|)
2mn 2mp 

Here we stated that the interaction depends only on the distance between the two particles (and not for example the 
angle...) 
We could try to solve the Schrödinger equation for the wavefunction Ψ = Ψ(Rxp, Rxn, t). This is a wavefunction that 
treats the two particles as fundamentally independent (that is, described by independent variables). However, since 
the two particles are interacting, it might be better to consider them as one single system. Then we can use a different 
type of variables (position and momentum). 

We can make the transformation from {Rxp, Rxn} → {RR, Rr} where RR describes the average position of the two particles 
(i.e. the position of the total system, to be accurately defined) and Rr describes the relative position of one particle 
wrt the other:  

mp xp+mnx nRR = center of mass mp+mn 

Rr = Rxp − Rxn relative position 

We can also invert these equations and define Rxp = xp(RR, Rr) and Rxn = xn(RR, Rr). Also, we can define the center of 
mass momentum and relative momentum (and velocity): 

�	 
pRcm = pRp + pRn 
pRr = (mnpRp − mppRn)/M 

Then the (classical) Hamiltonian, using these variables, reads 

1 1 2H = p 2 +cm pr + Vnuc(|r|)
2M 2µ 

where M = mp + mn and µ = 
mpmn is the reduced mass. Now we can just write the quantum version of this mp+mn 

classical Hamiltonian, using 
∂ ∂ 

p̂cm = −ir p̂r = −ir 
∂ RR ∂Rr 

in the equation 
1 12 2H = p̂ + p̂ 	 + Vnuc(|r̂|)cm r2M 2µ 

Now, since the variables r and R are independent (same as rp and rn) they commute. This is also true for pcm and r 
(and pr and R). Then, pcm commutes with the whole Hamiltonian, [Rp̂cm, H] = 0. This implies that Rp̂cm is a constant 

of the motion. This is also true for Ecm = 1 2̂R , the energy of the center of mass. If we solve the problem in thep2M cm

center-of-mass frame, then we can set Ecm = 0 and this is not ever going to change. In general, it means that we can 
ignore the first term in the Hamiltonian and just solve 

r
2 

HD = − ∇r 
2 + Vnuc(|Rr|)

2µ 

In practice, this corresponds to having applied separation of variables to the original total Schrödinger equation. 
The Hamiltonian HD (the deuteron Hamiltonian) is now the Hamiltonian of a single-particle system, describing the 
motion of a reduced mass particle in a central potential (a potential that only depends on the distance from the 
origin). This motion is the motion of a neutron and a proton relative to each other. In order to proceed further we 
need to know the shape of the central potential. 
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5.2.2 Ground state 

What are the most important characteristics of the nuclear potential? It is 
known to be very strong and short range. These are the only characteristics 
that are of interest now; also, if we limit ourselves to these characteristics and 
build a simple, fictitious potential based on those, we can hope to be able to 
solve exactly the problem. 
If we looked at a more complex, albeit more realistic, potential, then most 
probably we cannot find an exact solution and would have to simplify the 
problem. Thus, we just take a very simple potential, a nuclear square well of 

V(r) 

r 

-V0 =-35MeV 

R0 = 2.1fm 

E0=-2.2MeV 

range R0 ≈ 2.1fm and of depth −V0 = −35MeV .
 
We need to write the Hamiltonian in spherical coordinates (for the reduced Fig. 31: Nuclear potential
 

variables). The kinetic energy term is given by:
 

2 2 
( ) 

2 
 ( ) 

∂2 
 

2 
( ) 

L2 
r r 1 ∂ ∂ r 1 ∂ ∂ 1 r 1 ∂ ∂ ˆ

2 2− ∇2 = − r − sinϑ + = − r +r2µ 2µ r2 ∂r ∂r 2µr2 sinϑ ∂ϑ ∂ϑ sin2 ϑ ∂ϕ2 2µ r2 ∂r ∂r 2µr2 

where we used the angular momentum operator (for the reduced particle) L̂2 . 
The Schrödinger equation then reads 

2 
( ) 

r 1 ∂ 2 ∂ L̂2 

− r + + Vnuc(r) Ψn,l,m(r, ϑ, ϕ) = EnΨn,l,m(r, ϑ, ϕ)
2µ r2 ∂r ∂r 2µr2 

We can now also check that [L̂2 , H] = 0. Then L̂2 is a constant of the motion and it has common eigenfunctions with
 
the Hamiltonian.
 
