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We have now a clearer picture of the nuclear structure and of the radioactive decays, as well as the formalism –based 
on quantum mechanics and quantum field theory– that describes their dynamics. We can turn to the study of some 
applications of these ideas. 
First, we will study how radiation interacts with matter. This is fundamental both in order to know what are the 
effects of radiation emitted during nuclear processes on the materials around (and the people) and in order to devise 
detectors that can measure these radiations. At the same time the knowledge of how radiation interacts with matter 
leads to many important applications in e.g. nuclear medicine, for imaging and therapy, in materials science, for 
imaging and diagnostic, in agriculture, archeology etc. Most of you might have already studied these applications 
in 22.01 and also analyzed the processes that give rise to the interactions. Thus we will be here only have a quick 
review, focusing mostly on the physical processes. 
Then we will study two nuclear reactions (fission and fusion) that can be used as sources of energy (or in the case of 
fusion, that holds that promise). 

8.1 Interaction of radiation with matter 

8.1.1 Cross Section 

Classically, the cross section is the area on which a colliding projectile can impact. Thus for example the cross section 
of a spherical target of radius r is just given by πr2. The cross section has then units of an area. Let’s consider for 
example a nucleus with mass number A. The radius of the nucleus is then R ≈ R0A

1/3 = 1.25A1/3fm and the 
classical cross section would be σ = πR0

2A2/3 ≈ 5A2/3fm2. For a typical heavy nucleus, such as gold, A = 197, we 
2 2have σ ≈ 100fm2 = 1barn (symbol b, 1b = 10−28m = 10−24cm = 100fm2 . 

When scattering a particle off a target however, what becomes important is not the head-on collision (as between 
balls) but the interaction between the particle and the target (e.g. Coulomb, nuclear interaction, weak interaction 
etc.). For macroscopic objects the details of these interactions are lumped together and hidden. For single particles 
this is not the case, and for example we can as well have a collision even if the distance between projectile and 
target is larger than the target radius. Thus the cross section takes on a different meaning and it is now defined as 
the effective area or more precisely as a measure of the probability of a collision. Even in the classical analogy, it is 
easy to see why the cross section has this statistical meaning, since in a collision there is a certain (probabilistic) 
distribution of the impact distance. 
The cross section also describes the probability of a given (nuclear) reaction to occur, a reaction that can be generally 
written as: 

′ ′ a + X → X + b or X(a, b)X 

′ where X is an heavy target and a a small projectile (such as a neutron, proton, alpha...) while X and b are the 
reaction products (again with b being nucleons or light nucleus, or in some cases a gamma ray). 
Then let Ia be the current of incoming particles, hitting on an heavy (hence stationary) target. The heavy product 

′ X will also be almost stationary and only b will escape the material and be measured. Thus we will observe the b 
products arriving at a detector at a rate Rb. If there are n target nuclei per unit area, the cross section can then be 
written as 

Rb
σ = 

Ian 
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This quantity do not always agree with the estimated cross section based on the nucleus radius. For example, proton 
scattering x-section can be higher than neutrons, because of the Coulomb interaction. Neutrinos x-section then will 
be even smaller, because they only interact via the weak interaction. 

A. Differential cross section 

The outgoing particles (b) are scattered in all directions. However most of the time the detector only occupies a small 
region of space. Thus we can only measure the rate Rb at a particular location, identified by the angles ϑ, ϕ. What 
we are actually measuring is the rate of scattered particles in the small solid angle dΩ, r(ϑ, ϕ), and the relevant cross 
section is the differential cross section 

d σ r(ϑ, ϕ) 
= 

dΩ 4πIan 

From this quantity, the total cross section, defined above, can be calculated as 

1 π 1 2π1
d σ d σ 

σ = dΩ = sinϑdϑ dϕ 
dΩ dΩ 4π 0 0 

4π d σ d σ (Notice that having added the factor 4π gives σ = for constant .)dΩ dΩ 

B. Doubly differential cross section 

When one is also interested in the energy of the outgoing particles Eb, because this can give information e.g. on the 
structure of the target or on the characteristic of the projectile-target interaction, the quantity that is measured is 
the cross section as a function of energy. This can be simply 

d σ 
dEb 

if the detector is energy-sensitive but collect particles in any direction, or the doubly differential cross section 

d 2σ 
d ΩdEb 

8.1.2 Neutron Scattering and Absorption 

When neutrons travel inside a material, they will undergo scattering (elastic and inelastic) as well as other reactions, 
while interacting with the nuclei via the strong, nuclear force. Given a beam of neutron with intensity I0, when 
traveling through matter it will interact with the nuclei with a probability given by the total cross section σT . At 
high energies, reactions such as (n,p), (n,α) are possible, but at lower energy usually what happens is the capture 
of the neutron (n,γ) with the emission of energy in the form of gamma rays. Then, when crossing a small region of 
space dx the beam is reduced by an amount proportional to the number of nuclei in that region: 