We have already solved the eigenvalue problem for the angular momentum. We know that solutions are the spherical
 
harmonics Y m(ϑ, ϕ):
l
 

L̂2Y m(ϑ, ϕ) = r 2l(l + 1)Y m(ϑ, ϕ)
l l 

Then we can solve the Hamiltonian above with the separation of variables methods, or more simply look for a solution 
Ψn,l,m = ψn,l(r)Y m(ϑ, ϕ):l 

r 2 1 ∂ 
( 

2 ∂ψn,l(r)
) 

Y m L̂2[Yl
m(ϑ, ϕ)]− r (ϑ, ϕ) + ψn,l(r) = [En − Vnuc(r)]ψn,l(r)Y m(ϑ, ϕ) 

r2 l l2µ ∂r ∂r 2µr2 

using the eigenvalue equation above we have 

 2 
( )

Y m  
r 1 ∂ 2 ∂ψn,l(r) Y m  r 2l(l + 1) l 

 
Y m   (ϑ, ϕ)  − 

r2 
r  l 

 = − Vnuc l (ϑ, ϕ)(ϑ, ϕ) + ψn,l(r) [En (r)]ψn,l(r)   
2µ ∂r ∂r 2µr2 

and then we can eliminate Yl
m to obtain: 

)  
r 2 1 d 

( 
dψn,l(r) 

 
r 2l(l + 1) 2− r + Vnuc(r) + ψn,l(r) = Enψn,l(r)

2µ r2 d r d r 2µr2

Now we write ψn,l(r) = un,l(r)/r. Then the radial part of the Schrödinger equation becomes 

2 d 2
 

2 
 

r u r l(l + 1) − + Vnuc(r) + u(r) = Eu(r)
2µ d r2 2µ r2

with boundary conditions 
unl(0) = 0 → ψ(0) is finite 

unl(∞) = 0 → bound state
 

This equation is just a 1D Schrödinger equation in which the potential V (r) is replaced by an effective potential
 

r 2l(l + 1) 
Veff (r) = Vnuc(r) + 

2µr2 

that presents the addition of a centrifugal potential (that causes an outward force). 
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V(r) 

r 

-V0 =-35MeV 

R0 = 2.1fm 

E0=-2.2MeV 

Fig. 32: Nuclear potential for l  0. Left, nuclear potential and centrifugal potential. Right, the effective potential. = 

Notice that if l is large, the centrifugal potential is higher. The ground state is then found for l = 0. In that case 
there is no centrifugal potential and we only have a square well potential (that we already solved). 

This gives the eigenfunctions 

u(r) = A sin(kr) +B cos(kr), 0 < r < R0 

and 
u(r) = Ce−κr + Deκr , r > R0 

The allowed eigenfunctions (as determined by the boundary conditions) have eigenvalues found from the odd-parity 
solutions to the equation 

−κ = k cot(kR0) 

with 
2µ 2µ

κ2 = (E0 + V0) = −k2
2 2 

E0 
r r

(with E0 < 0).
 
Recall that we found that there was a minimum well depth and range in order to have a bound state. To satisfy the
 

π πcontinuity condition at r = R0 we need λ/4 ≤ R0 or kR0 ≥ 1 2π = . Then R0 ≥4 2 2k . 
In order to find a bound state, we need the potential energy to be higher than the kinetic energy V0 > Ekin. If we 

πknow R0 we can use k ≥ to find 2R0
 

2π2 π2 2 2 π2
 
r r c (191MeV fm)2 

V0 > = = = 23.1MeV 
2µ4R2 8 µc2R2 8 469MeV (2.1fm)2 0 0 

We thus find that indeed a bound state is possible, but the binding energy E0 = Ekin − V0 is quite small. Solving 
numerically the trascendental equation for E0 we find that 

E0 = −2.2MeV 

Notice that in our procedure we started from a model of the potential that includes the range R0 and the strength 
V0 in order to find the ground state energy (or binding energy). Experimentally instead we have to perform the 
inverse process. From scattering experiments it is possible to determine the binding energy (such that the neutron 
and proton get separated) and from that, based on our theoretical model, a value of V0 can be inferred. 

5.2.3 Deuteron excited state 

Are bound excited states for the deuteron possible?
 
Consider first l = 0. We saw that the binding energy for the ground state was already small. The next odd solution
 

3πwould have k = = 3k0. Then the kinetic energy is 9 times the ground state kinetic energy or E1 = 9E0 = 2R0 kin kin 
9× 32.8MeV = 295.2MeV . The total energy thus becomes positive, the indication that the state is no longer bound 
(in fact, we then have no longer a discrete set of solutions, but a continuum of solutions). 

n
2l(l+1) Consider then l > 0. In this case the potential is increased by an amount ≥ 18.75MeV (for l = 1). The 
2µR2

0 

potential thus becomes shallower (and narrower). Thus also in this case the state is no longer bound. The deuteron 
has only one bound state. 

V(r)

r

-V0 =-35MeV

R0 = 2.1fm

E0=-2.2MeV

6

[

− ~
2

2µ

1

r

∂2

∂r
+ Vnuc(r)

]

u0(r) = E0u0(r)
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5.2.4 Spin dependence of nuclear force 

Until now we neglected the fact that both neutron and proton possess a spin. The question remains how the spin 
influences the interaction between the two particles. 
The total angular momentum for the deuteron (or in general for a nucleus) is usually denoted by I. Here it is given 
by 

ˆ ˆ ˆ ˆ
IR = LR + SRp + SRn 

ˆ ˆ ˆ ˆ ˆR R R R RFor the bound deuteron state l = 0 and I = Sp + Sn = S. A priori we can have S = 0 or 1 (recall the rules for 

R̂ 1addition of angular momentum, here Sp,n = ).2
There are experimental signatures that the nuclear force depends on the spin. In fact the deuteron is only found with 

R̂S = 1 (meaning that this configuration has a lower energy). 
ˆ ˆ

The simplest form that a spin-dependent potential could assume is Vspin ∝ SRp · SRn (since we want the potential to 
2be a scalar). The coefficient of proportionality V1(r)/r can have a spatial dependence. Then, we guess the form for 

the spin-dependent potential to be Vspin = V1(r)/r 2SR̂p · SR̂n. What is the potential for the two possible configurations 
of the neutron and proton spins? 

The configuration are either SR̂ = 1 or SR̂ = 0. Let us write SR̂2 = rS(S + 1) in terms of the two spins: 

ˆ ˆ ˆ ˆ ˆ
SR2 SR2 SR2 R R= + n + 2Sp · Snp 

The last term is the one we are looking for: 

ˆ ˆ 1 � 
ˆ ˆ ˆR SR2 − SR2 SR2SRp · Sn = −p n2 

ˆ ˆ
Because Ŝ2 and SRp 

2 , SR2 commute, we can write an equation for the expectation values wrt eigenfunctions of these n 

operators10:

 
ˆ

 
r 2ˆ ˆ ˆR R R RSp · Sn = �S, Sp, Sn, Sz | Sp · Sn |S, Sp, Sn, Sz� = (S(S + 1) − Sp(Sp + 1) − Sn(Sn + 1)) 
2 

1since Sp,n = 2 , we obtain

 ) )
2 
( 2  

ˆ ˆ
 

r 3 +n Triplet State, = 1, 1 1 ,mz4 
 S 2 2SRp · SRn = S(S + 1) − 

2 2
= 

− 3n 
4 

2 
 
 

S 1
2 , 

1
2 , 0

)
Singlet State, = 0, 

1If V1(r) is an attractive potential (< 0), the total potential is Vnuc|S=1 = VT = V0 + V1 for a triplet state, while its 4

strength is reduced to Vnuc|S=0 = VS = V0 − 4
3V1 for a singlet state. How large is V1? 

We can compute V0 and V1 from knowing the binding energy of the triplet state and the energy of the unbound virtual 
state of the singlet (since this is very close to zero, it can still be obtained experimentally). We have ET = −2.2MeV 
(as before, since this is the experimental data) and ES = 77keV. Solving the eigenvalue problem for a square well, 
knowing the binding energy ET and setting ES ≈ 0, we obtain VT = −35MeV and VS = −25MeV (Notice that of 
course VT is equal to the value we had previously set for the deuteron potential in order to find the correct binding 
energy of 2.2MeV, we just –wrongly– neglected the spin earlier on). From these values by solving a system of two 
equations in two variables: 

we obtain V0 = −32.5MeV V1 = −10MeV. Thus the spin-dependent part of the potential is weaker, but not negligible. 

10 Note that of course we use the coupled representation since the properties of the deuteron, and of its spin-dependent energy, 
are set by the common state of proton and neutron 

{
V0 +

1
4V1 = VT

V0 − 3
4V1 = VS
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5.3 Nuclear models 

In the case of the simplest nucleus (the deuterium, with 1p-1n) we have been able to solve the time independent 
Schrödinger equation from first principles and find the wavefunction and energy levels of the system —of course with 
some approximations, simplifying for example the potential. If we try to do the same for larger nuclei, we soon would 
find some problems, as the number of variables describing position and momentum increases quickly and the math 
problems become very complex. 
Another difficulty stems from the fact that the exact nature of the nuclear force is not known, as there’s for example 
some evidence that there exist also 3-body interactions, which have no classical analog and are difficult to study via 
scattering experiments. 
Then, instead of trying to solve the problem exactly, starting from a microscopic description of the nucleus con­
stituents, nuclear scientists developed some models describing the nucleus. These models need to yield results that 
agree with the already known nuclear properties and be able to predict new properties that can be measured in 
experiments. We are now going to review some of these models. 