−σT nxdI = −I0σT ndx → I(x) = I0e 

This formula, however, is too simplistic: on one side the cross section depends on the neutron energy (the cross 
section increases at lower velocity as 1/v and at higher energies, the cross section can present some resonances – 
some peaks) and neutrons will lose part of their energy while traveling, thus the actual cross section will depend 
on the position. On the other side, not all reactions are absorption reactions, many of them will ”produce” another 
neutron (i.e., they will only change the energy of the neutron or its direction, thus not attenuating the beam). We 
then need a better description of the fate of a neutron beam in matter. For example, when one neutron with energy 
∼ 1MeV enters the material, it is first slowed down by elastic and inelastic collisions and it is then finally absorbed. 
We then want to know how many collisions are necessary to slow down a neutron and to calculate that, we first need 
to know how much energy does the neutron loose in one collision. 
Different materials can have different cross sections, however the energy exchange in collision is much higher the 
lightest the target. Consider an elastic collision with a nucleus of mass M . In the lab frame, the nucleus is initially at 
rest and the neutron has energy E0 and momentum mv0. After the scattering, the neutron energy is E1, speed vv1 at 

an angle ϕ with vv0, while the nucleus recoil gives a momentum MVv at an angle ψ (I will use the notation w for the 
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HE-3 Cross Section (data from ENDF-VI.1 NJOY99) 
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Fig. 47: Cross section σ(E) for the neutron-He3 reactions. The data and plot can be obtained online from 
http://t2.lanl.gov/data/ndviewer.html 
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Fig. 48: Cross section σ(E) for the neutron-U235 reactions. Notice the 1/v dependence at higher energies and resonances at 
lower energies. 

magnitude of a vector vw, w = | vw|). The collision is better analyzed in the center of mass frame, where the condition 
of elastic scattering implies that the relative velocities only change their direction but not their magnitude. 

The center of mass velocity is defined as vvCM = m�v0+M �V0 
m+M = m 

m+M vv0. Relative velocities in the center of mass frame 

are defined as vu = vv − vvCM . We can calculate the neutron (kinetic) energy after the collision from E1 = 1 2m|vv1|2. An 
expression for |vv1|2 is obtained from the CM speed: 

2 2
|vv1|2 = |vu1 + vvCM |2 = |vu1|2 + |vvCM |2 + 2vu1 · vvCM = u1 + vCM + 2u1vCM cos ϑ 

where we defined ϑ as the scattering angle in the center of mass frame (see figure 49). 
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Lab Frame Center of Mass Frame 

m, u1 

M, U1 

Fig. 49: Neutron scattering from a nucleus. Left, lab frame. Right, center of mass frame 

C r
m MGiven the assumption of elastic scattering, we have |vu1| = |vu0| = u0, but u0 = v0− vCM = v0 1− = v0. m+M m+M 

Finally, we can express everything in terms of v0: 

M2 m2 M m M2 + m2 + 2mM cos ϑ2 2 2|vv1|2 = v0 + v0 + 2 v0 v0 cos ϑ = v0(m + M)2 (m + M)2 (m + M) (m + M) (m + M)2 

We now simplify this expression by making the approximationM/m ≈ A, where A is the mass number of the nucleus. 
In terms of the neutron energy, we finally have 

A2 + 1 + 2A cos ϑ 
E1 = E0 ,

(A + 1)2 

This means that the final energy can be equal to E0 (the initial one) if ϑ = 0 – corresponding to no collision– and 
(A−1)2 (A−1)2 

reaches a minimum value of E1 = E0 = αE0 for ϑ = π (here α = ).(A+1)2 (A+1)2 

Notice that from this expression it is clear that the neutron loose more energy in the impact with lighter nuclei, in 
particular all the energy in the impact with proton: 

+2A cos ϑ• If A ≫ 1, E1 ≈ E0 
A2

A2 ≈ E0, that is, almost no energy is lost. 
2+2 cos ϑ 

e 
ϑ 
)2 • If A = 1, E1 = E0 4 = E0 cos 2 , and for ϑ = π all the energy is lost. 

For low energy, the cross section is independent of ϑ thus we have a flat distribution of the outgoing energies: the 
1 probability to scatter in any direction is constant, thus P (cos ϑ) = . What is the probability of a given energy E1?2

  

ψ 
m, v0, E0 

m, v1, E1 

M, V, E 
m, u0 M, U0 

E1 

E0αE0 

4AE0 

(A+1)2 

P(E1) 

Fig. 50: Probability distribution of the outgoing energy in neutron scattering from a nucleus. 

dE − 2E0AWe have P (E1)dE1 = −P (cos ϑ)d(cos ϑ) = − 1 sinϑdϑ. Then, since = sinϑ, the probability of a given2 d ϑ (A+1)2 

(A+1)2 

scattering energy is constant, as expected, and equal to P (E1) = . Notice that the probability is different than4E0 A 
1+α zero only for αE0 ≤ E1 ≤ E0. The average scattering energy is then (E1) =
 and the average energy lost in a
E0 2 

1−α scattering event is (Eloss) = E0 2 . 
It still requires many collision to lose enough energy so that a final capture is probable. How many? 

1+αThe average energy after one collision is (E1) = E0 . After two collision it can be approximated by (E2) ≈2
 

= E0
(E1) 1+α 
e
1+α 

)2 
. Then, after n collision, we have (En) ≈ E0 

e
1+α 

)n 
C

 E1)
rn 

= E0 . Thus, if we want to know2 2 2 E0 

how many collisions are needed to reach an average thermal energy Eth = (En) we need to calculate n: 
 n     

Eth (En) 
 (E1) 

 (E1) 
 
Eth 

 
Eth 

 (E1) 
= ≈ → n log = log → n = log / log

E0 E0 E0 E0 E0 E0 E0
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However, this calculation is not very precise, since the approximation we made, that we can calculate the average 
energy after the nth scattering (En) considering only the average after the (n−1)th scattering is not a good one, since 

rC 
En−1the energy distribution is not peaked around its average (but is quite flat). Consider instead the quantity log En 

and take the average over the possible final energy (note that this is the same as calculating for the first collision): 

f  ) 1 En−1 
1 En−1En−1 En−1 En−1 (A + 1)2 (A − 1)2 A − 1 

log = log P (En)dEn = log dEn = 1+ log
En En En 4AEn−1 2A A + 1 αEn−1 αEn−1 

( r)C 
En−1The expression ξ = log En 

does not depend on the energy, but only on the moderating nucleus (it depends 

on A). 
( C 

E0 

r) ( C 
En−1 

rn)

Then we have that log = log or (log(En)) = log(E0) − nξ, from which we can calculate the En En 

number of collisions needed to arrive at a certain energy: 

1 Eth 
n(E0 → Eth) = log

ξ E0 

with ξ the average logarithmic energy loss: 

(A − 1)2 A − 1 
ξ = 1 + log

2A A + 1 

For protons (1H), ξ = 1 and it takes 18 collision to moderate neutrons emitted in fission (E = 2MeV) while 2200 
238U.collisions are needed in 

Material A α ξ n 

H 1 0 1 18.2 
H20 
D 
He 

1& 16 
2 
4 

– 
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Be 
C 
U 

9 
12 
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0.207 
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8.1.3 Charged particle interaction 

Charged particles (such as alpha particles and electrons/positrons) going through matter can interact both with 
the nuclei –via the nuclear interaction and the coulomb interaction– and with the electron cloud –via the Coulomb 
interaction. Although the effects of a collision with the light electron is going to affect the colliding particle much 
less than an impact with the heavy nucleus, the probability of such a collision is much higher. 
This can be intuitively understood by analyzing the effective size of the nucleus and the electronic cloud. While the 
nucleus have a radius of about 8fm, the atomic radius is on the order of angstroms (or 105fm). Then the area offered 
to the incoming particle is on the order of π(8fm)2 ∼ 200fm2 = 2 barns. 
On the other side, the electronic cloud present an area of π(105fm)2 ∼ π108 barns to the incoming particle. Although 
the cross section of the reaction (or the probability of interaction between particles) is not the same as the area (as 
it is for classical particles) still these rough estimates give the correct order of magnitude for it. 
Thus the interactions with the electrons in the atom dominate the overall charged particle/matter interaction. 
However the collision with the nucleus gives rise to a peculiar angular distribution, which is what lead to the 
discovery of the nucleus itself. We will thus study both types of scattering for light charged projectiles such as alpha 
particles and protons. 

A. Alpha particles collision with the electronic cloud 

Let us consider first the slowing down of alpha particles in matter. We first analyze the collision of one alpha particle 
with one electron. 

Before collision 

Alpha 
va 

After collision 

v’a≈va 

ve≈2va 

Fig. 51: Left: Charged particles interact mostly with the electronic cloud. Right: Conservation of momentum and kinetic energy 
in the collision of a very heavy object with a very light one 

If the collision is elastic, momentum and kinetic energy are conserved (here we consider a classical, non-relativistic 
collision) 

′ 2 ′2 2 mαvα = mαvα + meve, mαv = mαv + mevα α e 

′ Solving for v and ve we find: a 
me mα′ vα = vα − 2vα , ve = 2vα 

me + mα me + mα 

Since me/mα ≪ 1, we can approximate the electron velocity by ve ≈ 2vα. Then the change in energy for the alpha 
particle, given by the energy acquired by the electron, is 

me2ΔE = 
1 1 

me(2vα)
2 = 4mev = e Eα

2 2 mα 

thus the alpha particle looses a tiny fraction of its original energy due to the collision with a single electron: 

ΔEα me∼ ≪ 1 
Eα mα 

The small fractional energy loss yields the characteristics of alpha slowing down: 

1. Thousands of events (collisions) are needed to effectively slow down and stop the alpha particle 
2. As the alpha particle momentum is barely perturbed by individual collisions, the particle travels in a straight line 

inside matter. 
3. The collisions are due to Coulomb interaction, which is an infinite-range interaction. Then, the alpha particle 

interacts simultaneously with many electrons, yielding a continuous slowing down until the particle is stopped 
and a certain stopping range. 
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db 