5.3.1 Shell structure 

A. The atomic shell model 

You might already be familiar with the atomic shell model. In the atomic shell model, shells are defined based on 
the atomic quantum numbers that can be calculated from the atomic Coulomb potential (and ensuing the eigenvalue 
equation) as given by the nuclear’s protons. 
Shells are filled by electrons in order of increasing energies, such that each orbital (level) can contain at most 2 
electrons (by the Pauli exclusion principle). The properties of atoms are then mostly determined by electrons in 
a non-completely filled shell. This leads to a periodicity of atomic properties, such as the atomic radius and the 
ionization energy, that is reflected in the periodic table of the elements. We have seen when solving for the hydrogen 
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Fig. 33: Atomic Radius vs Z. 

atom that a quantum state is described by the quantum numbers: |ψ = |n, l, m where n is the principle quantum 
number (that in the hydrogen atom was giving the energy). l is the angular momentum quantum number (or azimuthal 
quantum number ) and m the magnetic quantum number. This last one is m = −l, . . . , l − 1, l thus together with 
the spin quantum number, sets the degeneracy of each orbital (determined by n and l < n) to be D(l) = 2(2l + 1). 
Historically, the orbitals have been called with the spectroscopic notation as follows: 

R
ad

iu
s 
Sn

m
' 

l 0 1 2 3 4 5 6 
Spectroscopi
notation 

s p d fc g h i 

D(l) 2 6 10 14 18 22 26 
historic structure heavy nuclei 

The historical notations come from the description of the observed spectral lines: 

s=sharp p=principal d=diffuse f=fine 
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Fig. 34: Ionization energy vs Z. 

Orbitals (or energy eigenfunctions) are then collected into groups of similar energies (and similar properties). The 
degeneracy of each orbital gives the following (cumulative) occupancy numbers for each one of the energy group: 

2, 10, 18, 36, 54, 70, 86 

Notice that these correspond to the well known groups in the periodic table. 
There are some difficulties that arise when trying to adapt this model to the nucleus, in particular the fact that the 
potential is not external to the particles, but created by themselves, and the fact that the size of the nucleons is 
much larger than the electrons, so that it makes much less sense to speak of orbitals. Also, instead of having just one 
type of particle (the electron) obeying Pauli’s exclusion principle, here matters are complicated because we need to 
fill shells with two types of particles, neutrons and protons. 
In any case, there are some compelling experimental evidences that point in the direction of a shell model. 

B. Evidence of nuclear shell structure: Two-nucleon separation energy 

The two-nucleon separation energy (2p- or 2n-separation energy) is the equivalent of the ionization energy for atoms, 
where nucleons are taken out in pair to account for a term in the nuclear potential that favor the pairing of nucleons. 
From this first set of data we can infer that there exist shells with occupation numbers 

8, 20, 28, 50, 82, 126 

These are called Magic numbers in nuclear physics. Comparing to the size of the atomic shells, we can see that the 
atomic magic numbers are quite different from the nuclear ones (as expected since there are two-types of particles 
and other differences.) Only the guiding principle is the same. The atomic shells are determined by solving the energy 
eigenvalue equation. We can attempt to do the same for the nucleons. 

5.3.2 Nucleons Hamiltonian 

The Hamiltonian for the nucleus is a complex many-body Hamiltonian. The potential is the combination of the 
nuclear and coulomb interaction: 

2 2L p̂ L L eiH = + Vnuc(|Rxi − Rxj |) + 
2mi |Rxi − Rxj |i j,i≤j j,i≤j 

" v " 
sum on protons only 

There is not an external potential as for the electrons (where the protons create a strong external central potential 
for each electron). We can still simplify this Hamiltonian by using mean field theory11 . 

This is a concept that is relevant in many other physical situations 11 
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Image by MIT OpenCourseWare. After Krane. 

Fig. 35: Top: Two-proton separation energies of isotones (constant N). Bottom: two-neutron separation energies of isotopes 
(constant Z). On the x-axis: nucleon number. The sudden changes at the magic number are apparent. From Krane, fig 5.2 

We can rewrite the Hamiltonian above by picking 1 nucleon, e.g. the jth neutron: 

2p̂j L

Hn 
j = + Vnuc(|Rxi − Rxj |)

2mn 
i≤j 

or the kth proton: 
2 2p̂ L L eHp = k + Vnuc(|Rxi − Rxk|) + k 2mn |Rxi − Rxk|

i≤k i≤k 
" v " 

sum on protons only 

then the total Hamiltonian is just the sum over these one-particle Hamiltonians: 

L L 
Hn HpH = +j k 

j (neutrons) k (protons) 

HpThe Hamiltonians Hn and describe a single nucleon subjected to a potential V j (|Rxj |) — or V j (|Rxj |) = j j nuc
jV j (|Rxj |) + V (|Rxj |) for a proton. These potentials are the effect of all the other nucleons on the nucleon we nuc coul

picked, and only their sum comes into play. The nucleon we focused on is then evolving in the mean field created 
by all the other nucleons. Of course this is a simplification, because the field created by the other nucleons depends 
also on the jth nucleon, since this nucleon influences (for example) the position of the other nucleons. This kind of 
back-action is ignored in the mean-field approximation, and we considered the mean-field potential as fixed (that is, 
given by nucleons with a fixed position). 