4. The electrons which are the collision targets get ionized, thus they lead to a visible trail in the alpha particle path 
(e.g. in cloud chambers) 

D: Stopping power We calculated the energy lost by the alpha particle in the collision with one electron. A more 
important quantity is the average energy loss of the particle per unit path length, which is called the stopping power. 
We consider an alpha particle traveling along the x direction and interacting with an electron at the origin of the 
x-axis and at a distance b from it. It is natural to assume cylindrical coordinates for this problem. 

electron 
y 

r
 r F
vα
 b
 y b 

x z x z 
alpha 

Fig. 52: Geometry for the alpha/electron collision. Left: Impact parameter b and cylindrical coordinates (x, b). Right: Coulomb 
force parallel to the momentum change (in the y direction). 

The change in momentum of the electron is given by the Coulomb force, integrated over the interaction time. The 
eQ r̂vCoulomb interaction is given by F = 4πǫ0 |�r|2 , where vr = rr̂ is the vector joining the alpha to the electron. Only the 

component of the force in the “radial” (y) direction gives rise to a change in momentum (the longitudinal force when 
bintegrated has a zero net contribution), so we calculate Fv · ŷ = |F |r̂ · ŷ. From the figure above we have r̂ · ŷ = 

(x2+b2)1/2 

and finally the force Fy = eQ b . The change in momentum is then 4πǫ0 (x2 +b2)3/2 

1 ∞ 1 ∞ dx e2Zα b 
Δp= Fydt = 

vα 4πǫ0 (x2 + b2)3/2 0 −∞ 

d x where we used the relation = vα between the alpha particle velocity (which is constant with time under our d t 
assumptions) and Q = Zαe = 2e. By considering the electron initially at rest we have 

2Z 
1

e dξ e2Zα
Δp = pe = = 2 

4πǫ0vb (1 + ξ2)3/2 4πǫ0vαb 

where we used ξ = x/b. Then, the energy lost by the alpha particle due to one electron is 

2 4Z2p ee αΔE = = 2 
2m (4πǫ0)2mev2b2 

db 
b 

x 
alpha 

dx 

Fig. 53: To find the stopping power we integrate over all impact parameters b, in a small thickness dx. 

We now sum over all electrons in the material. The number of electrons in an infinitesimal cylinder is dNe = 
ne2πbdbdx, where ne is the electron’s number density (which can be e.g. calculate from ne = NAZρ , with NAA 
Avogadro’s number and ρ the mass density of the material). 
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Then 1 1 1
dE 4πe4Zα

2ne db −dE = 2πdx neΔEbdb → = −2π neΔE(b)bdb = − 
d x (4πǫ0)2mev2 bα 

The integral should be evaluated between 0 and ∞. However this is not mathematically possible (since it diverges) 
and it is also physically unsound. We expect in fact to have a distance of closest approach such that the maximum 

2energy exchange (as in the hard-on collision studied previously) is achieved. We had obtained Ee = 2mevα. Then we 
21 eset this energy equal to the electron’s Coulomb potential energy: Ee ≈ from which we obtain 4πǫ0 bmin 

21 e
bmin ∼ 

4πǫ0 2mev2 α 

The maximum b is given by approximately the Bohr radius (or the atom’s radius). This can be calculated by setting 
21 e ∼ EI where EI is the mean excitation energy of the atomic electrons. Then what we are stating is that the 4πǫ0 bmax 

maximum impact parameter is the one at which the minimum energy exchange happen, and this minimum energy 
is the minimum energy required to excite (knock off) an electron out of the atom. Although the mean excitation 
energy of the atomic electrons is a concept related to the ionization energy (which is on the order of 4 − 15eV) here 
EI is taken as an empirical parameter, which has been found to be well approximated by EI ∼ 10Z eV (with Z the 
atomic number of the target). Finally we have 

2mev
2bmax α = 

bmin ZαEI 

and the stopping power is 
dE 4πe4Zα

2ne bmax 4πe4Zα
2ne− = ln = ln Λ 

d x (4πǫ0)2mev2 bmin (4πǫ0)2mev2 α α 

with Λ called the Coulomb logarithm. 
Since the stopping power, or energy lost per unit length, is given by the energy lost in one collision (or ΔE) times the 
number of collision (given by the number of electron per unit volume times the probability of one electron collision, 
given by the cross section) we have the relation: 

dE − = σcneΔE 
d x 

from which we can obtain the cross section itself. Since ΔE = 2mev
2, we have 

2πe4Zα 
2 

σc = ln Λ 
(4πǫ0)2m2v4 e α 

This can also be rewritten in terms of more general constants. We define the classical electron radius as 

21 e
re = ∼ 2.8fm, 

4πǫ0 mec2 

which is the distance at which the Coulomb energy is equal to the rest mass. Although this is not close to the real size 
of an electron (as for example we would expect the electron radius –if it could be well defined– to be much smaller 
than the nucleus radius) it gives the correct order of magnitude of the effective area in the collision by charged 

vparticles. Also we write β = , so that c 

Z2 
α = 2πr2 ln Λσc e β4 

Since β is usually quite small for alpha particles, the cross section can be quite large. For example for a typical alpha 
venergy of Eα = 4MeV, and its rest mass mαc

2 ∼ 4000MeV, we have 
2 ∼ 2 × 10−3. The Coulomb logarithm is on 2c

the order of ln Λ ∼ 5− 15, while 2πre 
2 ∼ 12barn. Then the cross section is σc ∼ 124 · 106/4 · 10b = 5× 106b. 

D: Stopping Length This is defined by 
1 dE 

1/lα = − . 
E d x 

Then we can write an exponential decay for the energy as a function of distance traveled inside a material: E(x) =
 
E0exp(−x/lα). Thus the stopping length also gives the distance at which the energy has been reduced by 1/e (≈ 63%).
 

( )
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Fig. 54: Stopping power for alpha particles (left) and protons (right) in graphite. x-axis: Energy in MeV. y-axis: Stopping 
power (MeV cm2/g). The red curve is the total stopping power, given by the Coulomb stopping power from collision with the 
electrons (blue) and the Rutherford stopping power (black) from collision with the nuclei. The data is taken from NIST. 

In terms of the cross section the stopping length is: 

m2
1/lα = 4 σcZn, 

mα 

where n, the atomic number density can be expressed in terms of the mass density and the Avogadro number, 
ρ n = A NA. 

−1Example Stopping length for lead: 1/lα = 4×104cm or lα = 2.5×10−5cm. The range of the particle in the material 
is however many stopping lengths (on the order of 10), thus the range in lead is around 2.5µm. 

D: Range. The range is more precisely defined as the distance a particle travels before coming to rest. Then, the 
range for a particle of initial kinetic energy Eα is defined as 

1 r(E=0) 1 Eα dE −1 

R(Eα) = 
r(Eα) 

dx = − 
0 dx 

dE 

Notice that these is a strong dependence of the stopping power on the mass density of the material (a linear
 
dependence) such that heavier materials are better at stopping charged particles.
 
However, for alpha particles, it doesn’t take a lot to be stopped. For example, they are stopped in 5 mm of air.
 
Bragg Curve – The Bragg curve describes the Stopping power as a function of the distance traveled inside matter.
 
As the stopping power (and the cross section) increase at lower energies, toward the end of the trajectory there is
 
an increase in energy lost per unit length. This gives rise to a characteristic Bragg peak in the curve. This feature is
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Fig. 55: Bragg curve for protons (distance in mm) 

exploited for example for radiation therapy, since it allows a more precise spatial delivery of the dose at the desired 
location. 

( )
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B. Rutherford - Coulomb scattering 

Elastic Coulomb scattering is called Rutherford scattering because of the experiments carried out in Rutherford lab 
in 1911-1913 that lead to the discovery of the nucleus. The experiments involved scattering alpha particles off a thin 
layer of gold and observing the scattering angle (as a function of the gold layer thickness). 
The interaction is given as before by the Coulomb interaction, but this time between the alpha and the protons in 
the nucleus. Thus we have some difference with respect to the previous case. First, the interaction is repulsive (as 
both particle have positive charges). Then more importantly, the projectile is now the smaller particle, thus loosing 
considerable energy and momentum in the interaction. 
What we want to calculate in this interaction is the differential cross section d σ . The differential (infinitesimal) crossdΩ 
section can be calculated (in a classical picture) by considering the impact parameter b and the small annular region 
between b and b + db: 

dσ = 2πbdb 

Then the differential cross-section, calculated from the solid angle dΩ = dϕ sinϑdϑ → 2π sinϑdϑ (given the symmetry 
about ϕ), is: 

d σ 2πbdb b d b 
= = 

dΩ 2π sinϑdϑ sinϑ dϑ 
What we need is then a relationship between the impact parameter and the scattered angle ϑ (see figure). 

vα 

b 
p=mv0Nucleus 

alpha 

Δp 

x 

ϑ 
d 

rmin 
ϑ 

Fig. 56: Rutherford scattering and momentum change 

In order to find b(ϑ) we study the variation of energy, momentum and angular momentum. Conservation of energy 
states that: 

1 2 1 zZe2 2 mv0 = mv + 
2 2 4πǫ0r 

which gives the minimum distance (or distance of closest approach) for zero impact parameter b = 0, that happens 
2 zZe2 

when the particle stops and gets deflected back: 1mv0 = .2 4πǫ0d 
The momentum changes due to the Coulomb force, as seen in the case of interaction with electrons. Here however 
the nucleus almost does not acquire any momentum at all, so that only the momentum direction is changed, but 
not its absolute value: initially the momentum is p0 = mv0 along the incoming (x) direction, and at the end of the 
interaction it is still mv0 but along the ϑ direction. Then the change in momentum is Δp = 2p0 sin 

ϑ = 2mv0 sin 
ϑ 

2 2 
π−ϑ(see Fig. above). This momentum difference is along the direction δp̂, which is at an angle with x. We then2 

switch to a reference frame where vr = {r, γ}, with r the distance |vr| and γ the angle between the particle position
 
and δp̂.
 