We then want to adopt a model for the mean-field V j and V j . Let’s start with the nuclear potential. We modeled nuc coul
the interaction between two nucleons by a square well, with depth −V0 and range R0. The range of the nuclear 
well is related to the nuclear radius, which is known to depend on the nuclear mass number A, as R ∼ 1.25A1/3fm. 
Then V j is the sum of many of these square wells, each with a different range (depending on the separation of the nuc 
nucleons). The depth is instead almost constant at V0 = 50MeV, when we consider large-A nuclei (this correspond to 
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Fig. 36: Potential obtained from the sum of many rectangular potential wells. Black, the potential range increases proportionally 
to the number of nucleons considered. Red, R ∼ A1/3. Blue, harmonic potential, that approximates the desired potential. 

the average strength of the total nucleon potential). What is the sum of many square wells? The potential smooths 
out. We can approximate this with a parabolic potential. [Notice that for any continuous function, a minimum can 
always be approximated by a parabolic function, since a minimum is such that the first derivative is zero]. This type 
of potential is useful because we can find an analytical solution that will give us a classification of nuclear states. Of 
course, this is a crude approximation. This is the oscillator potential model: 

(
2 
)

r
Vnuc ≈ −V0 1− 

R2 
0

2 
[

r 2 
]

(Z−1)e 3Now we need to consider the Coulomb potential for protons. The potential is given by: Vcoul = −R0 2 2R2 
0 

for r ≤ R0, which is just the potential for a sphere of radius R0 containing a uniform charge (Z − 1)e. 
Then we can write an effective (mean-field, in the parabolic approximation) potential as 

( 
V0 (Z − 1)e2

) 
3 (Z − 1)e2 

Veff = r 2 − −V0 + 
R2 2R3 2 R00 

" " v " 
≡−V0 

′ 

2 

(Z−1)eWe defined here a modified nuclear square well potential V0 
′ = V0  3 

2 

for protons, which is shallower than for 2 R0 

neutrons. Also, we defined the harmonic oscillator frequencies 

The proton well is thus slightly shallower and wider than the neutron well because of the Coulomb repulsion. This 
potential model has limitations but it does predict the lower magic numbers. 

The eigenvalues of the potential are given by the sum of the harmonic potential in 3D (as seen in recitation) and the 
square well: 

3
)− V ′ EN = rω(N + 0 . 2

(where we take V0 
′ = V0 for the neutron).
 

Note that solving the equation for the harmonic oscillator potential is not equivalent to solve the full radial equation,
 
2 l(l+1) where the centrifugal term r 2mr2 must be taken into account. We could have solved that total equation and found 

the energy eigenvalues labeled by the radial and orbital quantum numbers. Comparing the two solutions, we find 
that the h.o. quantum number N can be expressed in terms of the radial and orbital quantum numbers as 

N = 2(n − 1) + l 

Since l = 0, 1, . . . n − 1 we have the selection rule for l as a function of N : l = N, N − 2, . . . (with l ≥ 0). The 
L

1degeneracy of the EN eigenvalues is then D ′ (N ) = (2l + 1) = (N + 1)(N + 2) (ignoring spin) orl=N,N−2,... 2

D(N) = (N + 1)(N + 2) when including the spin.
 

We can now use these quantum numbers to fill the nuclear levels. Notice that we have separate levels for neutrons
 
and protons. Then we can build a table of the levels occupations numbers, which predicts the first 3 magic numbers.
 

ω2 = 2
m

(
V0

R2
0
− (Z−1)e2

2R3
0

)

.
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For higher levels there are discrepancies thus we need a more precise model to obtain a more accurate prediction. 
The other problem with the oscillator model is that it predicts only 4 levels to have lower energy than the 50MeV well 

2n2V0 (Z−1)e2 
potential (thus only 4 bound energy levels). The separation between oscillator levels is in fact rω = − ≈ 
� 

2
� mR0

2 2R3
0 

2n c2V0 2(200MeV fm)2 ×50MeV 
2R2 . Inserting the numerical values we find rω = ≈ 51.5A−1/3 Then the separation 

mc 938MeV (1.25fmA1/3)2 
0 

between oscillator levels is on the order of 10-20MeV. 

5.3.3 Spin orbit interaction 

In order to predict the higher magic numbers, we need to take into account other interactions between the nucleons.
 
The first interaction we analyze is the spin-orbit coupling.
 
The associated potential can be written as
 

1 
2
Vso(r)R̂l · Rŝ

r

Rwhere Rŝ and 
ˆ
l are spin and angular momentum operators for a single nucleon. This potential is to be added to the 

single-nucleon mean-field potential seen before. We have seen previously that in the interaction between two nucleons 
there was a spin component. This type of interaction motivates the form of the potential above (which again is to 
be taken in a mean-field picture). 
We can calculate the dot product with the same trick already used: 

Now recall that both V0 is negative and choose also Vso negative. Then: 
1- when the spin is aligned with the angular momentum (j = l + ) the potential becomes more negative, i.e. the 2

well is deeper and the state more tightly bound. 