The momentum change is brought about by the force in that direction:
 

1 ∞ 1 ∞ 1 ∞ zZe2 r̂ · δp̂ zZe2 cos γ vΔp = F p dt = dt· δ ̂ dt = 
4πǫ0 |r2| 4πǫ0 r2 0 0 0 

− π−ϑ π−ϑNotice that at t = 0, γ = 2 2(as vr is almost aligned with x) and at t = ∞, γ = (Fig). How does γ changes 
with time? 
The angular momentum conservation (which is always satisfied in central potential) provides the answer. At t = 0, 
the angular momentum is simply L = mv0b. At any later time, we have L = mvr × vv. In the coordinate system 
vr = {r, γ} the velocity has a radial and an angular component: 

vv = ˙r + γvrˆ r ̇ γ 

and only this last one contributes to the angular momentum (the other being parallel): 

d γ 1 γ̇2L = mr → = 
d t r2 v0b 
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ϑ

Δp (π−ϑ)/2
δp 

γ r ϑ 
d	 xp=mv0	 Nucleus 

Fig. 57: Momentum change and coordinate system ({r, γ}) for Rutherford scattering. 

Inserting into the integral we have : 

1 ∞	 1 
2zZe2 cos γγ̇ zZe2 

π+ϑ 

cos γ zZe2 ϑ 
Δp = dt =	 dγ = 2 cos 

4πǫ0	 4πǫ0 π−ϑ 4πǫ0v0b 20 v0b 
2 

v0b 

By equating the two expressions for Δp, we have the desired relationship between b and ϑ: 

ϑ zZe2 ϑ	 zZe2 ϑ 
2mv0 sin = 2 cos → b = cot 

2 4πǫ0v0b 2 4πǫ0mv2 20 

Finally the cross section is: 

d σ zZe2
2 

ϑ 
= (4Ta)

−2 sin−4 

dΩ 4πǫ0	 2 

1(where Ta = mv0 is the incident –alpha– particle kinetic energy). In particular, the Z2 , T −2 and sin−4 dependence 2
are in excellent agreement with the experiments. The last dependence is characteristic of single scattering events 
and observing particles at large angles (although less probable) confirm the presence of a massive nucleus. Consider 
gold foil of thickness ζ = 2µm and an incident beam of 8MeV alpha particles. The impact parameter that gives a 
scattering angle of 90 degrees or more is b ≤ d = 14fm. Then the fraction of particles with that impact parameter is 2 

∝ πb2, thus we have ζnπb2 ≈ 7.5× 10−5 particles scattering at an angle ≥ 90◦ (with n the target density). Although 
this is a small number, it is quite large compared to the scattering from a uniformly dense target. 

C. Electron stopping in matter 

Electrons interact with matter mainly due to the Coulomb interaction. However, there are differences in the interaction 
effects with respect to heavier particles. The differences between the alpha particle and electron behavior in matter 
is due to their very different mass: 

1. Electron-electron collisions change the momentum of the incoming electron, thus deflecting it. Then the path of 
the electron is not straight anymore. 

2. The stopping power is much less, so that e.g. the range is 1cm in lead. (remember that the ratio of the energy 
lost to the initial energy for alpha particles was small, since it was proportional to the ratio of masses -electron 
to alpha. Here the masses ratio is 1, and we expect a large change in energy). 

3. Electrons have more often a relativistic speed. For example, electrons emitted in the beta decay travel at relativistic 
speed. 

4. There is a second mechanism for deceleration.	 Since the electrons can undergo rapid changes of velocity due 
to the collision, it is constantly accelerating (or decelerating) and thus it radiates. This radiation is called 
Bremsstrahlung, or braking radiation (in German). 

The stopping power due to the Coulomb interaction can be calculated in a very similar way to what done for the 
alpha particle. We obtain: 

2
dE e2 ZρNA 1 − = 4π	 ln Λ ′ 
d x 4πǫ0 A mec2β2 

Here Λ ′ is now a different ratio than the one obtained for the alpha particles, but with a similar meaning: Λ ′ = 
� 

2
T (T +mc ) , where again we can recognize the ratio of the electron energy (determining the minimum distance) 2mev2 EI 

and the mean excitation energy EI (which sets the maximum distance) as well as a correction due to relativistic 
effects. 

( ) )(

( )
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Fig. 58: Stopping power for electrons in graphite (left) and Lead (right). x-axis: Energy in MeV. y-axis: Stopping power (MeV 
cm 2/g). The red curve is the total stopping power, given by the Coulomb stopping power (blue) and the radiative stopping 
power (black). Note the different contributions of the two types of processes for the two nuclides: the Bremsstrahlung is much 
higher for heavier elements such as Lead. The data is taken from NIST. 

A quantum mechanical calculation gives some corrections (for the alpha as well) that become important at relativistic 
energies (see Krane): 

2
dE e2 ZρNA 1 − = 4π [ln Λ ′ + relativistic corrections] 
d x 4πǫ0 A mec2β2 

To this stopping power, we must add the effects due to the “braking radiation”. Instead of calculating the exact 
contribution (see Krane), we just want to estimate the relative contribution of Bremsstrahlung to the Compton 
scattering. The ratio between the radiation stopping power and the coulomb stopping power is given by 

− 
dE 
d x

 
 
 
 

 
 
 
 

2 2 2dE Z T + T + Ze mec mec
/ − ≈= 

lc fc mec2 mec2d x 1600 r c 

2

where fc ∼ 10 − 12 is a factor that takes into account relativistic corrections and remember e 1 Then the 
�c ≈ 137 . 

radiation stopping power is important only if T ≫ mec
2 and for large Z. This expression is valid only for relativistic 

energies; below 1MeV the radiation losses are negligible. Then the total stopping power is given by the sum of the 
two contributions: 

dE dE 
= 

d x d x

 
 
 
 
+ 
dE 
d x

 
 
 
 

c r 

Since the electron do not have a linear path in the materials (but a random path with many collisions) it becomes more 
difficult to calculate ranges from first principles (in practice, we cannot just take dt = dx/v as done in the calculations 
for alphas). The ranges are then calculated empirically from experiments in which the energy of monoenergetic 
electron beams is varied to calculate R(E). NIST provides databases of stopping power and ranges for electrons (as 
well as for alpha particles and protons, see the STAR database at http://www.nist.gov/pml/data/star/index.cfm. 
Since the variation with the material characteristics (once normalized by the density) is not large, the range measured 
for one material can be used to estimate ranges for other materials. 

)(
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8.1.4 Electromagnetic radiation 

The interaction of the electromagnetic radiation with matter depends on the energy (thus frequency) of the e.m.
 
radiation itself. We studied the origin of the gamma radiation, since it derives from nuclear reactions. However, it is
 
interesting to also study the behavior of less energetic radiations in matter.
 
In order of increasing photon energy, the interaction of matter with e.m. radiation can be classified as:
 

Rayleigh 
Scattering 

lω < EI 
∼eV 

Photoelectric 
Absorption 

lω ≥ EI 
∼keV 

Compton 
Scattering 

lω ∼ mec
2 

∼MeV 

Pair 
Production 

lω > 2mec
2 

≥MeV 
Visible X-rays γ-rays hard γ-rays 

Here EI is the ionization energy for the given target atom. 
A classical picture is enough to give some scaling for the scattering cross section. We consider the effects of the 
interaction of the e.m. wave with an oscillating dipole (as created by an atomic electron). 
The electron can be seen as being attached to the atom by a ”spring”, and oscillating around its rest position with 
frequency ω0. When the e.m. is incident on the electron, it exerts an additional force. The force acting on the electron 
is F = −eE(t), with E(t) = E0 sin(ωt) the oscillating electric field. This oscillating driving force is in addition to the 
attraction of the electron to the atom ∼ −kxe, where k (given by the Coulomb interaction strength and related to 
the binding energy EI ) is linked to the electron’s oscillating frequency by ω0

2 = k/me. The equation of motion for 
the electron is then e 

meẍe = −kxe − eE(t) → ẍe + ω0
2 xe = − E(t) 

me 

We seek a solution of the form xe(t) = A sin(ωt), then we have the equation 

e 1 e 
(−ω2 + ω0

2)A = − E0 → A = E0
ω2 − ω2me me0 

We have already seen that an accelerated charge (or an oscillating dipole) radiates, with a power 

22 e 2P = a 
3 c3 

where the accelaration a is here a = −ω2A sin(ωt), giving a mean square acceleration 

ω2 e 
2 
1� 

2
� 

a = E0
ω2 − ω2 me 20 

The radiated power is then 

1 e2
2 

ω4 

cE2 
0P =

3 mec2 (ω2 − ω2)20 

Fig. 59: Range for alpha particles (black) and electrons (red) in Lead (solid curves) and air (dashed). x-axis: Energy in MeV. 
y-axis: Range (g/cm2). Note the much longer range for electrons than for alpha particles. Only at very high energy, for lead, 
the range is shorter for electrons, thanks to the contribution from Bremsstrahlung. The data is taken from NIST. 
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cE0
2 

1The radiation intensity is given by I0 = 8π 2E
2 and the (recall that the e.m. energy density is given by u = 

intensity, or power per unit area, is then I ∼ cu). Then we can express the radiated power as cross-section×radiation 
intensity: 

P = σI0 

This yields the cross section for the interaction of e.m. radiation with atoms : 

σ = 
8π 
3 

e2 

mec2 

2 
ω2 

ω2 
0 − ω2 

2 

or in SI units: 
2 2 22 ω2 ω28π e 2 

σ = = 4πr2 e3 4πǫ0mec2 ω2 − ω2 3 ω2 − ω2 
0 0 

where we used the classical electron radius re. 