- when spin and angular momentum are anti-aligned the system’s energy is higher.
 

The energy levels are thus split by the spin-orbit coupling (see figure 37). This splitting is directly proportional to
 
2 

nthe angular momentum l (is larger for higher l): ΔE = (2l + 1). The two states in the same energy configuration 2 
but with the spin aligned or anti-aligned are called a doublet. 
Example: Consider the N = 3 h.o. level. The level 1f7/2 is pushed far down (because of the high l). Then its energy 
is so different that it makes a shell on its own. We had found that the occupation number up to N = 2 was 20 (the 
3rd magic number). Then if we take the degeneracy of 1f7/2, D(j) = 2j + 1 = 27 + 1 = 8, we obtain the 4th magic 2 
number 28. 
[Notice that since here j already includes the spin, D(j) = 2j + 1 .] 
Since the 1f7/2 level now forms a shell on its own and it does not belong to the N = 3 shell anymore, the residual 
degeneracy of N = 3 is just 12 instead of 20 as before. To this degeneracy, we might expect to have to add the 
lowest level of the N = 4 manifold. The highest l possible for N = 4 is obtained with n = 1 from the formula 
N = 2(n − 1)+ l → l = 4 (this would be 1g). Then the lowest level is for j = l +1/2 = 4+1/2 = 9/2 with degeneracy 

〈

~̂l · ~̂s
〉

=
1

2
(~̂j2 − ~̂l2 − ~̂s2) = ~

2

2
[j(j + 1)− l(l + 1)− 3

]
4

ˆ
where ~j is the total angular momentum for the nucleon. Since the spin of the nucleon is s = 1 , the possible values2

of j are j = l ± 1
2 . Then j(j + 1)− l(l + 1) = (l ± 1

2 )(l ± 1
2 + 1)− l(l + 1), and we obtain

〈

~̂l · ~̂s
〉

=

{

l ~
2

2 for j=l+ 1
2

−(l + 1)~
2

2 for j=l- 12

and the total potential is

Vnuc(r) =

{
V0 + Vso

l
2 for j=l+ 1

2

V0 − Vso l+1
2 for j=l- 12

78



4 

3 

2 

1 

5 

4 

2 

0 

3 

1 

2 

0 

1 

1h 

1g 

2d 

3s 

1f 

2p 

1d 

2s 

1p 6 8 

22 50 

12 20 

8 28 

32 82 

44 126 

1f7/2 

1p1/2 

2p3/2 

1f5/2 

1d5/2 

2s1/2 

1d3/2 

2p1/2 

1g9/2 

3s1/2 

2f7/2 

1h11/2 

1h9/2 

2d5/2 

2d3/2 

1g7/2 

1f 

2p 
2p1/2 

2p3/2 

1f5/2 

1f7/2 

3N 

2N 

Fig. 37: The energy levels from the harmonic oscillator level 
(labeled by N) are first shifted by the angular momentum po­
tential (2p, 1f). Each l level is then split by the spin-orbit in­
teraction, which pushes the energy up or down, depending on 
the spin and angular momentum alignment 

D = 2(9/2+1) = 10. This new combined shell comprises then 12+10 levels. In turns this gives us the magic number 
50. 

Using these same considerations, the splittings given by the spin-orbit coupling can account for all the magic numbers 
and even predict a new one at 184: 

- N = 4, 1g → 1g7/2 and 1g9/2. Then we have 20 − 8 = 12 +D(9/2) = 10. From 28 we add another 22 to arrive at 
the magic number 50. 

- N = 5, 1h → 1h9/2 and 1h11/2. The shell thus combines the N = 4 levels not already included above, and the 
D(1h11/2) = 12 levels obtained from the N = 5 1h11/2. The degeneracy of N = 4 was 30, from which we subtract 
the 10 levels included in N = 3. Then we have (30 − 10) + D(1h11/2) = 20 + 12 = 32. From 50 we add arrive at 
the magic number 82. 

- N = 6, 1i → 1i11/2 and 1i13/2. The shell thus have D(N = 5) − D(1h11/2) +D(1i13/2) = 42 − 12 + 14 = 44 levels 
(D(N) = (N + 1)(N + 2)). The predicted magic number is then 126. 

- N = 7 → 1j15/2 is added to the N = 6 shell, to give D(N = 6) − D(1i13/2) + D(1j15/2) = 56 − 14 + 16 = 58, 
predicting a yet not-observed 184 magic number. 

Harmonic Oscillator Spin-Orbit Potential 

Specroscopic Magic Spin-orbit 
DN l Notation Number 

4 
2 
0 

6 
2g 
3d 
4s 

1i 

1i13/2 

1i11/2 

. .
 .6 58 184 

1 3p 3p1/2 

3p3/2
5 3 2f 2f5/2 

1p3/2 

0 0 1s 2 21s1/2 

Fig. 38: Shell Model prediction of the magic numbers. Level splittings due to h.o. levels, l-quantum number and spin-orbit 
coupling. Notice that further variations in the position of the levels are actually present (see Krane Fig. 5.6). Here only the 
shiftings leading to new shell groupings are shown. 