A. Rayleigh Scattering 

We first consider the limit in which the e.m. radiation has very low energy: ω ≪ ω0. In this limit the electron is 
initially bound to the atom and the e.m. is not going to change that (and break the bound). We can simplify the 

ω2 ≈ ω
2 

frequency factor in the scattering cross-section by , then we have: 
ω2−ω2 ω2 

0 0 

σR = 
8π 
3 

e2 

4πǫ0mec2 

2 
ω4 

ω4 
0 

The Rayleigh scattering has a very strong dependence on the wavelength of the e.m. wave. This is what gives the 
blue color to the sky (and the red color to the sunsets). 

B. Thomson Scattering 

Thomson scattering is scattering of e.m. radiation that is energetic enough that the electron appears to be initially
 
unbound from the atom (or a free electron) but not energetic enough to impart a relativistic speed to the electron.
 
(If the electron is a free electron, the final frequency of the electron will be the e.m. frequency).
 
We are then considering the limit:
 

lω0 ≪ lω ≪ mec 
2 

where the first inequalities tells us that the binding energy is much smaller than the e.m. energy (hence free electron) 
while the second tells us that the electron will not gain enough energy to become relativistic. 

ω2 1Then we can simplify the factor = ≈ −1 and the cross section is simply 
ω2−ω2 (ω0/ω)2 −10 

σT = 
8π 
3 

e2 

4πǫ0mec2 

2 

2with σT ∼ 3barn. Notice that contrasting with the Rayleigh scattering, Thomson scattering cross-section is com­
pletely independent of the frequency of the incident e.m. radiation (as long as this is in the given range). Both these 
two types of scattering are elastic scattering, meaning that the atom is left in the same state as it was initially (so 
conservation of energy is satisfied without any additional energy coming from the internal atomic energy). Even in 
Thomson scattering we neglect the recoil of the electron (as stated by the inequality lω ≪ mec

2). This means that 
the electron is not changed by this scattering event (the atom is not ionized) even if in its interaction with the e.m. 
field it behaves as a free electron. 
Notice that the cross section is proportional to the classical electron radius square: σT = 8π 2r .3 e 

C. Photoelectric Effect 

At resonance ω ≈ ω0 the cross-section becomes (mathematically) infinite. The resonance condition means that the 
e.m. energy is equal to the ionization energy EI of the electron. Thus, what it really happens is that the electron 
gets ejected from the atom. Then our simple model, from which we calculated the cross section, is no longer valid 
(hence the infinite cross section) and we need QM to fully calculate the cross-section. This is the photoelectric effect. 
Its cross section is strongly dependent on the atomic number (as σpe ∝ Z5) 

( (

(

(

) )

)

)

)) )( ( (
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D. Compton Scattering 

Compton scattering is the scattering of highly energetic photons from electrons in atoms. In the process the electron 
acquire an energy high enough to become relativistic and escape the atom (that gets ionized). Thus the scattering is 
now inelastic (compared to the previous two scattering) and the scattering is an effective way for e.m. radiation to lose 
energy in matter. At lower energies, we would have the photoelectric effect, in which the photon is absorbed by the 
atom. The effect is important because it demonstrates that light cannot be explained purely as a wave phenomenon. 

λ' 

λ ϑ 

ϕ 

Fig. 60: Photon/Electron collision in Compton scattering. 

From conservation of energy and momentum, we can calculate the energy of the scattered photon. 

E ′ 2Eγ + Ee = γ + E ′ → lω + mec = lω ′ + |p|2c2 + m2c4 e 

{ 
lk = cos ϑ + p cos ϕ 

lvk = lvk ′ + pv → 
lk ′ 

lk ′ sinϑ = p sinϕ 

2 (ω ′ −ω) [ 2
]

From these equations we find p = l(ω ′ − ω)− 2mc and cos ϕ = 1− l2k′2 sin2 ϑ/p2 . Solving for the c2 

2πchange in the wavelength λ = we find (with ω = kc):k 

Δλ = 
2πl 
mec 

(1−cos ϑ) 

or for the frequency: 
[ ]−1

lω 
lω ′ = lω 1 + (1 − cos ϑ)

mec2

The cross section needs to be calculated from a full QM theory. The result is that 

2mec
σC ≈ σT 

lω 

thus Compton scattering decreases at larger energies. 

E. Pair Production 

Pair production is the creation of an electron and a positron pair when a high-energy photon interacts in the vicinity
 
of a nucleus. In order not to violate the conservation of momentum, the momentum of the initial photon must be
 
absorbed by something. Thus, pair production cannot occur in empty space out of a single photon; the nucleus (or
 
another photon) is needed to conserve both momentum and energy .
 
Photon-nucleus pair production can only occur if the photons have an energy exceeding twice the rest mass (mec

2)
 
of an electron (1.022 MeV):
 

2 2
lω = Te− + me−c + Te+ + me+ c 2 ≥ 2mec = 1.022MeV 

Pair production becomes important after the Compton scattering falls off (since its cross-section is ∝ 1/ω). 
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