These predictions do not depend on the exact shape of the square well potential, but only on the spin-orbit coupling 
and its relative strength to the nuclear interaction V0 as set in the harmonic oscillator potential (we had seen that 
the separation between oscillator levels was on the order of 10MeV.) In practice, if one studies in more detail the 
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potential well, one finds that the oscillator levels with higher l are lowered with respect to the others, thus enhancing 
the gap created by the spin-orbit coupling. 
The shell model that we have just presented is quite a simplified model. However it can make many predictions about 
the nuclide properties. For example it predicts the nuclear spin and parity, the magnetic dipole moment and electric 
quadrupolar moment, and it can even be used to calculate the probability of transitions from one state to another 
as a result of radioactive decay or nuclear reactions. 

Image by MIT OpenCourseWare. After Krane. 

Fig. 39: Shell Model energy levels (from Krane Fig. 5.6). Left: Calculated energy levels based on potential. To the right of 
each level are its capacity and cumulative number of nucleons up to that level. The spin-orbit interaction splits the levels with 
l > 0 into two new levels. Note that the shell effect is quite apparent, and magic numbers are reproduced exactly. 

5.3.4 Spin pairing and valence nucleons 

In the extreme shell model (or extreme independent particle model), the assumption is that only the last unpaired 
nucleon dictates the properties of the nucleus. A better approximation would be to consider all the nucleons above 
a filled shell as contributing to the properties of a nucleus. These nucleons are called the valence nucleons. 
Properties that can be predicted by the characteristics of the valence nucleons include the magnetic dipole moment, 
the electric quadrupole moment, the excited states and the spin-parity (as we will see). The shell model can be then 
used not only to predict excited states, but also to calculate the rate of transitions from one state to another due to 
radioactive decay or nuclear reactions. 
As the proton and neutron levels are filled the nucleons of each type pair off, yielding a zero angular momentum for 
the pair. This pairing of nucleons implies the existence of a pairing force that lowers the energy of the system when 
the nucleons are paired-off. 
Since the nucleons get paired-off, the total spin and parity of a nucleus is only given by the last unpaired nucleon(s) 
(which reside(s) in the highest energy level). Specifically we can have either one neutron or one proton or a pair 
neutron-proton. 
The parity for a single nucleon is (−1)l, and the overall parity of a nucleus is the product of the single nucleon parity. 
(The parity indicates if the wavefunction changes sign when changing the sign of the coordinates. This is of course 

80



dictated by the angular part of the wavefunction – as in spherical coordinates r ≥ 0. Then if you look back at the 
angular wavefunction for a central potential it is easy to see that the spherical harmonics change sign iff l is odd). 
Obs. The shell model with pairing force predicts a nuclear spin I = 0 and parity Π =even (or IΠ = 0+) for all 
even-even nuclides. 

A. Odd-Even nuclei 

Despite its crudeness, the shell model with the spin-orbit correction describes well the spin and parity of all odd-A 
nuclei. In particular, all odd-A nuclei will have half-integer spin (since the nucleons, being fermions, have half-integer 
spin). 
Example: 158 O7 and 

17
8 O9. (of course 

16O has spin zero and even parity because all the nucleons are paired). The first 
(15 8 O7) has an unpaired neutron in the p1/2 shell, than l = 1, s = 1/2 and we would predict the isotope to have spin 

1/2 and odd parity. The ground state of 178 O9 instead has the last unpaired neutron in the d5/2 shell, with l = 2 and 
s = 5/2, thus implying a spin 5/2 with even parity. Both these predictions are confirmed by experiments. 
Examples: These are even-odd nuclides (i.e. with A odd). 

+123	 7→ Sb72 has 1proton in 1g7/2: →51	 2 .
 

+
133	 7→ Cs has 1proton in 1g7/2: →51	 2 .
 

+
35	 3→ 17Cl has 1proton in 1d3/2: → 2	 .
 

+
29	 1→ 14Si has 1 neutron in 2s1/2: → 2 .
 

28 0+
→ 14Si has paired nucleons: → .
 

Example: There are some nuclides that seem to be exceptions:
 
+121	 5→ Sb70 has last proton in 2d5/2 instead of 1g7/2: → (details in the potential could account for the inversion 51	 2 

of the two level order) 

−147	 7→ Sn85 has last proton in 2f7/2 instead of 1h9/2: →62	 2 . 

−79	 3→ 35Br44 has last neutron in 2p3/2 instead of 1f5/2: → 2 .
 

207
→ Pb125. Here we invert 1i13/2 with 3p1/2. This seems to be wrong because the 1i level must be quite more 82 

energetic than the 3p one. However, when we move a neutron from the 3p to the 1i all the neutrons in the 1i level 
are now paired, thus lowering the energy of this new configuration. 

−61→ 28Ni33 1f5/2 ←→ 2p3/2 → ( 3	 )2
 

+
197→ Au118 1f5/2 ←→ 3p3/2 → ( 3 )79	 2 

B. Odd-Odd nuclei 

Only five stable nuclides contain both an odd number of protons and an odd number of neutrons: the first four 
odd-odd nuclides 21H,

6
5 B, and 

14 
3Li, 

10 
7 N. These nuclides have two unpaired nucleons (or odd-odd nuclides), thus their 

spin is more complicated to calculate. The total angular momentum can then take values between |j1−j2| and j1+j2. 
Two processes are at play: 
1) the nuclei tends to have the smallest angular momentum, and 
2) the nucleon spins tend to align (this was the same effect that we saw for example in the deuteron In any case, the 
resultant nuclear spin is going to be an integer number. 

C. Nuclear Magnetic Resonance 

The nuclear spin is important in chemical spectroscopy and medical imaging. The manipulation of nuclear spin by 
radiofrequency waves is at the basis of nuclear magnetic resonance and of magnetic resonance imaging. Then, the 
spin property of a particular isotope can be predicted when you know the number of neutrons and protons and the 
shell model. For example, it is easy to predict that hydrogen, which is present in most of the living cells, will have 
spin 1/2. We already saw that deuteron instead has spin 1. What about Carbon, which is also commonly found in 

12biomolecules? 6 C is of course and even-even nucleus, so we expect it to have spin-0. 
13
6 C7 instead has one unpaired 

neutron. Then 13C has spin-1 .2
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Why can nuclear spin be manipulated by electromagnetic fields? To each spin there is an associated magnetic dipole, 
given by: 

gµN 
µ = I = γN I 

r 

where γN is called the gyromagnetic ratio, g is the g-factor (that we are going to explain) and µN is the nuclear 
enmagneton µN = 2m ≈ 3 × 10−8eV/T (with m the proton mass). The g factor is derived from a combination of the 

angular momentum g-factor and the spin g-factor. For protons gl = 1, while it is gl = 0 for neutrons as they don’t 
have any charge. The spin g-factor can be calculated by solving the relativistic quantum mechanics equation, so it is 
a property of the particles themselves (and a dimensionless number). For protons and neutrons we have: gs,p = 5.59 
and gs,n = −3.83. 
In order to have an operational definition of the magnetic dipole associated to a given angular momentum, we define 
it to be the expectation value of µ̂ when the system is in the state with the maximum z angular momentum: 

How can we calculate sz ? There are two cases, either j = l + 1
2 or j = l − 1

2
ˆˆ

ˆ

. And notice that we want to find the 

J|Jˆ
S· 
|J|2 

operators with their expectation values (in the case where jz = jr), we obtain 

ˆ ˆ |R RS in the state which is aligned with J , so we want the expectation value of projection of . By replacing the 

(thus we have a small correction due to the fact that we are taking an expectation value with respect to a tilted state 

and not the usual state aligned with Ŝz. Remember that the state is well defined in the coupled representation, so 
the uncoupled representation states are no longer good eigenstates). 
Finally the dipole is 

otherwise. Notice that the exact g-factor or gyromagnetic ratio of an isotope is difficult to calculate: this is just an 
approximation based on the last unpaired nucleon model, interactions among all nucleons should in general be taken 
into account. 

D. More complex structures 

Other characteristics of the nuclear structure can be explained by more complex interactions and models. For example 
all even-even nuclides present an anomalous 2+ excited state (Since all even-even nuclides are 0+ we have to look 
at the excited levels to learn more about the spin configuration.) This is a hint that the properties of all nucleons 
play a role into defining the nuclear structure. This is exactly the terms in the nucleons Hamiltonian that we had 
decided to neglect in first approximation. A different model would then to consider all the nucleons (instead of a 
single nucleons in an external potential) and describe their property in a collective way. This is similar to a liquid 
drop model. Then important properties will be the vibrations and rotations of this model. 
A different approach is for example to consider not only the effects of the last unpaired nucleon but also all the 
nucleons outside the last closed shell. For more details on these models, see Krane. 

〈µ〉 = µN
~
〈gllz + gssz〉 =

µN
~
〈gljz + (gs − gl)sz〉

Then under our assumptions jz = j~ (and of course lz = ~mz and sz = ~ms) we have

〈µ〉 = µN
~

(glj~+ (gs − gl) 〈sz〉)

〈sz〉 = +~

2 for j = l + 1
2 .

〈sz〉 = −~

2
j
j+1 for j = l − 1

2 .

〈µ〉 = µN

[

gl(j −
1

2
) +

gs
2

]

for j = l + 1
2 and

〈µ〉 = µNgl

[

gl
j(j + 3

2 )

j + 1
− gs

2

1

j + 1

]
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